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Abstract7

The shear (SH)-wave transfer function and the horizontal-to-vertical (HV) spectral8

ratio are essential to estimate the S-wave velocity profile and thickness of surface layers9

overlying a bedrock on the basis of resonance frequencies. In practice, it is the second10

method the most used. In this work, we propose a full-wave numerical method, based11

on a pseudospectral spatial di↵erentiation, to simulate SH and P-S waves generated by12

random sources distributed spatially and temporally (ambient noise). The modeling13

allows us to implement seismic attenuation, surface waves and causal source radiation14

patterns, based on random values of the angles of the moment tensor at each source15

location.16

We focus on the location of the resonance peaks, since this property is strictly17

related to the thickness of the layers. First, we analyze Lamb’s problem for which an18

analytical P-S solution exists. The modeling algorithm is verified for a Ricker time19
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history, but the analysis can be performed by using spikes as sources. The experiments20

based on ambient noise are compared to those of a coherent line source as a reference21

spectrum (e.g., and earthquake event far away from the receivers). SH-wave resonance22

frequencies can be identified in the spectra only when the random sources are located23

below the bedrock. In the case of P-S waves, the SH-wave transfer function is a good24

approximation to the HV spectrum, mainly when the noise is generated in the bedrock.25

Finally, we have assumed a square basin and found that coherent (e.g., earthquake-26

type) sources may yield identifiable peaks but ambient noise gives unreliable results.27

Keywords ambient noise · SH-wave transfer function · HV spectrum · full-wave28

modeling29

1 Introduction30

There is nowadays a growing consensus that the most significant source of ambient31

seismic noise in the Earth is produced by wind-generated ocean gravity waves and32

their interactions, the ensuing storms and the coupling with the solid earth (Ardhuin33

et al., 2011). In fact, Ali et al. (2012) observed double-frequency microseisms peaks in34

the frequency range of 0.15-0.4 Hz, generated by the nonlinear interactions of ocean35

waves with the shoreline along the coasts of the Arabian Sea and the Arabian Gulf.36

The use of seismic noise to assess the seismic motion at a site was pioneered in37

Japan by Kanai in the early 20th century. It is no surprise as the first recordings of38

strong ground motion were obtained in that country (see e.g. Ishimoto, 1932). Kanai39

measured microtremors in several sites and noticed the sundry characteristics of noise40

depending on surface geology. The measurement of microtremor-horizontal-to-vertical-41

spectral ratio or MHVSR (for short HV) has been proposed by Nogoshi and Igarashi42

(1971) and then applied by Nakamura (1989) to obtain the spectral ratio by dividing the43
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spectrum of the horizontal component by that of the vertical component at the surface,44

either displacement, particle velocity or acceleration, since the results are equivalent.45

This spectral ratio is the result of averaging the ratios of particular windows. The46

most salient feature of HV is the prominence of a peak (usually one) that appears47

at a frequency that is a reliable indicator of the dominant frequency of the site. This48

empirical fact led Nakamura (1989) to consider the HV to be the SH-wave transfer49

function. The proposal was soon followed by controversy, mainly generated by the50

loose theoretical arguments employed.51

The use of HV was supported by the measurements made in Mexico City in very52

soft ground (Lermo and Chávez Garćıa, 1993) They also found that for Rayleigh waves53

propagating in a layer over a half space, the HV yields the fundamental resonance54

frequency and the related amplitude is acceptable. This in fact, links HV with ellipticity55

and, no doubt is related to the special conditions in Mexico City. Other researchers56

suggested that the HV ratio is closely related to the site SH-wave transfer function57

(Bonnefoy-Claudet et al., 2008; Oubaiche et al., 2016).58

The use of HV became soon a popular tool to assess the dominant frequency and59

its amplitude has been used an indicator of strong ground motion amplification. This60

is not widely accepted but it is an easy way to have a proxy. Rigurously, the transfer61

function is obtained from two receivers at di↵erent depth levels in a vertical seismic62

well for earthquake sources detected along a borehole. With luck, one can measure the63

shear waves horizontally polarized (Ohrnberger et al., 2004). Borcherdt (1970) proposed64

an empirical technique known as the standard spectral ratio (SSR), which requires a65

suitable reference rock site in the vicinity of the sediment site of interest. In practice it66

is di�cult to find an appropriate reference site, since the response of these rock sites can67

widely vary. The first numerical test of the HV measurement has been performed by68
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Lachet and Bard (1994), who concluded that the HV peak is independent of the source69

function and coincides with that of incident shear waves, while the shape depends on70

the polarization of the fundament Rayleigh wave. In contrast, the HV cannot be used71

to predict the amplitude of the resonance peaks.72

The HV spectral ratio method has been used to estimate the height of sand dunes73

in the desert. Hanssen and Bussat (2008) investigated a site characterized by recent74

