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ABSTRACT:
Mesoscopic P-wave attenuation in layered, partially saturated thermo-poroelastic media is analyzed by combining

the theories of Biot poroelasticity and Lord–Shulman thermoelasticity (BLS). The attenuation is quantified by esti-

mating the quality factor Q. The mesoscopic attenuation effect, commonly referred to as wave-induced fluid flow

(WIFF), is the process that converts fast compressional and shear waves into slow diffusive Biot waves at meso-

scopic heterogeneities larger than the pore scale, but much smaller than the dominant wavelengths. This effect was

first modeled in White’s isothermal theory by quantifying the seismic response of a periodic sequence of planar

porous layers that are alternately saturated with gas or water. This work presents a numerical extension of White’s

theory for the non-isothermal case in this type of sequence. For this purpose, an initial-boundary-value problem

(IBVP) for the BLS wave propagation equations is solved using the finite element method, where the particle veloc-

ity field is recorded at uniformly distributed receivers. The quality factor is estimated using spectral-ratio and

frequency-shift methods. The Q-estimates show that thermal effects influence the attenuation of the P-wave and the

velocity dispersion compared to the isothermal case. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

The theory of thermoelasticity describes the interaction

between the deformation and temperature fields in elastic

media. When an elastic source causes a deformation, it gener-

ates a temperature field and attenuation effects. This theory

was one of the first to describe seismic attenuation in rocks

(Lifshitz and Roukes, 2000; Zener, 1938; Carcione, 2022).

Biot’s original theory described wave propagation in an

isothermal poroelastic medium saturated with a single-phase

viscous and compressible fluid (Biot, 1956a,b). A later work

by Biot (1956c) presented a thermoelasticity model with a

classical parabolic Fourier law of heat conduction. However,

that theory gives unphysical solutions, such as infinite veloci-

ties at high frequencies. To overcome these drawbacks, Lord

and Shulman (1967) formulated a hyperbolic differential

equation by introducing Maxwell–Vernotte–Cattaneo (MVC)

relaxation times into the heat equation. Thermoelasticity

predicts the existence of an S-wave (shear wave) and two P-

waves: one elastic, related to mechanical perturbations, and

the other thermal, related to the temperature of the medium.

Rudgers (1990) analyzed the coupled propagation of compres-

sional and thermal waves as a function of frequency.

Sharma (2008) proposed a set of differential equations

to analyze the propagation and attenuation of waves in non-

isothermal fluid-saturated poroelastic media. Four waves are

generated: two compressional waves (fast P1 and slow

[Biot] P2), a slow thermal wave (T) compressional as well,

and a shear wave (S). The two slow waves (P2 and T) have

diffusive behavior at low frequencies that depends on viscos-

ity and thermoelasticity constants. The T-wave is coupled

with the two P-waves, and it is assumed that the tempera-

tures in the solid and in the liquid are the same. The exis-

tence and uniqueness of initial-value-boundary problems

(IBVPs) in open bounded domains under general boundary

conditions was demonstrated in Santos et al. (2021).

Based on this theory, Carcione et al. (2019) developed

a numerical algorithm to compute transient wave fields

(seismograms). The work of Zener (1938) already contains

the idea of conversion of P-mode waves into thermal modes,

which can lead to dissipation of P-waves due to heterogene-

ities in the medium. This is similar to White’s model (White

et al., 1975). White explains the attenuation of porous media

due to inhomogeneities at the mesoscopic scale, where

P-waves can be converted to the slow Biot mode.

