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ABSTRACT
We generalize the classical theory of acoustoelasticity to the porous case (one fluid
and a solid frame) and finite deformations. A unified treatment of non-linear acous-
toelasticity of finite strains in fluid-saturated porous rocks is developed on the basis
of Biot’s theory. A strain-energy function, formed with eleven terms, combined with
Biot’s kinetic and dissipation energies, yields Lagrange’s equations and consequently
the wave equation of the medium. The velocities and dissipation factors of the P- and
S-waves are obtained as a function of the 2nd- and 3rd-order elastic constants for
hydrostatic and uniaxial loading. The theory yields the limit to the classical theory
if the fluid is replaced with a solid with the same properties of the frame. We con-
sider sandstone and obtain results for open-pore jacketed and closed-pore jacketed
‘gedanken’ experiments. Finally, we compare the theoretical results with experimental
data.
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INTRODUCTION

The linear elastic theory of a single-phase medium is not suit-
able to describe the non-linear acoustic behaviour of realis-
tic media, such as rocks, subject to loading stresses. Non-
linear theories, based on 3rd-order elastic constants (3oEC),
have been developed under the name of hyperelasticity (Trues-
dell 1965) and acoustoelasticity. These theories describe the
behaviour of a medium subject to small dynamic motions
(waves) and large static deformations (loading). Additional
stiffness moduli affect wave velocities depending on the ap-
plied stress or strain.

Early works are those of Murnaghan (1937, 1951), Hear-
mon (1953), Goldberg (1961) and Hughes and Kelly (1953).
The theory was well established by Toupin and Bernstein
(1961), Jones and Kobett (1963) and Thurtson and Brug-
ger (1964). Truesdell (1961) used four 3oEC. Brugger (1964)
provided the thermodynamic definition of high-order elastic
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constants. Green (1973) collected measurements of 3oEC for
various crystals and identified the notation of 3oEC defined
by different authors. Grinfeld and Norris (1996) generalized
the theory from single-phase to multi-phase materials.

The non-linear elasticity theory has been applied to rock me-
chanics (Johnson and Shankland 1989; Meegan et al. 1993).
Winkler and Liu (1996) measured 3oEC in a variety of dry
rocks and interpreted the results on the basis of the classical
acoustoelasticity theory. They found that this theory success-
fully describes the relation between wave velocities and stress.
However, similar experiments performed on water-saturated
rocks showed that the classical 3oEC theory cannot fully de-
scribe the stress dependence of velocities (Winkler and Mc-
Gowan 2004). The deformation of the fluid must be taken
into account as the confining pressure increases.

Biot (1956) derived two-phase wave equations on the ba-
sis of the linear-elasticity theory, where the coupling be-
tween the solid and fluid is taken into account. Extensions
of Biot’s theory, to include fluid unrelaxation, are based on
local fluid flow, dynamic permeability and multi-scale hetero-
geneity (Dutta and Odé 1979a,b; Johnson 2001; Berryman
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and Wang 2001; Pride, Berryman and Harris 2004; Car-
cione and Picotti 2006; Ba et al. 2008a,b, 2011). With
the assumption of linearity, the research performed in re-
cent years has been focused on the frequency dependence
of P- and S- wave velocities and respective attenuation fac-
tors, caused by patchy saturation, pore distribution and rock
microstructure.

According to Biot’s theory, an isotropic poroelastic medium
has four independent static moduli (or 2nd-order elastic con-
stants (2oEC)). Biot (1973) developed a semilinear mechanical
description of porous media, based on seven elastic constants.
Four of them characterize the linear behaviour and three char-
acterize the non-linear behaviour. The theory was adapted to
solid-fluid composites by Norris, Sinha and Kostek (1994).
Biot (1972) used an eleven-constant elastic potential function
for fluid-saturated porous media. Drumheller and Bedford
(1980) used an Eulerian reference frame to derive non-linear
equations for wave propagation in porous media, while Berry-
man and Thigpen (1985) used a Lagrangian reference frame.

Donskoy, Khashanah and Mckee (1997) derived non-linear
acoustic wave equations for porous media and established a
correlation between measurable effective non-linear param-
eters and structural parameters of a porous medium. Their
theory is based on the semilinear approximation of Biot’s
poroelasticity theory. The assumption of semilinearity implies
a linear relation between the volume change of the solid ma-
trix and the effective stress. Therefore, a modified strain is
used (see Equations (7) and (54) in Biot 1973) and the effec-
tive stress is included, so that the non-linear acoustoelasticity
equations can be simplified and only three independent 3oEC
are necessary. Following this theoretical approach, Dazel and
Tournat (2010) considered the 1D case and derived the solu-
tions for second harmonic Biot waves. The wave-velocity dis-
persion and dissipation are analysed in a half-space. Zaitsev,
Kolpakov and Nazarov (1999a,b) analysed the propagation
of low-frequency signals in dry and water-saturated river sand
and showed that the behaviour of loose granular media can
be non-linear.