deposits of sand and sabkha (flat coastal plain with a salt crust) above the bedrock75

consisting of hard carbonates. Aldahri et al. (2018) used the HV method to determine76

the resonance frequency and the maximum amplification factor at the Ubhur district,77

a northern extension of Jeddah in Saudi Arabia. A similar work in the city of Damman78

has been performed by Al-Malki et al. (2014). In a recent work, this technique has79

been used to estimate the thickness of glaciers, as well as the basal conditions (Picotti80

et al., 2017).81

Lermo and Chávez Garćıa (1993) suggested that HV can also be obtained with82

earthquakes. In fact, in many applications they are used together with ambient noise83

and active sources (see Alajmi et al., 2016). The HV of deep earthquakes is being84

used in Japan to identify the velocity structure (Kawase et al., 2011; Nagashima et al.,85

2014).86

In an attempt to model ambient noise and compare techniques to assess site-87

response, within a 2D setting, Coutel and Mora (1998) generate synthetic seismograms88

with a Chebyshev pseudospectral method for diverse configurations, and test four es-89

timation techniques. Basically, they consider incident SV plane waves (earthquake)90

and micro tremors (randomly oriented surface sources, i.e., noise) combined with the91

HV and the HH sediment-to-bedrock ratio. The combinations are: SBSR [SV waves, v
x

92

(surface)/v
x

(bedrock)], SBNR [noise, v
x

(surface)/v
x

(bedrock)], HVSR [SV waves, v
x

93
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(surface)/v
z

(surface)], and HVNR [noise, v
x

(surface)/v
z

(surface)], where v denotes94

the particle velocity. They conclude that the HVSR, HVNR, and SBNR are unreliable,95

i.e., yield di↵erent results from the true response as measured by the more reliable96

SBSR.97

Later, Konno and Ohmachi (1998) show that the HV ratio is related to the reso-98

nant frequency of the fundamental-mode Rayleigh wave and to the SH-wave transfer99

function. The ellipticity is invoked again. More numerical tests were performed in the100

framework of the SESAME project, whose results can be found in Bonnefoy-Claudet101

et al. (2008). They have considered 1D plane-layered models and sources randomly102

distributed near the surface, i.e., impulsive and continuous. The HV ratio predicts103

the resonance frequency of the 1D transfer function corresponding to a vertically in-104

cident SH wave. However, it overestimates the site amplification. For high impedance105

contrasts between the surface layer and the bedrock, the contribution to the peak106

amplitude comes from the fundamental Rayleigh and Love waves, while for moderate107

and low contrast the fields are mainly Love and shear body waves. In general, the HV108

peak corresponds to Rayleigh-wave, Love-wave and/or SH-wave resonances. Van der109

Baan (2009) explains the resonances obtained from the HV ratio as due to SH and110

Love waves but in general these depend on several factors, such as the type of source,111

medium properties, interface geometry, etc.112

On the basis of theoretical modeling studies, Albarello and Lunedei (2010) found113

that surface waves contribute to frequencies larger than the fundamental resonance fre-114

quency, whereas body waves contribute to the resonance frequency. Recently, Oubaiche115

et al. (2016) claimed that the HV peak frequency is better explained by some of the116

SH-wave transfer function peaks than by the Rayleigh-wave ellipticity, a result that117

seems to be confirmed by our work, at least for the particular model considered here.118



6

Each specific case has to be analyzed with numerical modeling to obtain a precise119

interpretation.120

A recent development is the discovery of the imaging power of seismic ambient noise.121

The works of Shapiro and Campillo (2004) and Shapiro et al. (2005) clearly show the122

retrieval of surface waves from on a regional scale. Campillo and Paul (2003) obtained123

the Green’s tensor from the correlation of coda waves and Sánchez-Sesma and Campillo124

(2006) demonstrated the exact relationship between elastodynamic Green’s functions125

and cross-correlations of a uniform set of equipartitioned plane waves. Sánchez-Sesma126

et al. (2006) extended these results to inclusions in 2D configurations. Perton et al.127

(2009) proposed the idea of directional energy density related to the imaginary part of128

the Green function at the source. This led Sánchez-Sesma et al. (2011a,b) to formulate129

the di↵use field assumption and propose to relate the HV ratio with a square root of the130

ratio of the sum of imaginary parts of the horizontal Green function over the imaginary131

parts of the vertical Green function. Some problems with lateral heterogeneity are132

treated by Matsushima et al. (2014). Rong et al. (2017) compared introduced the133

empirical transfer function (ETF), defined as the spectral ratio of the records at the134

surface to the records at a borehole, in order to describe the site amplification of135

vertical borehole arrays. Shear-wave motion measurements of the ETF is somehow136

closely related to the S-wave transfer function. These authors show that the amplitude137

discrepancy is primarily due to two factors, the vertical site response and the HVSR138

