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ABSTRACT  
 
Alajmi, M., Carcione, J.M., Qadrouh, A.N. and Ba, J., 2020. Numerical simulation in a  
wave tank filled with sand. Journal of Seismic Exploration, 29: 247-260. 

 
We develop a pseudospectral modeling algorithm for wave propagation in anelastic 

media with Dirichlet and Neumman boundary conditions. The method also allows to set 
non-reflecting boundaries. The modeling can be adapted to laboratory experiments, 
namely the implementation of free-surface, rigid and non-reflecting boundary conditions 
at the model boundaries, as for instance, a tank to perform physical modeling. The 
time-domain equations for propagation in a viscoelastic medium are described by the 
Zener mechanical model, that gives relaxation and creep functions in agreement with 
experimental results. The algorithm is based on a two-dimensional Chebyshev differential 
operator for solving the viscoelastic wave equation. The technique allows the 
implementation of non-periodic boundary conditions at the four boundaries of the 
numerical mesh, which requires a special treatment of these conditions based on 
one-dimensional characteristics. In addition, spatial grid adaptation by appropriate 
one-dimensional coordinate mappings allows a more accurate modeling of complex media, 
and reduction of the computational cost by controlling the minimum grid spacing. An 
example is shown, where we compute microseismograms in a tank filled with lossy sand. 

 
KEY WORDS: wave tank, Dirichlet conditions, Neumann conditions, anelasticity, 
     full-wave modeling. 
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INTRODUCTION 
 
Wave modeling is a valuable tool for seismic interpretation and an 

essential part of inversion algorithms. Most problems regarding 
environmental geophysics, seismic exploration, earthquake seismology and 
non-destructive testing of materials require the use of full-wave modeling 
methods based on model discretization (a mesh) (Fagin, 1992; Carcione, 
2002, 2014). Boundary conditions play an important role in modeling. In 
general, absorbing – non-reflecting – boundaries are applied at the sides of 
the mesh, but there are cases, where specific conditions are required, such as 
modeling surface and borehole waves (e.g., Carcione, 1992; Farina et al., 
2017). These conditions are particular cases of the Dirichlet and Neumann 
boundaries conditions, for instance a free surface (displacements are zero) 
and a rigid surface (normal stresses are zero). 

 
An example, where the finite dimensions of the system requires to 

implement these conditions, are laboratory experiments (physical modeling), 
such as analog sandbox models. These systems provide cheap data and can 
be used to study the effects of seismic wave propagation in complex media, 
and to improve methods of data acquisition, processing and interpretation 
(Sherlock, 1999; Sherlock and Evans, 2001; Smolkin, 2011; Krawczyk et al., 
2013; Bergamo et al., 2014). Numerical modeling is required when physical 
modeling (laboratory) experiments are performed, in order to interpret the 
results (Solymosi et al., 2018). In a laboratory experiment, certain boundary 
condition need to be satisfied, due to the finite dimensions of the physical 
model. These are basically free-surface, rigid and non-reflecting conditions at 
the top, bottom and sides of the device, where the experiment is carried out, 
e.g., a tank (De Angelis, 2010). Hence, we should be able to distinguish 
between the main event we are interested in and events generated by the 
finite dimension of the experimental device. In this sense, numerical 
modeling is essential. For a review and characteristics of small-scale physical 
modeling, see Solymosi et al. (2018). These authors consider a model 
immersed in a water tank, and use a conventional pulse-echo technique to 
collect acoustic reflection data at zero-offset and offset configurations. 

 
We generalize a modeling approach introduced by Carcione (1996) for 

lossless media to the anelastic case, where wave loss is described by the 
Zener mechanical model. The fact that attenuation and velocity dispersion are 
modeled is essential to describe wave propagation in unconsolidated media 
such as sand, since this type of media is highly anelastic. This realistic 
description is important to analyze near-surface seismic data. We recast the 
elastodynamic equations in the particle-velocity/stress formulation. The 
numerical method is based on the pseudospectral Chebyshev differential 
operator to compute the spatial derivatives and the 4th-order Runge-Kutta 
method for time stepping. The 2D physical domain is discretized at a set of 
points obtained from a 2D Chebyshev grid (computational domain) after 
application of two 1D stretching transformations to each Cartesian co- 
ordinate. By stretching the mesh we increase the grid spacing and use time 
steps of the order  (Kosloff and Tal-Ezer, 1993; Carcione, 1996). ( )1O N −
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The Chebyshev pseudospectral method facilitates the implementation of 
general boundary conditions at the four boundaries of the mesh and is 
adapted for domain-decomposition problems as well (Carcione et al., 2018). 
This problem is solved by modifying the wave equation by imposing the 
correct behaviour on the 1D characteristics normal to the boundaries 
(Carcione, 1996). 