Grinfeld and Norris (1996) derived equations for wave ve-
locities in closed-pore jacketed tests (CPJT) and open-pore
jacketed (OPJT) tests, to find the seven 3oEC of a poroelastic
medium. In the former, the pore fluid mass is constant (Grin-
feld and Norris 1996), which means that the porous medium
is surrounded by an impervious closed deformable jacket, so
that the pore fluid cannot flow out of the rock frame. On
the other hand, in the OPJT (Biot and Willis 1957; Johnson
1986; Grinfeld and Norris 1996) the fluid pressure is constant,
because there is a tube where the fluid can flow in and out

of the medium under an applied confining stress. However,
the solid and fluid finite strains are not considered in their
work, so the 2oEC do not appear in the term multiplying
the confining pressure in the expressions of the velocities (see
equation (1) below). This means that there is no compatibility
between their poro-acoustoelasticity theory and the classical
acoustoelasticity theory.

In this work, we generalize Grinfeld and Norris (1996)’s
approach by including solid and fluid finite strains. Then,
we derive the wave-propagation equations by substituting the
eleven-term strain-energy function and Biot’s kinetic and dis-
sipation energies into Lagrange equations. The velocities and
dissipation factors of the P- and S-waves are obtained as a
function of the 2oEC and 3oEC and confining stress in the
cases of hydrostatic and uniaxial loading conditions. We dis-
cuss the limit of this theory to the classical acoustoelasticity
theory. Examples for wave velocity and dissipation are given
for the OPJT and CPJT, respectively. Finally, we perform ul-
trasonic P-wave velocity measurements corresponding to these
tests, under hydrostatic loading and compare the theoretical
and experimental results.

NON-LINEAR T HEORY. WAVE EQUATION

Classical acoustoelasticity

The non-linear 3oEC theory has been developed to describe
wave propagation and mechanical deformations in a solid ma-
terial. The strain energy function of an isotropic solid depends
on three independent 3oEC. The relations between wave ve-
locities and confining stresses were derived by Murnaghan
(1951), Green (1973), Hughes and Kelly (1953), and Pao,
Sachse and Fukuoka (1984):

ρv2
Ph = λ + 2μ − P̄(7λ + 10μ + 6l + 4m),

ρv2
Sh = μ − P̄(3λ + 6μ + 3m − 0.5n),

ρv2
Px = λ + 2μ − T̄

[
λ + μ

μ
(4λ + 10μ + 4m) + λ + 2l

]
,

ρv2
Py = λ + 2μ − T̄

[
2l − 2λ

μ
(λ + 2μ + m)

]
,

ρv2
Sx = μ − T̄

(
4λ + 4μ + m + λn

4μ

)
,

ρv2
Sy = μ − T̄

(
λ + 2μ + m + λn

4μ

)
,

ρv2
Sz = μ − T̄

(
m − 2λ − λ + μ

2μ
n
)

,

(1)
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where,

P̄ = P
3λ + 2μ

, T̄ = T
3λ + 2μ

, (2)

P is hydrostatic (compressive) stress, T is the compressive
stress applied along one of the three axes, λ and μ are the
2oEC (the Lamé constants), l, m and n are the 3oEC and ρ

is the density. The subscripts P and S denote P and S waves
and the subscript h indicates hydrostatic loading. Moreover,
the subscript x denotes the direction along uniaxial loading.
y and z denote the two directions perpendicular to uniaxial
loading. For S waves propagating in the y direction, the par-
ticles vibrate along loading. For S waves propagating in the z

direction, the particles vibrate perpendicular to loading.

Strain-energy function in poroelastic media

If the fluid-saturated rock is loaded with a high confining
stress, infinitesimal strains are insufficient to describe the solid
and fluid microscale finite deformations. In this case, we use
the Lagrangian strain tensor

εi j = 1
2

(uj,i + ui, j + uk,i uk, j ), i, j, k = 1, 2, 3, (3)

where ui denotes the solid displacement in the xi-direction, and
the convention of summation over repeated indices is adopted.
Moreover, ui,j indicates a partial derivative of ui with respect
to xj. In the following, the notation (x, y, z) = (x1, x2, x3) is
used.

Non-linear acoustics of fluids is usually formulated in terms
of an Eulerian description of wave motion (Beyer 1960, 1984).
Kostek, Sinha and Norris (1993) provided explicit relations
for the Lagrangian and Eulerian descriptions of an inviscid
fluid. In non-linear problems involving fluids and solids, the
unified treatment of Lagrangian variables is used. If we neglect
the fluid shear deformations, the fluid finite strain can be
approximately written as

θi(i) = U(i),i + 1
2

U2
(i),i , (4)

where Ui denotes the fluid displacement in the xi-direction.
This approximation can be applied to light fluids, such as
water, oil and gas. For non-Newtonian media, such as bitumen
and heavy oil, shear deformations have to be considered.