at the bedrock.139

The purpose of this work is to explore a full-wave modeling approach to study, by140

way of numerical experiments, the performance of the SH and HV spectral responses on141

the basis of the location of the resonance frequencies. We discard any analysis based on142

amplitudes. We compute the wavefield, based on a modeling method developed by Car-143
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cione (1992, 2014) and verified with the method of generalized reflection/transmission144

coe�cients by Coutel and Mora (1998), who compute HV ratios for several angles of145

incidence of the SV wave. The computations are based on a Fourier-Chebyshev pseu-146

dospectral method, which employs global di↵erential operators in which the field is147

expanded in terms of Fourier and Chebyshev polynomials along the horizontal and148

vertical directions, respectively. The proposed algorithm can obtain solutions for gen-149

eral heterogeneous media because the space is discretized on a mesh whose grid points150

can have varying values of the elastic properties, i.e., the medium can be inhomoge-151

neous. The SH and P-SV(S) formulations are solved in the presence of the free surface,152

so that the modeling simulates surface waves as well. Wave attenuation is considered,153

where the quality factors are related to the wave velocities by an empirical relation.154

2 SH-wave transfer function and HV ratio155

Let us consider the model shown in Figure 1a, where h is the thickness of the sedi-

ment layer, and define by (v
x

, v
z

) the in-plane horizontal and vertical particle-velocity

components, and by v
y

the cross-plane component. In plane layered media, these com-

ponents are decoupled and describe P-S and SH waves, respectively. Let us denote the

sediment layer with i = 1 and the bedrock (half space) with i = 2, and define the

corresponding complex (Zener) shear-wave velocities as v
Si

, where

v
S

= c
S

s
i!⌧ + a�1

S

i!⌧ + a
S

, a
S

= Q�1
S

+
q

1 +Q�2
S

, (1)

where ! is the angular frequency, c
S

is the high (unrelaxed)-frequency limit velocity,156

Q
S

is the minimum quality factor at the frequency f , which is the centre frequency of157

the relaxation peak, ⌧ = 1/(2⇡f) and i =
p
�1. The quantities f , c

S

and Q
S

define158

the media (e.g., Carcione, 2014). When Q
S

= 1, a
S

=1 and v
S

= c
S

, i.e., the lossless159
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case. The P-wave properties are based on the same equations, replacing S by P . The160

equations of motion are given in the next section.161

In the frequency domain, the HV ratio is

HV =

����
v
x

(0)
v
z

(0)

���� . (2)

In practice, this calculation is rather complex. For real data, it is necessary to perform a162

statistical analysis of the recorded wavefield in the frequency domain, by computing the163

amplitude spectra of the three components in a number of selectable time windows.164

The procedure is clearly summarized in Fäh et al. (2001) and Picotti et al. (2017,165

section 2.2).166

On the other hand, the body SH-wave transfer function, F , for a viscoelastic sedi-

ment layer (sand) of thickness h over a viscoelastic bedrock describes the ratio of the

horizontal cross-plane displacements between the top and bottom of the layer due to

horizontal harmonic motions of the bedrock. In the literature, it is assumed that

HV ⇡ |F | =
����
v
y

(0)

v
y

(h)

���� . (3)

A justification of this approximation is given in Lermo and Chávez Garćıa (1993). The

SH-wave transfer function is

F (!) =
v
y

(0)

v
y

(h)
=


cos

✓
!h

v
S1

◆
+ i

✓
⇢1v

S1

⇢2v
S2

◆
sin

✓
!h

v
S1

◆��1

(4)

(Takahashi and Hirano, 1941; Kramer, 1996), where ⇢
i

denotes the mass density. The

site transfer function is merely |F |. A rigid bedrock is obtained for ⇢2v
S2 ! 1. In this

case and in the absence of loss, we have the following resonance frequencies when the

cosine vanishes,

f
n

= (2n+ 1)f0, n = 0, 1, 2, . . . , f0 =
c
S1

4h
. (5)
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Infinite amplitude values are obtained at the previously indicated resonance frequen-167

cies.168

3 Modeling method169

The synthetic seismograms are computed with P-S and SH modeling codes based on an170

isotropic and viscoelastic stress-strain relation. Sources can be body forces or moment-171

tensor components with random properties.172

3.1 SH waves173

The propagation of viscoelastic SH waves in the (x, z)-plane describes the behaviour174

of the horizontal cross-plane particle velocity, v
y

. Euler equation and Hooke law yield175

the particle-velocity/stress formulation of the SH equation of motion,176

v̇
y

= ⇢�1(�
xy,x

+ �
yz,z

) + f
y

,

�̇
xy

= µ(v
y,x

+ e1) +m
xy

,

�̇
yz

= µ(v
y,z

+ e3) +m
yz

,

ė1 = 'v
y,x

� e1/⌧�,

ė3 = 'v
y,z

� e3/⌧�,

(6)