Zener (1946) explored the concept of attenuation due to

diffusion, including thermal, atomic, and magnetic diffusiona)Email: jingba@188.com
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as possible causes. Carcione and Picotti (2006) used the

model proposed by White et al. (1975) to study the meso-

scopic loss mechanism. This model considers a periodically

stratified porous medium alternately saturated with water

and gas to estimate the quality factor Q and velocity disper-

sion. Quality factor is an important seismic indicator for

evaluating rock acoustic properties, which depend on min-

eral composition, fluid type, permeability, and porosity. The

quality factor can be estimated by two methods: spectral

ratio (SR) and frequency shift (FS). In the SR method, Q is

calculated from the slope of the semilog relationship

between the receiver amplitude spectrum and frequency,

while the FS procedure exploits the correlation between the

quality factor and the centroid frequencies at two receivers,

with one receiver considered as the source for the other

(Quan and Harris, 1997). Picotti et al. (2007) used a finite-

element (FE) method to model the mesoscopic loss mecha-

nism in a laminated porous medium alternately saturated

with gas and water. They estimated the quality factor from

synthetic time histories using both methods.

Santos et al. (2023) proposed a FE method for solving

an IBVP for the Biot/Lord–Schulman equations, where

absorbing boundary conditions were used at the artificial

boundaries of the computational domain. This technique is

applied here to investigate the mesoscopic loss effects in a

non-isothermal poroelastic medium alternately saturated

with gas and water. The novelty of this work lies in the anal-

ysis of the attenuation of P-waves caused by the mode con-

version of T and P2 waves at gas-water interfaces and in its

comparison with the attenuation due exclusively to the

wave-induced fluid flow (WIFF) mechanism (WIFF-P1-P2

conversion) in the isothermal case. The effect of coupling a

heat loss mechanism to White’s thin-layer mesoscopic damp-

ing model is evaluated using FE numerical experiments.

II. GOVERNING EQUATIONS AND ALGORITHM

The porous medium under study is a periodic sequence

of poroelastic layers alternately saturated with gas and

water. The displacement vectors for the solid and fluid

phases are expressed as us ¼ ðus
i Þ and uf ¼ ðuf

i Þ, and the

total displacement vector for both phases is u ¼ ðus; uf Þ.
The stress tensor of the bulk material is denoted by

rðu; hÞ ¼ rijðu; hÞ, where the subscript ij identifies the com-

ponents and h is the temperature increment above a refer-

ence temperature, h0. The fluid pressure is pf ¼ pf ðu; hÞ,
and the strain tensor is represented as eðusÞ ¼ ðeijðusÞÞ. With

these definitions, the constitutive equations are

rijðu; hÞ ¼ 2l eijðusÞ þ dijðkur � us þ Br � uf � b hÞ; (1)

�pf ðu; hÞ ¼ Br � us þMr � uf � bf h: (2)

The quantities ku, M, and B are defined as ku ¼ kþ a2M,

a ¼ 1� Km=Ks, M ¼ ða� /=Ks þ /=Kf Þ�1
, and B ¼ aM,

where k and ku are the Lam�e coefficient of the dry and satu-

rated frames, respectively, Ks, Km, and Kf denote the bulk

moduli of the grains, solid and fluid, respectively, and / is

the rock porosity. Furthermore, l is the dry-rock shear modu-

lus, and b and bf are positive coupling coefficients of thermo-

elasticity of the frame and fluid, respectively.

Biot’s dynamical equation (Picotti et al., 2007) is modi-

fied to take the temperature into account, as

P€u þ B _u � Lðu; hÞ ¼ f; (3)

where Lðu; hÞ ¼ ðr � rðu; hÞ;�rpf ðu; hÞÞ, P is a positive

definite matrix, and B is a nonnegative matrix given by

P ¼
qbI qf I

qf I gI

 !
; B ¼

0I 0I

0I
g
j

I

0
@

1
A: (4)

In Eq. (4), qb ¼ ð1� /Þqs þ /qf is the bulk density, with

qs and qf the densities of the grains and fluid, respectively, I
is the identity matrix in Rd�d , with d ¼ 1; 2; 3, g is the fluid

viscosity, j is the permeability and g ¼ Spf=/, where S is

the tortuosity.