In an isotropic medium, the strain energy can be expressed
as

2W = M1 I2
1 + M2 I2 + M3θ

2 + M4θ I1 + M5 I3
1 + M6 I3

+ M7θ
3 + M8 I1 I2 + M9θ I2 + M10 I2

1 θ + M11 I1θ
2,

(5)

where Ml, l = 1, . . ., 11 are the elasticity constants,

ε = ui,i and θ = Ui,i . (6)

The invariants are

I1 = ε = ε11 + ε22 + ε33,

I2 =
∣∣∣∣∣
ε11 ε12

ε12 ε22

∣∣∣∣∣ +
∣∣∣∣∣
ε11 ε13

ε13 ε33

∣∣∣∣∣ +
∣∣∣∣∣
ε22 ε23

ε23 ε33

∣∣∣∣∣ ,

I3 =

∣∣∣∣∣∣∣
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

∣∣∣∣∣∣∣
.

(7)

Expression (5) is similar to that of Biot (1972) (his equation
(5.9)), but the variation of fluid content has been replaced by
θ , therefore, the elastic constants are not the same. The strain
energy depends on four 2oEC (M1, . . ., M4) and seven 3oEC
(M5, . . ., M11).

The solid and fluid stress components are given by

σi j = ∂W
∂εi j

and τi j = ∂W
∂θi j

, i, j = 1, 2, 3, (8)

The 2oEC are those obtained by Biot and Willis (1957) by
means of ‘gedanken’ experiments (e.g., Carcione 2007)

M1 = P = Km + M(γ − φ)2 + 4
3

μm,

M2 = −4N = −4μm,

M3 = R = Mφ2,

M4 = 2Q = 2Mφ(γ − φ),

(9)

where

M = Ks

1 − φ − Km/Ks + φKs/K f
, (10)

γ = 1 − Km

Ks
, (11)

with Km, Ks and Kf the bulk moduli of the drained matrix,
solid and fluid, respectively; φ is the porosity and μm is the
shear modulus of the drained as well as saturated matrix.
The notations P, A, N, R and Q are as in Biot (1956) (do
not confuse this P with the hydrostatic stress introduced in
equation (2)).
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On the other hand, in the limit to the classical acoustoelas-
ticity theory, the equivalences are

M1 + M3 + M4 = λ + 2μ,

M2 = −4μ,

M6 = 2n,

M5 + M7 + M10 + M11 = 2
3

(l + 2m),

M8 + M9 = −4m.

(12)

The determination of the seven 3oEC requires additional
‘gedanken’ experiments, which will be the subject of future
work.

Kinetic and dissipation energies

In this work, we use a theoretical approach similar to those of
Biot (1962) and Norris (1996) but finite strain is used instead
of infinitesimal strain. The dissipation function and the kinetic
energy per unit volume of isotropic fluid-solid composite are
given by (Biot 1962)

2D = φ2η

κ
[(u̇1 − U̇1)2 + (u̇2 − U̇2)2 + (u̇3 − U̇3)2] (13)

and

2T = ρ11(u̇2
1 + u̇2

2 + u̇2
3) + 2ρ12(u̇1U̇1 + u̇2U̇2 + u̇3U̇3)

+ ρ22

(
U̇2

1 + U̇2
2 + U̇2

3

)
,

(14)

respectively, where

ρ11 = (1 − φ)ρs − ρ12,

ρ22 = φρ f − ρ12,

ρ12 = −φρ f (T − 1),

where ρs and ρf are the solid and fluid mass densities and
T is the tortuosity (Biot 1956; Carcione 2007), η is the fluid
viscosity, κ is the permeability and a dot above a variable
denotes time differentiation.

Lagrange and wave equations

Applying Lagrange’s equations and taking ui and Ui as gen-
eralized coordinates, the generalized forces corresponding to
the solid and fluid phases can be expressed as

fi = d
dt

(
∂T
∂u̇i

)
+ ∂ D

∂u̇i
,

Fi = d
dt

(
∂T

∂U̇i

)
+ ∂ D

∂U̇i
,

(15)

where

fi = d
dxj

∂W
∂ui, j

, Fi = d
dxj

∂W
∂Ui, j

.

Let us define

J =

⎛
⎜⎝

1 + u1,1 u1,2 u1,3

u2,1 1 + u2,2 u2,3

u3,1 u3,2 1 + u3,3

⎞
⎟⎠ and

K =

⎛
⎜⎝

1 + U1,1 0 0
0 1 + U2,2 0
0 0 1 + U3,3

⎞
⎟⎠ .

(16)

Using equations (8)–(16), we obtain the non-linear wave
equations of the two-phase medium,

σik, j Jkj + σikJkj, j = ρ11üi + ρ12Üi + b(u̇i − U̇i ),

τik, j Kkj + τikKkj, j = ρ12üi + ρ22Üi − b(u̇i − U̇i ),

(17)

where b = φ2η/k.