where � denotes stress, e is memory variable, µ = ⇢c2
S

is the shear modulus, f
y

is a

body force, m
xy

and m
yz

are moment-tensor components,

' = ⌧�1
✏

� ⌧�1
�

,

⌧
✏

= a
S

⌧,

⌧
�

= (a
S

� 2/Q
S

)⌧,
(7)

and a dot above a variable denotes time di↵erentiation (Carcione, 2014).177

To model surface (Love) waves, free-surface boundary conditions are implemented178

with the non-periodic Chebyshev operator by using a boundary treatment based on179

characteristics variables (e.g., Carcione, 1992, 2014). At every time step, the field vari-180

able in the free surface are modified as: v
(new)
y

= v
(old)
y

��
(old)
yz

/Z
S

, �
(new)
yz

= 0, where181
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Z
S

= ⇢c
S

. At the bottom of the mesh, the implementation of non-reflecting bound-182

ary conditions requires: v
(new)
y

= 0.5(v
(old)
y

+ �
(old)
yz

/Z
S

) and �
(new)
yz

= 0.5(�
(old)
yz

+183

Z
S

v
(old)
y

).184

3.2 P-S wave equation185

The time-domain equations for wave propagation in a 2D heterogeneous viscoelastic186

medium can be found in Carcione and Helle (2004) and Carcione (1992, 2014). The187

two-dimensional velocity-stress equations for anelastic propagation in the (x, z)-plane,188

assigning one relaxation mechanism to dilatational anelastic deformations (l = 1) and189

one relaxation mechanism to shear anelastic deformations (l = 2), can be expressed by190

i) Euler-Newton’s equations:191

v̇
x

= ⇢�1(�
xx,x

+ �
xz,z

) + f
x

,

v̇
z

= ⇢�1(�
xz,x

+ �
zz,z

) + f
y

,
(8)

where �
xx

, �
zz

and �
xz

are the stress components, and f
x

and f
y

are external body192

forces.193

ii) Constitutive equations:194

�̇
xx

= k(v
x,x

+ v
z,z

+ e1) + µ(v
x,x

� v
z,z

+ e2) +m
xx

,

�̇
zz

= k(v
x,x

+ v
z,z

+ e1)� µ(v
x,x

� v
z,z

+ e2) +m
zz

,

�̇
xz

= µ(v
x,z

+ v
z,x

+ e3) +m
xz

,

(9)

where e1, e2 and e3 are memory variables, m
xx

, m
zz

and m
xz

are moment tensor

components defining the radiation patterns of the source mechanism:

m
xx

= �M0 sin 2�, m
zz

= M0 sin 2�, m
xz

= �M0 cos 2� (10)

(e.g., Carcione et al., 2015), where M0 is the moment magnitude, � is the dip angle,195

and k = ⇢(c2
P

� c2
S

) and µ are the unrelaxed (high-frequency) bulk and shear moduli,196
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respectively, where c
P

is the P-wave velocity. The moment tensor (10) represents a197

fault whose plane is perpendicular to the (x, z)-plane, where the strike and rake angles198

are both equal to 90o.199

iii) Memory variable equations:200

ė1 = '1(vx,x + v
z,z

)� e1/⌧
(1)
�

,

ė2 = '2(vx,x � v
z,z

)� e2/⌧
(2)
�

,

ė3 = '2(vx,z + v
z,x

)� e3/⌧
(2)
�

,

(11)

'
l

=
1

⌧
(l)
✏

� 1

⌧
(l)
�

, l = 1, 2. (12)

where ⌧
(l)
�

and ⌧
(l)
✏

are material relaxation times, corresponding to dilatational (l = 1)201

and shear (l = 2) deformations.202

In nD-space numerical modeling, the dilatational and shear quality factors are

functions of the complex bulk and shear moduli, K and µ, respectively. These are

Q
K

= K
R

/K
I

and Q
S

= µ
R

/µ
I

, respectively, where the subindices denote real and

imaginary parts. The quality factor of the P waves is Q
P

= E
R

/E
I

, where E =

K + 2(1 � 1/n)µ (E = K + 4µ/3 in 3D space). A low-loss relation between these

quality factors can be obtained. It is

Q
P

=
Re{E}
Im{E} =

K
R

+ 2(1� 1/n)µ
R

K
I

+ 2(1� 1/n)µ
I

=
K

R

+ 2(1� 1/n)µ
R

K
R

/Q
K

+ 2(1� 1/n)µ
R

/Q
S

(13)

since K
I

= K
R

/Q
K

and µ
I

= µ
R

/Q
S

. Let us define � = (c
P

/c
S

)2 and set K
R

'

⇢[c2
P

� 2(1� 1/n)c2
S

] and µ
R

' ⇢c2
S

. Then, we obtain

�

✓
1

Q
P

� 1
Q

K

◆
= 2(1� 1/n)