Sharma (2008) and Carcione et al. (2019) assumed ther-

mal equilibrium between the solid and fluid phases, based

on the external acoustic force: f ¼ ðfs; f f Þ. The generalized

heat equation is

s c €hþc _h �r � ðcrhÞ þ bh0r � _us þ bh0r � _uf

þ sbh0r � €us þ sbh0r � €uf¼ �q; (5)

where c ¼ ð1� /Þcm þ /cf is the bulk thermal conductivity

coefficient, with cm and cf the thermal conductivity of the

frame and fluid, respectively, c is the specific heat of the

unit volume in the absence of deformation, s is a MVC

relaxation time, and q is a heat source. We can assume ther-

mal equilibrium, under the conditions that the interstitial

heat transfer coefficient between the solid and the fluid is

very large and the ratio of pore surface area to pore volume

is sufficiently large. Here, we consider b, bf, c, and c as

strictly positive parameters obtained from experiments or

from a specific theoretical model.

Note that we add the temperature terms in Biot’s

dynamic equation [Eq. (3)] through the operator Lðu; hÞ and

the constitutive relations in Eqs. (1) and (2), and we also

consider the influence of the velocities and accelerations of

the solid and fluid phases on the heat equation [Eq. (5)]. In

both equations, the thermal coupling coefficients b and bf

are used.

To solve the initial boundary value problem for the

Biot/Lord–Schulman equations [Eqs. (3)–(5)], Santos et al.
(2023) proposed and analyzed a FE procedure. Next, the

problem is formulated in two dimensions (2D), with natural

reduction to the 1D case and natural extension to the 3D

case. It considers thermal equilibrium in an open bounded

domain, X, with a piecewise smooth boundary, C, and a

time interval, J ¼ ð0; TÞ. The problem is formulated as fol-

lows: Find ðu; hÞ, satisfying Eqs. (3)–(5), such that

uðx;0Þ¼ u0¼ðu0;s;u0;f Þ; _uðx;0Þ¼ u1¼ðu1;s;u1;f Þ; x2X;

(6)
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hðx; 0Þ ¼ h0; _hðx; 0Þ ¼ h1; x 2 X; (7)

with the absorbing boundary conditions

�GCðu; hÞ ¼ DSð _uÞ; (8)

�crh � m ¼ scvh
_h x 2 C; t 2 J; (9)

where

Gðu; hÞ ¼ ðrm � m; rm � v; pf Þðu; hÞ;

Sð _uÞ ¼ _us � m; _us � v; _uf � m
� �

: (10)

In Eqs. (8)–(10), m and v are given as the unit vector outer

normal and the unit vector tangent on C oriented counter-

clockwise. Equation (8) defines an absorbing boundary con-

dition derived in Santos et al. (1988), with D being a

positive definite matrix. Furthermore, vh ¼
ffiffiffiffiffiffiffiffiffiffiffi
c=ðsc

p
Þ is the

heat speed (e.g., Carcione et al., 2020). In the 1D case, the

formulation of the IBVP in Eqs. (3)–(10) remains valid,

omitting the tangent vector v, while in the 3D case, two tan-

gents (v1; v2) must be considered.

The IVBP solution provides the seismic response in the

form of displacements of the solid and fluid phases and tem-

perature, which are recorded to observe and quantify the

attenuation effects of the P-waves. In the FE method, glob-

ally continuous bilinear polynomials are used for spatial dis-

cretization to represent solid and fluid displacements and

temperature. In addition, an explicit temporal discretization

is applied, which imposes a stability constraint (Santos

et al., 2023). In the numerical experiments, the IBVP is

solved in a 1D interval to model the wave propagation and

quantify the attenuation effects.

III. ESTIMATION OF THE ATTENUATION

The SR and FS methods are used to estimate the quality

factor. The first computes the ratio of the spectral ampli-

tudes Aðf ; rsÞ and Aðf ; rtÞ between two receivers, rs and rt,

where rs is considered as the source and rt as the receiver.