NON-LINEAR T HEORY. DISPERS ION
EQUATIONS

The complex velocity of a given wave mode is given by

v = ω

k
, (18)

where ω is the angular frequency and k is the complex and
frequency dependent wavenumber. The phase velocity and
dissipation factor are

vp =
[
Re

(
1
v

)]−1

and
1
Q

= Im(v2)
Re(v2)

(19)

respectively, where ‘Re’ and ‘Im’ take real and imaginary parts
(e.g., Carcione 2007). The dissipation factor is the reciprocal
of the quality factor Q.

In the following, we obtain the dispersion equations for hy-
drostatic and uniaxial loadings, which give the complex and
frequency-dependent wavenumbers and corresponding veloc-
ities as a function of the loading stress.

Hydrostatic confining stress

For simplicity, let us consider a plane P-wave propagating in
the x-direction. Wave equations (17) become

σ11,1 + σ11,1u1,1 + σ11u1,11 = ρ11ü1 + ρ12Ü1 + b(u̇1 − U̇1),

τ11,1 + τ11,1U1,1 + τ11U1,11 = ρ12ü1 + ρ22Ü1 − b(u̇1 − U̇1).

(20)
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The total strains applied to the solid and fluid phases are

ε = ε1 + ε2 and θ = θ1 + θ2,

where the subscripts ‘1’ and ‘2’ indicate the contributions of
the large strain induced by the hydrostatic static loading and
that of the propagating wave, respectively.

For a hydrostatic loading, we have

ε1 =

⎛
⎜⎝

α 0 0
0 α 0
0 0 α

⎞
⎟⎠ and θ1 =

⎛
⎜⎝

β 0 0
0 β 0
0 0 β

⎞
⎟⎠ . (21)

The contribution of the small strain induced by the P waves is

ε2 =

⎛
⎜⎝

1 0 0
0 0 0
0 0 0

⎞
⎟⎠ ε0 exp[ωt − kx(1 + α)] and

θ2 =

⎛
⎜⎝

1 0 0
0 0 0
0 0 0

⎞
⎟⎠ θ0 exp[ωt − kx(1 + β)],

(22)

where ε0 and θ0 are wave amplitudes. Substituting equations
(21) and (22) into equations (20), neglecting terms whose
power is higher than 1 and eliminating ε0 and θ0, yields the
following dispersion equation,
∣∣∣∣∣

ϒ1k2 −ρ11ω
2 + ibω (ϒ2 + M4β)k2 −ρ12ω

2 − ibω

(ϒ2 + M4α)k2 −ρ12ω
2 − ibω ϒ3k2 −ρ22ω

2 + ibω

∣∣∣∣∣ = 0,

(23)

where i = √−1,

ϒ1 = M1 + (7M1 + M2 + 9M5 + 2M8)α +
(

3
2

M4 + 3M10

)
β,

ϒ2 = 1
2

M4 +
(

1
2

M4 + M9 + 3M10

)
α +

(
1
2

M4 + 3M11

)
β,

ϒ3 = M3 +
(

3
2

M4 + 3M11

)
α + (9M7 + 7M3)β.

The complex and frequency dependent fast and slow P-wave
velocities correspond to two solutions of the quadratic equa-
tion (23).

Similarly to the low-frequency limit of Biot equations,
which yields Gassmann equations (Gassmann 1951), neglect-
ing the relative motion between the solid and fluid phases,
equation (23) gives

ρv2 = ϒ1 + 2ϒ2 + ϒ3 + M4(α + β), (24)

where ρ = ρ11 + 2ρ12 + ρ22 is the bulk density (Biot 1962).
Expression (24) is a non-linear generalization of the Gassmann

equation. If α = β (solid and fluid finite strains are the same),
we obtain

ρv2 = M1 + M3 + M4 + [7(M1 + M3 + M4) + M2

+ 9(M5 + M7 + M10 + M11) + 2(M8 + M9)]α.
(25)

Using equivalences (12), equation (25) is identical to the first
equation in (1) if α = −P̄.

For plane S-waves propagating along the y-direction, with
polarization in the x-direction, we have

σ12,2 + σ12,2u1,1 + σ22u1,22 = ρ11ü1 + ρ12Ü1 + b(u̇i − U̇1),

0 = ρ12üi + ρ22Ü1 − b(u̇1 − U̇1).

(26)

The infinitesimal dynamic strain induced by the S-waves has
the form of equation (22), replacing x by y. The dispersion
equation is∣∣∣∣∣
�k2 − ρ11ω

2 + ibω −ρ12ω
2 − ibω

−ρ12ω
2 − ibω −ρ22ω

2 + ibω

∣∣∣∣∣ = 0, (27)

where

� = − M2

4
+

(
3M1 − M6

4
− 3

4
M8

)
α +

(
3
2

M4 − 3
4

M9

)
β.