✓
1
Q

S

� 1
Q

K

◆
. (14)

In 2D space we have

Q�1
K

=
�Q�1

P

�Q�1
S

� � 1
. (15)
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and ⌧
(1)
✏

= a
K

⌧ , and ⌧
(1)
�

= (a
K

� 2/Q
S

)⌧ , with a
K

= Q�1
K

+
q

1 +Q�2
K

, while for203

l = 2 equation (7) holds. Then, we define the unrelaxed velocities, Q
P

and Q
S

and204

obtain the relaxation times with the previous formulae.205

The numerical algorithm is based on the Fourier-Chebyshev pseudospectral method206

for computing the spatial derivatives and a 4th-order Runge-Kutta technique for cal-207

culating the wavefield recursively in time.208

The Chebyshev method is used along the vertical direction and because it is non-209

periodic, it allows us the implementation of the free-surface boundary conditions, to210

model surface waves (Love and Rayleigh waves). At every time step, the field variable in211

the free surface are modified as: v
(new)
x

= v
(old)
x

��
(old)
xz

/Z
S

, v
(new)
z

= v
(old)
z

��
(old)
zz

/Z
P

,212

�
(new)
xx

= �
(old)
xx

� (k� µ)�
(old)
zz

/(k+ µ), �
(new)
zz

= 0, and �
(new)
xz

= 0, where Z
P

= ⇢c
P

.213

At the bottom of the mesh, the implementation of non-reflecting boundary conditions214

requires: v
(new)
x

= 0.5(v
(old)
x

+ �
(old)
xz

/Z
S

), v
(new)
z

= 0.5(v
(old)
z

+ �
(old)
zz

/Z
P

), �
(new)
xx

=215

�
(old)
xx

� (k � µ)�/(k + µ), �
(new)
zz

= 0.5(�
(old)
zz

+ Z
P

v
(old)
z

), �
(new)
xz

= 0.5(�
(old)
xz

+216

Z
S

v
(old)
x

), with � = �
(old)
zz

� Z
P

v
(old)
z

.217

Since the wave equation is linear, we implement time spikes as sources, since seis-218

mograms with di↵erent source time histories can be obtained with only one simulation219

by convolving the source time history with the recorded trace.220

4 Examples221

The example considers a sediment layer overlying a sti↵ formation (see Figure 1a),222

whose shear-wave velocities are c
S1 = 1155 m/s and c

S2 = 2500 m/s, respectively.223

The other properties are obtained as c
P

=
p
3 c

S

(Poisson medium), ⇢ = 0.31c
1/4
P

224

(Gardner’s relation, c
P

given in m/s), Q
S

= c
S

/(30 m/s) (c
S

in m/s), Q
P

= 1
2�QS

and225
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� = (c
P

/c
S

)2. For h = 100 m, equation (5) gives the following resonance frequencies:226

f
n

= 2.89 Hz, 8.66 Hz, 14.44 Hz, 20.21 Hz, etc.227

The SH-wave transfer function, |F |, is shown in Figure 2, where h = 100 m and the228

Zener S-wave relaxation peak is located at a frequency of f = 5 Hz. The black, red and229

blue lines correspond to a lossy layer over a lossy bedrock, a lossless layer over a lossless230

bedrock and a lossless layer over a rigid bedrock, respectively. Actually, the blue peaks231

reach infinite values in the case of a rigid bedrock and a lossless layer, while the location232

of the peaks are those predicted by equation (5). The case of a deformable (non-rigid)233

bedrock generates finite-amplitude peaks, since energy is lost through transmission in234

the bedrock, and as can be seen, higher resonances are damped in the lossy case. More235

details about the e↵ects of attenuation can be found in Carcione et al. (2016).236

4.1 Lamb’s problem237

In order to understand the physics of the problem and verify that the full-wave mod-238

eling algorithm is correctly approximating the spectrum of the wavefield, we perform239

simulations for the so-called Lamb’s problem, i.e., the propagation of surface (Rayleigh)240

and body (P-S) waves in the presence of a free surface. The simulations use a 135 ⇥ 81241

mesh, with a horizontal grid spacing dx = 20 m, a maximum vertical grid spacing of242