 
 

EQUATIONS OF MOTION 
 
 The equations of motion in the -plane, based on memory variables 

(e.g., Carcione and Helle, 2004), are given in the following: 
 
  The equations of momentum conservation: 

 
( ), ,

1 ,x xx x xz z xfν σ σρ
•
= + +

    
                       (1) 

( ), ,
1 ,z xz x zz z zfν σ σρ

•
= + +

                         (2) 
where  and  are the particle velocities, , and xz are the 
stress components, 	 is the density and fx and fz are the body forces. A dot 
above a variable denotes time differentiation, and the subindices “ ” and 
“ ” indicate spatial derivatives with respect to the Cartesian coordinates. 
 

The constitutive equations: 

( ), 1 1 22 ,xx x x e e eλϑ µν λ µσ• = + + + +                   (3)     

( ), 1 1 22 ,zz z z e e eλϑ µν λ µσ• = + + + −                     (4) 

 ( ), , 3 ,xz x z z x eµ ν νσ• = + +  
	
                           (5) 

 
where  is the dilatation, e1, 

 
e2 and e3 are memory variables, 

and 	 and  are the unrelaxed (high-frequency) Lamé constants, 
respectively. 
 
 The memory-variable equations: 

 
( ) ( ) ( )

1
1 1 1 1

1 1 ,ee
ε σ σ

ϑ
τ τ τ

• ⎛ ⎞
= − −⎜ ⎟⎜ ⎟
⎝ ⎠                          (6) 

( ) ( ) ( ) ( )
2

2 , ,2 2 2

1 1 ,x x z z
ee

ε σ σ

ν ν
τ τ τ

• ⎛ ⎞
= − − −⎜ ⎟⎜ ⎟
⎝ ⎠ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (7) 

( ),x z

xv zv xxσ zzσ σ
ρ
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, z

, ,x x z zv vϑ = +
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( ) ( ) ( ) ( )

3
3 , ,2 2 2

1 1 ,x z z x
ee

ε σ σ

ν ν
τ τ τ

• ⎛ ⎞
= − + −⎜ ⎟⎜ ⎟
⎝ ⎠ 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (8) 

 
where 	 and  are material relaxation times, corresponding to 
dilatational  and shear  deformations. The relaxation times 
can be expressed as 

	 	 	 	 	 	 	 	 	

( ) ( ),1120 ++= ν
ν

ν
ε

τ
τ Q

Q 	 	 	 	 ( ) ( ) 02 ,
Q

ν ν
σ ε

ν

τ
τ τ= − 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9) 

 
where 	 is a relaxation time such that 1/  is the center frequency of the 
relaxation peak and Qv are the minimum quality factors. We assume , 
where  is a reference frequency that can be the dominant frequency of the 
source. The quality factor, , associated with the bulk modulus, is obtained 
from the relation 
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 (10) 

 
where  is Poisson’s ratio, and 	 is the P-wave quality factor, while the 
S-wave quality factor is QS = Q2. Here vP	 and vS	 are the unrelaxed 
(infinite-frequency) velocities.	  

 
 

NUMERICAL ALGORITHM 
 

The spatial differential operator is based on the Chebyshev method 
whose collocation points define the numerical mesh of the computational 
domain. From this, the physical domain is obtained after mapping 
transformations which circumvent the severe stability condition of the time 
integration scheme and yield spatially adaptive grids. The implementation of 
boundary conditions requires a special treatment based on characteristics 
variables. 