The frequency-dependent S-wave velocity can be obtained
from (27).

To obtain the acoustoelasticty limit, let us assume that the
pore fluid suffers the same static deformation of the frame.
Equation (27) becomes

ρv2 = − M2

4
+

(
3M1 + 3

2
M4 − M6

4
− 3

4
M8 − 3

4
M9

)
α. (28)

This equation is not the second equation in (1), since fluid
shear effects were neglected in equation (26). If these terms
are not neglected, the left-hand side of the second equation in
(26) becomes τ 12,2 + τ 12,2U1,1 + τ 22U1,22, which gives two
additional terms 3M4α/2 and 3M3β.

We obtain the second equation in (1) by neglecting the solid-
fluid relative deformation and adding the fluid shear terms,
i.e.,

ρv2 = − M2

4
+

(
3M1 + 3M4 + 3M3 − M6

4
− 3

4
M8 − 3

4
M9

)
α.

(29)

Uniaxial confining stress

For an uniaxial loading T in the x-direction, the large (finite)
static strains, induced by the confining stress, have the form
of equation (21), replacing α by α′ �= α in the (22) and (33)
elements of matrix ε1. The dynamic strain, induced by a plane
P-wave, with polarization in the x-direction, has the form of
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equation (22). Then, the dispersion equation has the form of
equation (23), where

ϒ1 = M1 + (5M1 + 3M5)α + (2M1 + M2 + 6M5 + 2M8)α′

+
(

3
2

M4 + 3M10

)
β,

ϒ2 = 1
2

M4 +
(

1
2

M4 + M10

)
α + (M9 + 2M10)α′

+
(

1
2

M4 + 3M11

)
β,

ϒ3 = M3 +
(

1
2

M4 + M11

)
α + (M4 + 2M11)α′

+ (9M7 + 7M3)β.

If the differential motion between the solid and the fluid is
neglected, we have

ρv2 = ϒ1 + 2ϒ2 + ϒ3 + M4(α + β). (30)

Equation (30) can be directly reduced to the third equation
in (1) if we replace β by α along the x-direction and β by α′

along the perpendicular directions, i.e.,

ρv2 = M1 + M3 + M4 + [5(M1 + M3 + M4)

+ 3(M5 + M7 + M10 + M11)]α

+ [2(M1 + M3 + M4) + M2

+ 6(M5 + M7 + M10 + M11) + 2(M8 + M9)]α′,

(31)

where

α = − (λ + μ)T
μ(3λ + 2μ)

and α′ = λT
2μ(3λ + 2μ)

.

On the other hand, for S waves travelling along the direction
perpendicular to the loading with polarization along the load-
ing direction, the infinitesimal dynamic strain has the form of
equation (22), replacing x by y and the dispersion equation
has the form of equation (27), with

� = − M2

4
+

(
3M1 − 1

4
M8

)
α +

(
2M1 − 1

2
M8 − 1

4
M6

)
α′

+
(

3
2

M4 − 3
4

M9

)
β.

Replacing β with α and α′ in different directions and including
the fluid shear terms, the solution reduces to the sixth equation
in (1),

ρv2 = − M2

4
+ [(M1 + M3 + M4)(α + 2α′) − M6

4
α′

−1
4

(M8 + M9)(α + 2α′)].

(32)

For P waves propagating along the x-direction and uniaxial-
loading along the y-direction, the large strains induced by the

load have the form of equation (21), replacing α by α′ �= α

in the (11) and (33) elements of matrix ε1. The infinitesimal
strains have the form of equation (22), replacing α by α′ in
the exponent of the first expression. Therefore, the dispersion
equation has the form of equation (22), replacing α by α′ in
the (21) element inside the determinant with

ϒ1 = M1 +
(

M1 + 1
2

M2 + 3M5 + M8

)
α +

(
6M1 + 1

2
M2

+ 6M5 + M8

)
α′ +

(
3
2

M4 + 3M10

)
β,

ϒ2 = 1
2

M4 +
(

1
2

M9 + M10

)
α +

(
1
2

M4 + 1
2

M9 + 2M10

)
α′

+
(

1
2

M4 + 3M11

)
β,

ϒ3 = M3 +
(

1
2

M4 + M11

)
α + (M4 + 2M11)α′

+ (9M7 + 7M3)β.

The solution becomes the fourth equation in (1) if the rela-
tive fluid-solid motion is neglected and β = α,

ρv2 = M1 + M3 + M4 + [M1 + M3 + M4 + M2

2

+ 3(M5 + M7 + M10 + M11) + M8 + M9]α

+ [6(M1 + M3 + M4) + 1
2

M2

+ 6(M5 + M7 + M10 + M11) + M8 + M9]α′.