19.352 m (at the mesh centre) and a vertical extent of 1412 m (including the absorbing243

boundaries). Eighteen grid points of absorbing strips at the sides and bottom of the244

model yield an e↵ective physical model of 2000 m ⇥ 1100 m.245

First, we verify the numerical solution with the analytical solution of Lamb’s prob-246

lem, that is, the response of an elastic (lossless) half-space bounded by a free surface to247

an impulsive vertical force, f
y

. In this case there is no bedrock (the properties of the248

half-space are those of the layer). The analytical solution is obtained by the method of249
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Cagniard-De Hoop (Berg et al., 1994). The equation to solve are (8) and (9), where the250

source time history (a Ricker wavelet) is s
h

(t) = (a� 0.5) exp(�a), a = [⇡f
p

(t� t
s

)]2,251

t
s

= 1.4/f
p

, with f
p

= 10 Hz, the source central frequency. The source and the re-252

ceiver are located at 1.8 m depth and the traveled distance is 700 m. Figure 3 shows the253

comparison between solutions, where the dots correspond to the numerical solution,254

whereas Figure 4 shows the analytical (solid line) and numerical (dots) hodograms.255

The agreement is very good. The comparison between the anelastic (black line) and256

elastic (red line) solutions is shown in Figure 5, indicating attenuation and velocity257

dispersion of the wavefield.258

Another test can be performed if one considers the spectra of the traces shown in259

Figure 3. We consider 4098 (212) samples and apply a five-point triangular weighted260

smoothing function to the numerical HV ratio. The comparison with the analytical261

results is shown in Figure 6, whereas Figure 7 compares the elastic and anelastic spec-262

tra. It can be seen that the centroid of the spectrum moves to the low frequencies in263

the anelastic case. Thus, the numerical code has a good performance and can be used264

to solve more general problems, such as the layer over half space with the presence of265

random sources, as shown in Figure 1a.266

Before we proceed to attack these problems, we further study the characteristics of267

the HV spectrum for Lamb’s problem. Next, we consider sets of receivers around 700268

m o↵set and sum the single HV ratios to obtain an average HV ratio.The average HV269

spectra for 10 and 30 receivers, compared to a single receiver spectrum located at 700270

m from the source, are displayed in Figure 8. The receivers are taken symmetrically271

around 700 m o↵set. As can be seen, averages can smooth and/or remove possible272

peaks, because the shape of the curve depends on the source-receiver o↵set as it is273

illustrated in Figure 9, where the HV spectrum for 100, 300, 700 and 1000 m o↵set274
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is represented. The oscillations increase with o↵set. This e↵ect of averaging has to be275

tested for each specific geological model.276

When solving the velocity-stress formulation with pseudospectral algorithms, the277

sources can be implemented in one grid point in view of the accuracy of the di↵er-278

ential operators. Here, we compute the seismograms by implementing discrete deltas279

as sources [�(t) in the continuum]. The mesh supports a maximum frequency fmax =280

cmin/2dmax, where cmin is the minimum velocity and dmax is the maximum grid spac-281

ing, so that frequency components greater than fmax will be aliased. However, if the282

source time-function s
h

(t) is band-limited with cut-o↵ frequency fmax, those anoma-283

lous frequency components will be removed after the time convolution between the284

seismograms and h(t) or alternatively multiplication with the source spectrum, H(!),285

in the time-frequency domain. Equivalently, the spectrum of the seismogram obtained286

with the delta function will be valid till fmax. This is shown in Figure 10, where we287

compare the HV spectrum obtained from the delta function with that of the band-288

limited Ricker function. Then, it is enough to use delta functions as sources, since the289

spectrum does not depend on the time history, as already found in the literature (e.g.,290

Lachet and Bard, 1994).291

4.2 The layer-bedrock case292

Let us now consider the presence of the layer-bedrock interface. In order to define better293

the location of the interface and reduce discrepancies with the theoretical transfer294

function, we consider a 255 ⇥ 217 mesh, a horizontal grid spacing dx = 10 m, a295

maximum vertical grid spacing of 5.185 m (at the mesh centre) and a vertical extent296

of 1080 m (including the absorbing boundaries). Fifty grid points of absorbing strips297

at the sides and bottom of the model yield an e↵ective physical model of 1250 m ⇥298
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835 m. The interface is located at a depth of 100 m (the vertical grid points 25 and 26299

correspond to the layer and the bedrock, with z = 100 and 105 m, respectively, and300

the interface is located at grid point 25).301

To model the ambient noise, we consider 100 source locations (at single grid points)302

randomly distributed below the interface (see Figure 1a). Each source location triggers303

40 sources (spikes) randomly distributed between 0 and 16.4 s, and each spike has a304

random amplitude between 0 and 1. Moreover, SH waves are generated with the body305

force f
y

, while in the P-S case, the moment tensor (10) is the source, which has random306

values of the dip angle �. In addition, we compute the spectrum corresponding to a307

horizontal line of sources for reference. Although unrealistic as ambient noise, it may308

represent an earthquake event far away from the surface layers or basin.309

The required time step of the Runge-Kutta algorithm is dt = 1 ms and the solution310

is propagated 214 = 16384 time steps, i.e., ⇡ 16.4 s. Figure 1a shows a scheme of311

the model, where the dots correspond to the random sources (1000 ⇥ 40 = 40000312

spikes, randomly distributed in space and time). Figure 1b shows a snapshot of the SH313