 
 

Chebyshev Collocation Method 
 
The computational domain is a square region , where 

the grid distribution is defined by the Chebyshev Gauss-Lobatto points. Let 

( )ν
στ

( )ν
ετ

( 1)v = ( 2)v =

0τ 0τ

0 0 1τ ω =

0ω
1Q

( ) ( )
1 2

3 1 2 1 21 ,
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= −
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us assume that the pair  represents either  or , where Nx 
and Nz	are the number of grid points in the x-	and z-directions, respectively. A 
field variable , , can be expanded into Chebyshev polynomials 

 as 
 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11) 

where  j = 0,…, N , are the Gauss-Lobatto collocation 

points, and ∑´ halves the first and last terms. The first-order derivative of u is 

given by 

	 	 	
	 	 	 	 	 	 	 	 	 	 (12) 

 
initiating the recursion equation with bN+1 = bN = 0. The spatial derivative is 
computed via a variant of the fast Fourier transform (FFT) for the cosine 
transform (Carcione, 2014). 
 
 
Coordinate mapping 

 
The uneven distribution of points of the Chebyshev differential operator 

has two main disadvantages. In the first place, the stability condition and the 
accuracy of the time integration scheme depend on the minimum grid spacing 
of the mesh. The dense concentration of points of the Chebyshev mesh at the 
boundaries requires time steps of the order , making the modeling 
algorithm highly inefficient. This problem is solved by expanding the 
solution as a finite sum of non-polynomial basis functions. This is achieved 
by 1D transformations or stretching functions which applied to the 
Gauss-Lobatto points yield a numerical grid that can be adapted to the 
particular structure of the model and boundary conditions. The 
transformations allow time steps of order , thus reducing considerably 
the computer time. 

 
We consider the following coordinate transformation from the 

computational to the physical domain: 

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (13) 
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( ) ( )
0

,
N

j n n j
n

u a Tζ ζ
=

ʹ
=∑

( )cos / ,j j Nζ π=

( )
0

,
N

n n j
n

u b T ζ
ζ =

ʹ∂
=

∂ ∑ 1 1 2 ,n n nb b na− += + ,...,1,n N=

( )2O N−

( )1O N −

( ) ( )
( ) ( )max

1
,

1 1
j

j

q q
z z

q q
ζ⎡ ⎤−

= ⎢ ⎥
− −⎢ ⎥⎣ ⎦
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where 

   	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14) 

 
is a symmetric mapping function satisfying 	 and . 
 

The transformation (13) maps the interval 	 onto the interval 
, where a represents x or z, such that the physical domain is 

. 
 

The spatial derivative of a field variable in the physical domain is then 
given by 

	 	 	 .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (15) 

We have 

	 	 	 	 	 	 .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (16) 

 
This mapping stretches the mesh at the boundaries. When , we 

obtain the Gauss-Lobatto collocation points, and  gives equally 
distributed points as in the Fourier differential operator. The mapping 
improves the π criterium for resolving the maximum wavenumber to almost 
two points per minimum wavelength, as in the Fourier case. A detailed 
analysis of resolution and accuracy of the 1D differential operator 
constructed with this transformation are given by Kosloff and Tal-Ezer 
(1993). 

 
 

Boundary conditions 
 
At each time step of the algorithm, the boundary conditions are 

implemented. However, a direct application of these conditions gives 
unstable solutions. This problem is solved by decomposing the wavefield into 
one-way modes (or characteristics) perpendicular to the boundaries, and 
modifying these modes according to the boundary conditions (Carcione, 1996, 
2014). In the following, the boundary equations for the upper (upper sign) 
and lower (lower sign) boundaries of the numerical mesh are given. 
 

( ) ( )
( )

arcsin
,

arcsin
q ζ
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=
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,
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 The Neumann boundary equations are 
 

1 ,
old oldnew

x xzx
SZ

fν ν σ
•• • •⎛ ⎞

= + ± −⎜ ⎟
⎝ ⎠

                    (17) 

        1 ,
old oldnew

z zzz
PZ

gν ν σ• • • •⎛ ⎞
= ± −⎜ ⎟

⎝ ⎠
                     (18) 

              ,
2

new old old

xx xx zz gλ
λ µ

σ σ σ• • • •⎛ ⎞
= − −⎜ ⎟

+ ⎝ ⎠
                  (19) 

                  ,
new

zz gσ• •
=                            (20) 

               ,
new

xz fσ
••

= ±                           (21) 
 

where  and g are time-dependent functions, and and 
 are the compressional and shear impedances. The superscripts (old) 

and (new) refer to the variables before and after modification of the incoming 
characteristics. When we have the free-surface boundary conditions. 
The method can be used also to plug a source function at a given point of the 
boundary. For instance, , and ( ) ( )0 ,zz x t tgσ• •

=  is a vertical force located 
at  with time history . 
 

