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Fast monostatic GPR modeling

Luca Baradello∗, José M. Carcione∗, and Davide Gei∗

ABSTRACT

We propose the exploding-reflector method to simu-
late a monostatic survey with a single simulation. The ex-
ploding reflector, used in seismic modeling, is adapted for
ground-penetrating radar (GPR) modeling by using the
analogy between acoustic and electromagnetic waves.
The method can be used with ray tracing to obtain the
location of the interfaces and estimate the properties of
the medium on the basis of the traveltimes and reflec-
tion amplitudes. In particular, these can provide a better
estimation of the conductivity and geometrical details.
The modeling methodology is complemented with the
use of the plane-wave method. The technique is illus-
trated with GPR data from an excavated tomb of the
nineteenth century.

INTRODUCTION

Ground penetrating radar (GPR) is a useful tool in arche-
ological investigations, in particular for locating graves and
tombs. Archeological applications include the work by Imai
et al. (1987), who conducted GPR and resistivity surveys to lo-
cate ancient Japanese dwellings, burial mounds, and a distribu-
tion of significant “cultural” strata. Other applications include
the search for buried remains of a sixteenth-century Basque
whaling station on the Labrador coast (Vaughn, 1986), the
discovery of Roman foundations in Britain (Stove and Ad-
dyman, 1989), and the search for graves in cemeteries and
churches (Bevan, 1991). Recently, Sternberg and McGill (1995)
conducted successful GPR surveys in archaeological areas of
southern Arizona. Integration of GPR measurements with
seismic surveys has been applied by Brizzolari et al. (1992) to an
archeological site near Rome. More recently, Pipan et al. (1999)
acquired 3D multifold data at the Aquileia archeological park
(northern Italy), Pérez Gracia et al. (2000) used the technique
to locate ancient graves at the cathedral of Valencia (Spain),
and GPR surveys have been conducted at Qumran (Israel) to
locate graves from the first century AD (Jol et al., 2002).
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Archeological targets can be geometrically complex, and
modeling is needed to interpret the GPR response from these
targets. A drawback is that the simulation of a monostatic
survey requires several computations, one for each trace. To
overcome this problem, we propose the use of the exploding-
reflector and plane-wave methods, which approximate a mono-
static survey with a single simulation. The plane-wave method
has a simple implementation. It consists in propagating a hor-
izontal, localized plane-wave front down from the surface and
recording the response of the subsurface model at the surface.

Our main objective is to develop the exploding-reflector con-
cept for GPR modeling using the analogy between acoustic
and electromagnetic waves (Carcione and Cavallini, 1995). The
exploding-reflector method has been used in seismic applica-
tions to approximate zero-offset stacked sections (Baysal et al.,
1984; Carcione et al., 1994) without physical multiple reflec-
tions, which are, in principle, absent from those sections and
constitute unwanted artifacts in migration processes (Baysal
et al., 1983). The computation of synthetic seismograms re-
quires the use of the exploding-reflector concept (Loewenthal
et al., 1976) and the so-called nonreflecting wave equation
(Baysal et al., 1984). Each reflection point in the subsurface
explodes at t = 0 with a magnitude proportional to the normal
incidence reflection coefficient. Moreover, the source strength
is multiplied by the average transmission losses and divided by
the geometrical-spreading factor. Note that these corrections
are not applied for the simulation of zero-offset stacked sec-
tions, but they are required when approximating monostatic
surveys. Since the source is located at the interface, the travel-
time will be half the physical traveltime. Therefore, the phase
velocities are halved to obtain the correct two-way traveltime.
Due to sampling constraints, halving the velocities implies dou-
bling the number of grid points. Therefore, the method is less ef-
ficient than the plane-wave approach. The fact that the sources
are located on the interfaces generates nonphysical multiple re-
flections. To avoid these reflections, the wave equation is mod-
ified to model a constant impedance medium over the whole
model space (i.e., the nonreflecting wave equation mentioned
above). In this way, the recorded events are primary energy.
The method generates normal-incidence reflections (i.e., those
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having identical downgoing and upgoing wave paths). Note
that the amplitudes are approximate but the traveltimes are
correct because Snell’s law depends on the wave velocity and
not on the impedance. Therefore, the angle of refraction at the
interfaces is that predicted by Snell’s law.

In the seismic case, density is used as a free parameter to
obtain a constant impedance model and avoid multiple reflec-
tions. Density is mathematically analogous to the magnetic per-
meability for the electromagnetic case (Carcione and Cavallini,
1995). We scale this property to obtain a model where all the
media have the same electromagnetic impedance. The condi-
tion that the phase velocity remains unchanged in a particular
material also requires that the permittivity and the conductivity
be scaled proportionally.

We propose the following methodology for the interpreta-
tion of monostatic surveys, which requires the knowledge of
either the electromagnetic velocity of the ground or the geo-
metrical features of the target. The velocity can be obtained
from stratigraphic studies of previous excavations and bistatic
single common-midpoint experiments. A preliminary model is
obtained with a ray-tracing algorithm by locating the interfaces
on the basis of the traveltimes. However, the ray tracing re-
quires smooth interfaces (zero-radius features such as corners
cannot be modeled), and the corresponding reflection ampli-
tudes are not correct. Hence, we perform exploding-reflector
and plane-wave experiments to refine the model and better
estimate the geometrical features and the conductivity on the
basis of the reflection amplitudes. This forward approach is
an alternative and complementary methodology to inversion
methods that estimate permittivity using monostatic data (e.g.,
Spagnolini, 1997).

In the next section, we develop the exploding-reflector con-
cept for electromagnetic fields. Next, we apply the modeling
methodology developed here to GPR data from an excavated
tomb of the nineteenth century.