wavefield at 0.3 s.314

4.2.1 SH waves315

In the following simulations, we compute the numerical SH-wave transfer function |F |,316

where we consider the field v
y

at the first grid point (point 1, surface) and at the317

last grid point defining the layer (point 25, depth = 100 m), and perform the ratio318

of the respective frequency spectra. Figure 11 shows function |F | obtained from the319

simulations compared to the theoretical function, equation (4) (blue line), where the320

black dots correspond to random sources and the red dots to a horizontal line source321

below the interface. The response is the sum of the SH-wave transfer-function spectra322
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of all the receivers and then a five-point triangular weighted smoothing function is323

applied to this average ratio. The location of the peaks is correctly reproduced and324

discrepancies may be due to the indetermination about the location of the interface325

(point sources emitting at all angles “see” this location di↵erently from a vertical326

propagating line source). The same simulations for sources located in the layer are327

shown in Figure 12 (line source at 0.5 m depth). The numerical peaks do not follow328

those of the SH transfer function, due to the presence of surface (Love) waves, which329

are not considered in the theoretical transfer function (4).330

4.2.2 P-S waves331

We conduct the same numerical experiments of those of Figures 11 and 12 in the P-S332

case to obtain the HV spectrum at the surface. The source of ambient noise is the333

moment tensor (10) and a line source of horizontal forces, f
x

(SV waves) at 50 m334

below the interface. The random sources are deeper than 50 m. Figure 13 shows the335

seismograms recorded at the surface, corresponding to the ambient noise. The energy of336

the wavefield has been attenuated after approximately 10 s, due to anelastic absorption337

and multiple reverberations within the layer. The results are shown in Figures 14 and338

15 for sources below and above the layer-bedrock interface, respectively. In the latter339

case, the line source is located at 0.5 m depth and random sources occupy all the340

vertical extent of the layer, from grid point 2 to grid point 25. Figure 14 shows that341

the HV peak resonances can be approximated by the SH-wave resonances, in terms of342

location of peak frequencies, for this specific model configuration. The correspondence343

is weaker in Figure 15, since the line-source response shows some agreement for the344

second and third peaks, whereas the random-noise spectrum has a more defined trend,345

compared to the SH-wave transfer function, mainly regarding the fundamental peak.346
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The results confirmed those of Oubaiche et al. (2016) that the HV peak frequency is347

explained by the SH transfer function.348

4.3 Resonance frequencies of a basin349

The HV method does not work properly in the presence of basins, if the width of the

basin is comparable to its thickness. This problem has been analyzed by Zhu and Tham-

biratnam (2016) and Zhu et al. (2017), for SH and P-S waves, respectively. According

to Bard and Bouchon (1985), the SH-body-wave resonance frequencies corresponding

to a 2D basin of half-width w and thickness h are

fSH = f0

s

(2n+ 1)2 +


(m+ 1)

h

w

�2
(16)

where m and n are associated with lateral and vertical interferences. The half-width

is defined as the length over which the local sediment thickness is greater than half

the maximum thickness. In the case of an infinite horizontal extent of the basin and

m=n=0, w ! 1 and fSH = f0. For a square basin (h = 2w) and m = 0, the funda-

mental resonance frequency is

fSH = f0

q
(2n+ 1)2 + 4, (17)

giving the peak locations 6.5 Hz, 10.4 Hz, 15.5 Hz, 21 Hz, etc., for f0 = 2.9 Hz. Zhu350

and Thambiratnam (2016) find that for high velocity contrasts between the basin and351

the bedrock, the fundamental frequency is predicted by equation (16) (their Table 1),352

but it is not clear if this equation is equally e↵ective for low contrasts (here the velocity353

contrast is 2.16) .354

We assume a basin with h = 2w = 100 m, where the basin has the properties of355

the layer above, and consider a horizontal line source at a depth corresponding to the356
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bottom of the basin (vertical grid point 25). In this case, the algorithm requires a time357

step of 0.5 ms. Figure 16 shows the result of the simulation (lossless case). We consider358

the field v
y

at the first grid point (point 1, surface) and at grid point 25 and perform359

an average of the transfer functions within the basin (10 receivers at the surface and360

at the bottom). It can be seen that the fundamental peak is not predicted by equation361

(17) (compare the symbols with the first vertical red line). The di↵erences could be due362

to the fact that Bard and Bouchon (1985) consider a rigid bedrock, so that equation363

(17) cannot be applied to predict resonance frequencies of a basin unless the bedrock364

is rigid.365

In the case of P-S waves, we consider ambient noise below the bedrock, determined366

by the moment tensor. The results, as those of Figure 16, are shown in Figure 17.367