(33)

For S waves propagating along the uniaxial-loading direc-
tion, the static strains have the form of equation (21), replac-
ing α by α′ �= α in the (11) and (33) elements of matrix ε1,
and the dynamic strain has the form of equation (22), replac-
ing x by y. Then, the dispersion equation has the form of
equation (27), with

� = − M2

4
+

(
M1 − M2

2
− M8

4

)
α

+
(

2M1 + M2

2
− M8

2
− M6

4

)
α′ +

(
3
2

M4 − 3
4

M9

)
β.

The fifth equation in (1) can be obtained from this expression
as a particular case,

ρv2 = − M2

4
+ [(M1 + M3 + M4)(α + 2α′) − M2

2
(α − α′)

− M6

4
α′ − 1

4
(M8 + M9)(α + 2α′)].

(34)
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Table 1 Properties of the sandstone.

M1 8.56 ρs 2650 kg/m3

M2 −11.7 ρf 1040 kg/m3

M3 0.75 T 2
M4 2.7 φ 0.335
M5 244 κ 1 D
M6 131 η 0.0015 Pa s
M7 7 Ks 36.7 GPa
M8 −450 Kf 2.51 GPa
M9 −150 Km 2.23 GPa
M10 65 μm 2.93 GPa
M11 24

The elasticity constants are given in GPa.

Finally, for S waves propagating along the direction perpen-
dicular to the uniaxial-loading direction, whose polarization
is also perpendicular to this direction, the dynamic strain has
the form of equation (22), replacing x by z in both expressions
and α by α′ in the exponent of the first expression. Then, the
dispersion equation has the form of equation (27), with

� = − M2

4
+

(
M1 + M2

2
− M8

4
− M6

4

)
α

+
(

2M1 − 1
2

M2 − M8

2

)
α′ +

(
3
2

M4 − 3
4

M9

)
β.

The dispersion equation yields the seventh equation in (1) as
a particular case,

ρv2 = − M2

4
+ [(M1 + M3 + M4)(α + 2α′) + M2

2
(α − α′)

− M6

4
α′ − 1

4
(M8 + M9) (α + 2α′)].

(35)

Dispersion equations (23) and (27) are the main results of
this work.

R E S U L T S

The elasticity and density coefficients of a water-saturated
rock are given in Table 1. The 2oEC and density coefficients
are taken from Dai, Vafidis and Kanasewich (1995), while the
seven 3oEC are assumed (we assume the ratio between 3oEC
and 2oEC is consistent with the acoustoelasticity theory of
a pure solid, while the ratio between two different 3oECs
is close to the ratio between two different 2oECs in Biot’s
theory).

Wave velocities for hydrostatic loading

In the OPJT (Fig. 1b in Grinfeld and Norris 1996) and a
hydrostatic stress P acting on the frame, Biot’s stress-strain
relations are P = (A + 2N/3)ε + Qθ and 0 = Qε + Rθ

(e.g., Carcione 2007). Substituting α = ε/3 and β = θ /3 into
equations (23) and (27) yields the OPJT velocities. On the
other hand, in the CPJT (Fig. 1a in Grinfeld and Norris 1996),
the relations are Ps = (A + 2N/3)ε + Qθ and Pf = Qε + Rθ ,
where P = Ps + Pf and Pf /φ = Kf θ . Solving for the solid and
fluid strains ε and θ and substituting them into equations (23)
and (27) yield the CPJT velocities.

Figures 1 and 2 show the velocities and dissipation factors
corresponding to the two experiments as a function of the
confining pressure P. As can be seen, the fast P-wave dissipa-
tion factor and the S-wave velocity are sensitive to the change
in hydrostatic pressure. The fast P-wave attenuation signifi-
cantly increases in the loading process, with higher values in
the open-pore case. The (11)-component in equation (23) is
the most significant term and yields higher Biot loss in the
OPJT, since ϒ1 is higher in this case. This difference increases
with increasing load. The slow P-wave velocity has a maxi-
mum at 13 MPa in the OPJT. Moreover, the S-wave attenua-
tion is not affected by hydrostatic stress and the slow P-wave
attenuation has a negligible variation, so these curves are not
shown.

The CPJT has lower fast P-wave velocities and higher S-
and slow P-wave velocities. The fast P-wave dissipation factor
is lower than that predicted for the OPJT. In any case, the
dissipation is low, agreeing with the classical Biot values. In
the OPJT, the loading acts on the frame and its non-linear
features dominate. In the CPJT, the fluid pressure compen-
sates the external stress and the bulk is effectively less com-
pressed, implying a lower velocity. Figure 2 shows that ve-
locity and attenuation are more sensitive to stress than fre-
quency (the opposite occurs for the slow wave). The S-wave
attenuation shows no changes with loading. The fast P-wave
velocity of the OPJT is much higher than the corresponding
velocity of the CPJT as loading increases, while the OPJT
dissipation factor is lower than the CPJT dissipation factor
for stresses below 5 MPa, but becomes much higher beyond
30 MPa.