The method is based on the following equation (Mavko

et al., 2003):

ln
Aðf ; rsÞ
Aðf ; rtÞ

� �
¼ pðdt � dsÞ

cpQ
f ; (11)

where ds and dt are source-receiver distances and cp is the

average P-wave phase velocity. Therefore, Q is computed

from the slope of the semilog relationship in Eq. (11).

The FS method introduced by Quan and Harris (1997)

relates the quality factor Q with the centroid frequencies at

source and receiver defined as

fj ¼

ð1
0

fAðf ; rjÞdfð1
0

Aðf ; rjÞdf

; j ¼ s; t: (12)

The method is based on the fact that a wave that propa-

gates through a medium loses high frequencies, and then the

centroid decreases. This effect can be measured by the

resulting downshift, denoted as Df ¼ fs � ft, where fs and ft
are the source and receiver centroid frequencies.

Furthermore, Aðf ; rsÞ is approximated by a Gaussian curve

with a variance, r2
s , and Q is obtained from the following

relationship:

p
ðdt � dsÞ

cpQ
¼ ðfs � ftÞ

r2
s

: (13)

IV. NUMERICAL RESULTS

Numerical experiments were performed to analyze the

attenuation behavior and to estimate the quality factor in a

partially saturated thermo-poroelastic sample. The medium

consists of alternating layers of equal thickness saturated with

gas and water. The frame properties are listed in Table I, the

fluid properties in Table II, and the thermal parameters in

Table III. The numerical experiments consist of finding

approximate solutions of IBVPs for the Biot/Lord–Shulman

equations using the FE method in open domains that are inter-

vals, with absorbing boundary conditions at the boundaries.

Then the FS and SR methods are applied to estimate the qual-

ity factor.

In all the examples, the medium, initially at rest, was

excited by a dilatation point source of time history,

gðtÞ ¼ �16f 2
0 ðt� t0Þe�8f 2

0
ðt�t0Þ2 ; (14)

where t0¼ 1.25/f0 and f0 is the dominant frequency.

The objective of experiment 1 is to analyze the propaga-

tion and wave amplitude behavior in both the coupled and

uncoupled elastic-thermal cases in order to estimate the qual-

ity factor. In the coupled case, the effects of temperature are

taken into account, which means that the thermoelasticity

TABLE I. Frame properties.

Property Value

Grain bulk modulus, Ks 37 GPa

Density, qs 2650 kg/m3

Frame bulk modulus, Km 8 GPa

Shear modulus, lm 9.5 GPa

Porosity, / 0.3

Permeability, j 1 darcy

TABLE II. Fluid properties.

Property Value

Fluid bulk modulus (water), Kf 2.25 GPa

Density (water), qf 1040 kg/m3

Viscosity (water), gf 0.003 Pa � s
Fluid bulk modulus (gas), Kf 0.012 GPa

Density (gas), qf 78 kg/m3

Viscosity (gas), gf 0.000015 Pa � s
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coefficients b and bf are not zero. This experiment considers

an interval of X¼ (0, 400 m), consisting of periodic layers of

thickness 20 cm alternately saturated with gas and water,

which is discretized with a uniform mesh of size h ¼ 0.2 m.

The medium is excited with a dilatation point source of dom-

inant frequency f0¼ 77 Hz located at xs¼ 4 m. Four receivers

(r1, r2, r3, and r4) are placed at x1 ¼ 70 m, x2 ¼ 100 m, x3

¼ 130 m, and x4 ¼ 160 m. The time histories of the frame

particle velocities are recorded at the receivers.

Experiment 2 quantifies the quality factor and the ampli-

tude spectrum in two coupled cases with different layer

thicknesses. Both cases consider an interval of X¼ (0,

400 m) with periodic layers alternately saturated with gas

and water. The medium is excited with a source located at

4 m, and the frame particle velocities are recorded at five

receivers located at x1 ¼ 70 m, x2 ¼ 100 m, x3 ¼ 130 m,

x4 ¼ 160 m, and x5 ¼ 190 m. The first case has periodic

layers of 15 cm thickness, and the source dominant fre-

quency is f0 ¼140 Hz, while the second case considers layers

of 30 cm and a source of dominant frequency f0¼ 34 Hz.