The Dirichlet boundary equations are 
 

	 	 	 	 	 	 	 	 	 	 	 	 ,
new

xν ν• •
=                          (22) 

          ,
new

z wν• •
= ±                         (23) 

  ,
2

new old old old

xx xx zz zz
λ

λ µ
σ σ σ σ• • • •⎛ ⎞

= + −⎜ ⎟
+ ⎝ ⎠

                 (24) 

    ,
new old old

zz zz zPZ wσ σ ν• • • •⎛ ⎞
= + ± −⎜ ⎟

⎝ ⎠                      (25) 

          ,
new old old

xz xz xSZσ σ ν ν• • • •⎛ ⎞
= ± −⎜ ⎟

⎝ ⎠                       (26) 

 
where 	 and w	 are time-dependent functions. Rigid boundary conditions 
imply . 

f ( )2PZ λ µ ρ= +

SZ µρ=

0,f g= =

0f =

0x ( )g t

v
0w v= =
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The non-reflecting boundary equations are 

  1 1 ,
2

new old old

x x xz
SZ

ν ν σ• • •⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
                    (27) 

     1 1 ,
2

new old old

z z zz
PZ

ν ν σ• • •⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
                     (28) 

,
2( 2 )

new old old old

xx xx zz zPZ
λ

λ µ
σ σ σ ν• • • •⎛ ⎞

= − ⎜ ⎟
+ ⎝ ⎠

m                 (29) 

   
1 ,
2

new old old

zz zz zPZσ σ ν• • •⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
                    (30) 

            
1 ,
2

new old old

xz xz xSZσ σ ν• • •⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
                    (31) 

The equations for the left boundary can be obtained from the lower 
boundary equations by substituting and . Similarly, the 
equations for the right boundary are obtained from the left boundary 
equations by substituting , where in this case,  and 

. 
 
For the corner points, we use an ad hoc treatment introduced by Lie 

(1991) who defines the normal to the corner point inwards and bisecting the 
angle between the adjacent boundary lines. For a rectangular mesh this angle 
is a multiple of  depending on the corner point (Carcione, 1996). 

 
The numerical solution obtained with this algorithm has been verified by 

comparison to the analytical solution of Lamb’s problem in Carcione (1996), 
that is, the response of an elastic (lossless) half-space bounded by a free 
surface to an impulsive vertical force, fy (there is no analytical solution in the 
anelastic case). The L2 error of this comparison is less than  for typical 
values of the time step and number of grid points. The error can be further 
reduced at the cost of increasing the computer time. 

 
 

EXAMPLE 
 

A practical example is given by a tank to perform laboratory acoustics 
experiments. The characteristics of the tank and medium properties are 
shown in Fig. 1 (e.g., Al-Shuhail, 2018). The simulations use a numerical 
mesh with nx = 121 and nz = 81 grid points, with maximum grid sizes of 

cm and cm at the center of the mesh. According to the 
sampling theorem, the grid can support a maximum frequency of fmax = 
cmin/(2dmax). Since, cmin = 260	m/s, and dmax = dx, we have 	 kHz.  

x z→ z x→

x x→− x xv v→−
xz xzσ σ→−

/ 4π

0.1%

1.340dx = 1.569dz =

max 8.285f =
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The source is a vertical force and its time history (a Ricker wavelet) is

, , , with  kHz, the 
source central frequency. The spectrum of this source is a Gaussian function 
with center at , which can be considered the dominant frequency ( 	
should not exceed ). The dominant wavelengths of the P- and S-waves 
are (450 m/s)/3000 Hz = 15 cm, and (260 m/s)/3000 Hz = 8.6 cm, 
respectively. 