Pores are assumed to be equant (stiff) as in Biot (1962)
and therefore local fluid-flow effects are not considered in
this work. Attenuation due to this phenomenon can be one
or two orders of magnitude higher than that generated by
Biot’s global flow (e.g., Ba et al. 2008b; Ba, Carcione and Nie
2011).
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Figure 1 Velocities and dissipation factor versus hydrostatic stress at 1 MHz. (a) and (b): fast P wave; (c): S wave; (d) slow P wave. The solid
and dashed lines correspond to the closed-pore and open-pore jacketed tests, respectively.

Wave velocities for uniaxial loading

First, we consider the open-pore jacketed test. Biot’s stress-
strain relation under an uniaxial load T are T = Aε + 2Nε11 +
Qθ , 0 = Aε + 2Nε22 + Qθ and 0 = Qε + Rθ . Since
ε = ε11 + 2ε22, ε11, ε22 and θ can be obtained. Substitut-
ing α = ε11, α′ = ε22 and β = θ /3 into equations (23) and
(27), we obtain the velocities and dissipation factors.

Figure 3 shows the velocities and dissipation factors as a
function of the uniaxial loading T. The fast P-wave velocity
changes more in the loading direction than along the perpen-
dicular direction, since microcracks in the loading direction
are more sensitive. The slow P-wave velocity slightly increases
in the perpendicular direction and slightly decreases in the
parallel direction. For the same loading value, the fast P-wave

attenuation is higher in the parallel direction if the load ex-
ceeds 5 MPa but the loss is lower than in the previous tests.
These results are consistent with the predictions of the classical
acoustoelasticity theory. The S-wave velocities along the load-
ing direction are higher and the S wave, whose polarization is
parallel to the loading direction, has the lower velocities. All
three S-wave velocities are lower than those of the OPJT.

The results shown in Fig. 1(b) and Fig. 3(b) predict that
attenuation increases with loading, which is not in agreement
with experimental data (Guo, Fu and Ba 2009). This is because
local fluid flow effects are not considered.

Let us consider now, the closed-pore jacketed test. In this
case, the stress-strain relations are T1 = Aε + 2Nε11 + Qθ ,
T2 = Aε + 2Nε22 + Qθ , Tf = Qε + Rθ , T = T1 + Tf ,
0 = T2 + Tf and Tf /φ = Kf θ , where T1 and T2 are the stress

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 2 Velocities and dissipation factor as a function of stress and frequency. (a) and (b): fast P wave; (c) and (d): S wave; (e) and (f): slow P
wave. Blue and red correspond to the closed-pore and open-pore jacketed tests, respectively.

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 3 Velocities and dissipation factor as a function of uniaxial load at 1 MHz for the open-pore jacketed test. (a) and (b): fast P wave; (c):
slow P wave; (d) S wave. In (a)-(c), the solid and dashed lines correspond to the directions perpendicular and along to the loading direction,
respectively. In (d), ‘1’ denotes a wave propagating along the loading direction with normal polarization, ‘2’ denotes a wave propagating
perpendicular to the loading direction with parallel polarization, and ‘3’ denotes a wave propagating perpendicular to the loading direction
with normal polarization.

acting on the solid along and perpendicular to the loading
direction, respectively.

Figure 4 shows the velocities and dissipation factors as a
function of the uniaxial loading T. Contrary to the previous
trends, the fast P-wave velocity perpendicular to the loading
direction decreases (slightly) with increasing load, while the
corresponding velocity increases along this direction. The fast
P-wave dissipation factor perpendicular to loading increases
with loading. The trend of the S-wave velocity is to increase
with T, with the highest values in the loading direction.

COMPARISON T O EXPERIMENTAL DATA

The two hydrostatic loading tests, OPJT and CPJT, were per-
formed on sandstone having a porosity φ = 0.13 and a perme-
ability κ = 1.21 mD. The sample comes from a gas reservoir
located at approximately 2 km depth in south-west China.
The sample is mainly composed of quartz and feldspar, with
clay partially filling the pores. The grain size ranges from
0.1–1 mm, while the pores have a maximum size of 0.4 mm.
The average grain density is 2659 kg/cm3 and the grain bulk
modulus is 39 GPa.
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Figure 4 Velocities and dissipation factor as a function of uniaxial load at 1 MHz for the closed-pore jacketed test. (a) and (b): fast P wave; (c):
slow P wave; (d) S wave. In (a)-(c), the solid and dashed lines correspond to the directions perpendicular to and along the loading direction,
respectively. In (d), ‘1’ denotes a wave propagating along the loading direction with normal polarization, ‘2’ denotes a wave propagating
perpendicular to the loading direction with parallel polarization, and ‘3’ denotes a wave propagating perpendicular to the loading direction
with normal polarization.