To analyze the amplitude damping of a wave propagat-

ing in a partially saturated thermo-poroelastic medium, we

compare the results with White’s isothermal theory. White’s

model describes dissipation in a medium composed of peri-

odic layers saturated with gas and water. The dissipation is

due to the interaction generated by the presence of two

fluids with different compressibilities (White et al., 1975).

Figure 1 shows the inverse quality factor as a function of

frequency for three thicknesses (15, 20, and 30 cm). The

minimum value of the quality factor for all thicknesses is 28.

Figure 2 shows the time histories of the frame particle

velocity at receivers r1 and r4 for both the uncoupled and

coupled cases in experiment 1, with the amplitudes normal-

ized to the maximum amplitude of the signal at r1 in the

uncoupled case. This normalization provides a better repre-

sentation of the relative changes in wave propagation and

attenuation between the two cases. This figure shows that

the coupled case exhibits faster wave propagation and lower

amplitude due to the inclusion of temperature effects in

addition to the WIFF described by White’s theory.

Figure 3 shows the normalized amplitude spectra at

receivers r1 and r4 in experiment 1. This graph, like Fig. 2,

shows lower amplitude spectra and higher attenuation when

temperature effects are included (coupled case).

Figure 4 illustrates the normalized amplitude spectra

of the four receivers in the coupled case of experiment 1.

The amplitude spectrum of the waves decreases as the

TABLE III. Thermal parameters.

Parameter Value

Thermoelasticity coefficient, bf 50 000 kg/(m s2 K)

Bulk specific heat, c 820 kg/(m s2 K)

Thermoelasticity coefficient, b 90 000 kg/(m s2 K)

Absolute temperature, T0 300 K

Thermal conductivity, c 4.5 � 106 kg/m3

Relaxation time, s 1.5 � 10�2 s

FIG. 1. (Color online) Inverse quality factor Q for a water and gas saturated

Biot sandstone corresponding to three layer thicknesses (15, 20, and 30 cm).

FIG. 2. (Color online) Time histories of the frame particle velocity recorded

at 70 m (receiver r1) and 160 m (receiver r4), considering (coupled) and

neglecting (uncoupled) thermal effects. The experiment considers an inter-

val of X¼ (0, 400 m), consisting of periodic layers of thickness 20 cm alter-

nately saturated with gas and water (experiment 1).

FIG. 3. (Color online) Amplitude spectra corresponding to the time history

recorded at 70 m (receiver r1) and 160 m (receiver r4), considering (cou-

pled) and neglecting (uncoupled) thermal effects (experiment 1).
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distance between the receivers and the source increases, due

to the loss of energy by mode conversions.

Table IV shows the estimation of the quality factor by

using the SR and FS methods in the coupled and uncoupled

cases of experiment 1 and considering the four receivers. As

expected, the results obtained with the two methods in the

uncoupled case are similar to the theoretical value obtained

with White’s theory, (Q¼ 28) at 77 Hz, and higher than the

estimates for the coupled case. This shows that when tem-

perature effects are taken into account, the attenuation of the

wave is higher, so that the quality factor decreases.

Finally, in experiment 2, the influence of layer thickness is

analyzed in the coupled case. Figure 5 shows that the ampli-

tude spectrum computed in the receiver r5 for layer thickness

30 cm is higher than that obtained for layer thickness 15 cm.

This is due to the fact that there is less mode conversion and,

consequently, larger amplitude and less attenuation, when the

wave propagates through a larger layer thickness.

Table V compares the estimated quality factors for layer

thicknesses 15 and 30 cm in the coupled case. As expected,

the Q-estimates reported in Table V are lower than the theo-

retical value of White, due to the temperature effects.