 
Fig. 1. Model and source-receiver locations. The boundary conditions at the four sides of 
the mesh are indicated in italics font. 
 
 

This is an idealized case, since these wavelengths (and frequency) 
cannot be supported by an unconsolidated medium such as sand. Actually, 
unconsolidated sand has a low quality factor and the major cause of the 
severe energy attenuation in dry sand is friction between the grains due to 
variations in size and roundness. Sample P1 in Prasad and Meissner (1992) 
(their Fig. 3) is coarse dry sand and has a P-wave quality less than 10 and a 
S-wave quality factor of approximately 10 at low differential pressures and at 
a frequency of 100 kHz. On the other hand, Barrière et al. (2012) report a 
P-wave quality of the order of 5 at low water saturations and 1.6 kHz (their 
Fig. 6). 
 

( ) ( ) ( )0.5 exph t a a= − − ( )
2

P sa f t tπ= −⎡ ⎤⎣ ⎦ 1.3 / Pst f= 3Pf =

Pf 2 Pf
maxf
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The time step of the Runge-Kutta integration scheme is
. The first example considers a homogeneous medium, 

with a source at the surface. Figs. 2 and 3 show the snapshots at 3 ms 
seismograms of the tank (a) and a half space (b), the latter being computed 
with non-reflecting boundary conditions at the sides and bottom of the mesh, 
i.e., with and without the walls. We can see the Rayleigh wave (R), the P- 
wave and the S-wave, and the reflected events from the left wall. 
 

 
Fig. 2. vx -snapshots with (a) and without (b) walls. R, P and denote the primary Rayleigh, 
P- and S-waves. The model corresponds to the tank shown in Fig. 1. The source has a 
dominant frequency of 3 kHz.  

75 10 s 0.5 sdt µ−= × =
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Fig. 3. -seismograms with (a) and without (b) walls. R, P and S denote the Rayleigh, P- 
and S-waves. The model corresponds to the tank shown in Fig. 1. The source has a 
dominant frequency of 3 kHz. 
 

Next, we assume a more realistic peak frequency of fP = 300 Hz, so that 
dominant wavelengths of the P- and S-waves are (450 m/s)/300 Hz = 1.5 m  
and (260 m/s)/300 Hz = 0.86 m, respectively. In this case, we consider 

xv
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 and , i.e., realistic values at seismic frequencies, and smaller 
than the quality factor assumed at sonic frequencies, since the quality factor 
depends on frequency and cannot be scaled. The comparison between the 
anelastic (black line) and elastic (red line) solutions is shown in Fig. 4, 
indicating attenuation and velocity dispersion of the wavefield. Note the 
phase discrepancy between 12 and 17 ms. This is due to the strong velocity 
dispersion caused by anelasticity, since each Fourier component of the wave 
field travels with a different phase velocity. Fig. 5 shows the effect of the 
walls on the wavefield, where the reverberations generate the strong coda 
wave, that disappears in the case of nonreflecting sides. 

 
 

 
Fig. 4. -seismograms. Comparison between the anelastic (black line) and elastic 
(lossless) (red line) solutions. The source has a dominant frequency of 300 Hz, 	
and .	

	

	
CONCLUSIONS 

 
We have generalized an elastic (lossless) wave modeling algorithm to the 

anelastic (lossy) case, based on the Zener viscoelastic model. The sides of the 
mesh can satisfy Dirichlet and Neumann. Examples are zero displacements 
(or particle velocities) and stress-free conditions, respectively. The method 
allows the implementation of absorbing-non-reflecting-conditions as well. 
The wave equation is solved with a 2D Chebyshev pseudospectral operator to 
compute the spatial derivatives and a time-stepping Runge-Kutta method. We 
illustrate the method with an example of a tank used to perform laboratory 
acoustic experiments. The modeling algorithm can be used to simulate 
acoustic responses to plan real physical experiments. 

5PQ = 10SQ =

xv
5PQ =

10SQ =
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Fig. 5. -seismograms. Comparison between the tank with (black line) and without (red 
line) reflecting sides (or walls). The source has a dominant frequency of 300 Hz, 
and . 
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