The experimental setup consists in a digital oscilloscope and
a pulse generator. In the test, the rock sample is jacketed with
a rubber. The receiving transducer is connected to the digitiz-
ing board in a PC through a signal amplifier. A pore fluid inlet
in the endplate allows the passage of pore fluid through the
sample and allows us to control the pore pressure. We per-
formed a small modification on the original inlet instrument
by adding a valve (it is closely connected to the inlet), so that
the CPJT can be realized. In each test, the rock is fully satu-
rated with water and both confining stress and pore pressure
are increased to 30 MPa. In the CPJT, we close the valve and
increase the confining stress from 10–62 MPa with steps of

4 MPa. In the OPJT, the valve is open. The pore pressure is
close to the atmospheric pressure, when the confining stress is
not high (it can be neglected compared to the confining load).

On the basis of the poro-acoustoelasticity theory, eleven
elasticity constants have to be determined to predict the
velocity-stress relationship. The four 2oEC can be obtained
from the Biot-Gassmann theory (Johnson, 1986; Carcione
2007). The dry-rock bulk modulus can be estimated from
the relation Km = Ks(1 − φ)/(1 + cφ), where c is the consoli-
dation parameter (Pride et al. 2004). We take c = 8 since the
porosity is not so high and the rock is consolidated. The four
2oEC are M1 = 37.4 GPa, M2 = −53.6 GPa, M3 = 0.273

C© 2012 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–14
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Figure 5 Comparison between the experimental and theoretical P-
wave velocities, corresponding to the open-pore and closed-pore jack-
eted tests.

GPa and M4 = 1.84 GPa. We used four (of the seven) 3oEC
to fit the data and neglected the other constants. We consid-
ered M5 = 1800 GPa, M6 = −2500 GPa, M8 = 2300 GPa
and M10 = 100 GPa. The order of magnitude of these con-
stants agrees very well with those reported by Winkler and
Liu (1996) and Winkler and McGowan (2004). The compar-
ison between the measured P-wave velocities as a function of
the confining stress is shown in Fig. 5. In both experiments,
the P-wave velocity increases as the stress increases. The fit is
better in the closed-pore case and at low stresses.

The discrepancy in the open-pore case is due to the fact that
the basic assumption of an open-pore configuration breaks
down at high confining stresses. At higher stresses (above 50
MPa), the velocity approaches a constant limit value (Zaitsev
and Sas 2004). This effect is caused by the gradual closing of
a crack-like fraction (microcracks) of the rock-frame poros-
ity. This fraction strongly dominates the non-linearity of the
material in a stress range of several tens MPa. The compress-
ibility of crack-like pores strongly depends on the presence
of the fluid that can be squeezed out under moderate loads.
Thus, below 50 MPa the differences between the open-pore
and closed-pore values can be explained by the present the-
ory. The theoretical results show some agreement with the
data, but there are deviations. The most likely causes of these
deviations are a) the rocks used in the experiments contain a
number of ‘low aspect ratio’ cracks which influence behaviour
below 50 MPa but are closed and have no effect above 50 MPa
and b) the failure to consider local fluid flow. Neither of these
effects is considered in the present theory.

CONCLUSIONS

We derived the non-linear wave equations of poro-
acoustoelasticity and the corresponding analytical expressions
of velocities and dissipation factors for hydrostatic and uniax-
ial loading tests. The theory becomes the classical equations of
acoustoelasticity in the case of a single (solid) material. This
occurs when there is no relative solid-fluid motion and the
fluid is replaced with a solid with the same properties of the
grains.

The results show that the fast P-wave dissipation factor
is more sensitive to the confining stress and frequency than
the S-wave dissipation factor. The velocities of the fast waves
vary more as a function of static load than frequency. In the
closed-pore jacketed test under uniaxial loading, the fast P-
wave velocity perpendicular to the loading direction decreases
as a function of the load. The opposite occurs in the other
tests. Generally, the S-wave dissipation factor is independent
of loading.

We performed P-wave velocity measurements on sandstone,
corresponding to the open-pore and closed-pore (jacketed)
tests under hydrostatic loading. The theory shows a good
agreement with the closed-pore experimental velocities, while
departs from the open-pore data at high confining stresses.
This discrepancy may be due to the fact that the open-pore
assumption is not valid at high confining stresses. For the spe-
cific measurements presented here, the theory gives reasonable
predictions up to a confining stress of 50 MPa.

The ‘local fluid flow’ mechanism was neglected and this is
the reason for the extremely low attenuation. In real situa-
tions, the heterogeneity of the pore structure and the uneven
fluid distribution induce this type of flow, responsible for sig-
nificant velocity dispersion and wave attenuation. The exten-
sion of the present theory to include this mechanism as well as
the determination of the third-order elasticity constants from
‘gedanken’ experiments will be the subject of future research.
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