Q-values for a layer thickness of 30 cm are higher than those

of 15 cm, since there is less mode conversion. Thus, for

30 cm, we have a larger amplitude spectrum and less attenu-

ation than for 15 cm.

V. CONCLUSIONS

Wave propagation in a partially saturated thermo-

poroelastic medium is studied by numerically solving an

IBVP for the Biot/Lord–Shulman equations in periodic

sequences of poroelastic layers alternately saturated with

gas and water. The medium is excited with a dilatational

point source, and the particle velocity is recorded at equally

spaced receivers. Furthermore, the same experiment is per-

formed using the classical isothermal Biot’s theory. The

quality factor Q is estimated using the SR and FS methods.

The first experiment compares the results of the non-

isothermal (Biot/Lord–Shulman, coupled) and isothermal

(Biot, uncoupled) cases for a periodic sequence of layer

thickness 20 cm and a source dominant frequency of 77 Hz,

FIG. 4. (Color online) Amplitude spectra corresponding to the time his-

tory recorded at 70 m (receiver r1), 100 m (receiver r2), 130 m (receiver

r3), and 160 m (receiver r4), considering (coupled) thermal effects

(experiment 1).

TABLE IV. Estimated Q computed with the SR and FS methods.a

Source Receiver

Coupled Uncoupled

SR coupled FS coupled SR uncoupled FS uncoupled

r1 r2 24.53 23.9 29.17 27.47

r1 r3 24.51 24.12 28.48 27.1

r1 r4 24.07 23.91 28.72 27.68

r2 r3 24.53 24.35 27.79 26.72

r2 r4 23.84 23.91 28.49 27.78

r3 r4 23.15 24.46 29.22 28.85

aShown are results for the coupled and uncoupled cases in experiment 1.

SR, spectral ratio; FS, frequency shift.

FIG. 5. (Color online) Amplitude spectra corresponding to the time history

recorded at 190 m (receiver r5), including thermal effects, for layer thick-

nesses 15 and 30 cm. The experiment considers an interval of X¼ (0,

400 m) consisting of periodic layers alternately saturated with gas and water

(experiment 2).

TABLE V. Estimated Q for 15 and 30 cm thickness computed with the SR

and FS methods.a

Source Receiver

15 cm 30 cm

SR FS SR FS

r1 r2 24.57 24.43 26.50 27.24

r1 r3 23.74 23.91 26.71 26.52

r1 r4 23.75 24.24 26.83 26.37

r1 r5 23.58 24.41 26.88 26.54

r2 r3 22.94 22.84 26.94 26.41

r2 r4 23.35 23.58 26.99 26.54

r2 r5 23.25 23.83 27.01 26.93

r3 r4 23.75 23.70 27.04 26.68

r3 r5 23.41 23.70 27.05 27.20

r4 r5 23.07 23.02 27.06 27.06

aShown are results from the coupled case in experiment 2. SR, spectral

ratio; FS, frequency shift.

1490 J. Acoust. Soc. Am. 155 (2), February 2024 Zapata et al.

https://doi.org/10.1121/10.0024979

https://doi.org/10.1121/10.0024979


which corresponds to the frequency attenuation peak of

White’s theory. The results show a higher attenuation (i.e.,

lower Q) in the coupled case caused by the combination of the

WIFF mechanism with the conversion of P-waves into ther-

mal waves. In the uncoupled case, the numerical Q-estimates

agree very well with the value predicted by White’s theory.

The second experiment analyzes the mesoscopic loss

mechanism in the coupled case, considering layer thick-

nesses of 15 and 30 cm with associated dominant frequen-

cies of 140 and 34 Hz, respectively. As expected, thicker

layers yield greater Q-values and less attenuation due to less

mode conversions at gas-water interfaces.

The results obtained in both experiments show that P-

wave attenuation increases when thermal effects are taken

into account.
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