Although there seems to be some apparent agreement with the analytical |F | function368

regarding the higher modes, the simulation cannot reproduce the fundamental mode, so369

that nothing can be obtained from this spectrum, unlike that of Figure 14 corresponding370

to a layer of infinite extent. This confirms the conclusion of Coutel and Mora (1998)371

that the estimation of site amplification spectra yields unreliable or incorrect results372

when subsurface basin structure is present, at least for the example of a square basin373

presented here.374

5 Conclusions375

Site amplification functions such as the SH-wave transfer function and the HV spec-376

trum are useful to obtain information about the subsurface, based on active sources,377

earthquakes and ambient noise. In this work, we propose a modeling algorithm based on378

the Fourier-Chebyshev pseudospectral method to compute wavefields in the presence379

of simulated ambient noise. A detailed analysis of Lamb’s problem has been performed380
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to study the physics and verify the modeling codes since there is an analytical solu-381

tion available. Ambient noise can be simulated by randomly distributed point sources382

in space and time as a continuous emission of energy. Moreover, on the basis of the383

moment tensor, a random radiation pattern can be generated. Here, we model each384

source as a randomly oriented fault plane. Numerical experiments of a layer overlying385

the bedrock shows that the SH-wave transfer function can be retrieved when the sources386

are located below the interface. Similarly, the P-S HV spectrum is well approximated387

by the SH-wave transfer function when the source are located at the bedrock, whereas388

for sources in the layer the correspondence is much weaker. For a basin, random ambi-389

ent noise yields unreliable results, confirming the conclusions obtained by Coutel and390

Mora in 1998. The method is illustrated in 2D space but it can be easily generalized391

to the 3D case.392

Acknowledgements: Thanks to the extensive review of Francisco Sánchez-Sesma,393
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Fig. 1 (a) Model and source-recording configurations. (b) Snapshot of the SH wavefield, where
random sources simulating ambient noise (spatially and temporally distributed) are generated.
The white line is the layer-bedrock interface.
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Fig. 2 Analytical SH-wave site transfer function. The black, red and blue lines correspond to
a lossy layer over a lossy bedrock, a lossless layer over a lossless bedrock and a lossless layer
over a rigid bedrock, respectively.
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P wave
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Fig. 3 Analytical (solid line) and numerical (dots) solutions for Lamb’s problem (elastic case),
where (a): v

x

and (b): v
z

(both normalized). The source receiver-o↵set is 700 m.
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Fig. 4 Analytical and numerical hodograms (solid line and dots, respectively).
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Fig. 5 Anelastic (black) and elastic (red) numerical solutions for Lamb’s problem, where (a):
v
x

and (b): v
z

(both normalized).
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Fig. 6 Normalized spectra of the particle velocity components (a) and HV spectrum (b)
for Lamb’s problem (elastic, lossless case), where the solid lines correspond to the analytical
solution and the dots to the numerical solution.
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Fig. 7 Normalized spectra of the particle velocity components (a) and HV spectrum (b) for
Lamb’s problem, where the black and red curves correspond to the anelastic and elastic cases,
respectively.
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Fig. 8 Lamb’s problem. Average HV spectra for 10 and 30 receivers compared to a single
receiver spectrum located at 700 m from the source (black curve). The receivers are taken
symmetrically around 700 m o↵set.
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Fig. 9 HV spectrum at 100, 300, 700 and 1000 m o↵sets (analytical solution, the source is a
vertical force). The oscillations increase with o↵set.
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Fig. 10 Lamb’s problem. Comparison between the HV spectra obtained from the seismograms
generated with the Ricker time history and a delta function.
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Fig. 11 SH-wave transfer function obtained from seismograms generated with a line source
and random sources located below the interface (dots), compared to the analytical function
(blue line).
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Fig. 12 SH-wave transfer function obtained from seismograms generated with a line source
and random sources located above the interface (dots), compared to the analytical function
(blue line). The line source depth is 0.5 m (grid point 2).
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Fig. 13 Seismograms recorded at the surface (center of the model).
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Fig. 14 HV spectrum for P-S waves, (HV = v
x

(0)/v
z

(0)), obtained from seismograms gen-
erated with a line source and random sources located below the interface (dots), compared to
the analytical SH transfer function |F | = v

y

(0)/v
y

(h) (blue line).
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Fig. 15 Same as Figure 14, with the sources located above the layer-bedrock interface. The
line source depth is 0.5 m (grid point 2).
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Fig. 16 SH-wave site amplification of a square basin, corresponding to a line source at the
bottom of the basin (symbols). Also shown are the peaks of a layer with infinite horizontal
extent (blue line) and those of indicated by Bard and Bouchon (1985) for a basin embedded
in a rigid medium [equation (17)] (vertical red lines).
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Fig. 17 P-S wave HV ratio of a square basin, corresponding to ambient noise (symbols) below
in the bedrock. Also shown are the peaks of a layer with infinite horizontal extent (blue line).