THE EXPLODING-REFLECTOR METHOD
FOR GPR MODELING

We illustrate our approach with the ray paths for the plane-
wave and exploding-reflector simulations shown in Figure 1.
The plane-wave experiment sums the response of many re-
ceiver antennas with only one transmitter, but the traveltimes
obtained with this method are not those of the monostatic sur-
vey. A simple example is given by a single diffraction point

Figure 1. The raypaths for the plane-wave (a) and exploding-
reflector (b) simulations.

at (0, z). If v is the phase velocity of the medium, the travel-
time at offset (x, 0) is t = z/v+√x2+ z2/v, whereas a source
and a receiver at (x, 0) imply a traveltime t = 2

√
x2+ z2/v (the

method is also approximate for dipping layers). The plane-
wave method yields more realistic amplitudes (including mul-
tiple reflections) than the exploding-reflector method, whereas
the latter yields the same arrival times of the monostatic survey,
but does not contain multiple reflections.

We assume propagation in the (x, z)-plane, and that the ma-
terial properties and source characteristics are constant with
respect to the y-coordinate. Implementation of the exploding-
reflector method in GPR modeling implies the following. (1) A
source is placed at every point on the interface. (2) The
phase velocity of each medium is halved, to obtain the correct
two-way traveltime for every diffraction and reflection event.
(3) The source strength is proportional to the normal-incidence
reflection coefficient and the transmission factor of the over-
lying layers, and inversely proportional to the geometrical-
spreading factor at each point on the interface (a zero-offset
raypath is normal to the reflecting interface). (4) We require
that the electromagnetic impedance be the same for all me-
dia. Because the algorithm generates nonphysical events (the
downgoing waves) and approximates a zero-offset stacked sec-
tion, we must avoid multiple reflections.

We meet requirements (1)–(4) as follows.

1) The algorithm used here solves the electromagnetic equa-
tions in the time domain, and it is based on a grid method
for computing the spatial derivatives. This implies a dis-
cretization of the model space. Then, at every grid point
of each interface, a source with the same time history is
initiated at time t = 0.

2) The phase velocity is given by

vp =
[
<
(

1
vc

)]−1

, (1)

where < is the real-part operator, and

vc = 1√
µ0ε∗

(2)

is the complex velocity (Carcione, 1996a, b). We halve
the phase velocity by the following substitution:

µ0 → 4µ0. (3)

Since the attenuation factor is α=−ω=(1/vc) (Carcione,
1996a, b), where = is the imaginary-part operator, equa-
tion (3) ensures that the amplitude decay related to in-
trinsic attenuation corresponds to that of the two-way
travel path.

3) The normal-incidence reflection coefficient between
medium 1 and medium 2 is given by

R= I2 − I1

I2 + I1
, (4)

where we define the electromagnetic impedance I =
µ0vp, in terms of the phase velocity. Actually, the com-
plex velocity should be used in lossy media (Chew, 1990,
p. 48), but the above definition avoids the use of com-
plex quantities and provides the correct phase angle in
the lossless case. Equation (4) is valid for the electric
field of transverse-electric (TE) or transverse-magnetic
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(TM) waves. The corresponding normal-incidence reflec-
tion coefficient for the magnetic field of the TE or TM
waves has the opposite sign. The source strength should
be proportional to R. Since R depends on the frequency
ω, this requirement cannot be satisfied for all frequen-
cies when using a time-domain solver. In this case, we
consider the source strength to be proportional to R(ωd),
where ωd is the dominant frequency of the source.

The transmission factor of the overlying layers is ap-
proximately given by

T̄ =
∏

i

(
1− |Ri |2

)
, (5)

where Ri is the normal-incidence reflection coefficient
of the overlying layers (defined in terms of the com-
plex velocity), and the product considers the transmis-
sion losses of the raypath going down and up. In addi-
tion, the source strength is inversely proportional to the
geometrical-spreading factor (Neumann, 1973)

g =
√

2
vp1

∑
i

hi vpi , (6)

where hi and vpi are the thickness and phase velocity of
the overlying layers. The square root is due to the cylin-
drical divergence of 2D propagation.

4) We can avoid normal-incidence multiple reflections if all
the media have the same electromagnetic impedance.
This is evident from equation (4). In order to do this, we
must scale all the material properties accordingly, that
is, substitute µ0, ε, and σ by new properties µ̃, ε̃, and σ̃ .
The complex impedance could be made constant by using
the perfectly matched layer (PML) method introduced
by Berenguer (1994) (i.e., using a complex magnetic per-
meability). However, although the PML method gives
a constant impedance medium, the complex velocity is
not that of equation (2) and, therefore, the location of
the reflection events will not be correct. Since the aim of
the exploding-reflector concept is to model the correct
traveltimes of the primary events, we use a real magnetic
permeability and try to minimize as much as possible the
amplitude of the multiple reflections. This can be done by
imposing the same “instantaneous” (optical) impedance
for all the media. The instantaneous impedance is defined
as I∞ = I (ω=∞), which corresponds to the “unrelaxed”
(optical) response of the medium (t = 0). In this limit,
σ/ω→ 0, in general. Then, we assume

I∞ =
√
µ̃

ε̃
= k, (7)

with k a real constant. Moreover, we must impose that
the complex velocity (2) remains unchanged after intro-
duction of the scaled properties, i.e.,

µ0ε
∗ = µ̃

(
ε̃ − i

ω
σ̃

)
. (8)

This guarantees that the traveltime of the primary reflec-
tions events is correct. The choice

k = I0 =
√
µ0

ε0
(9)

(the impedance of vacuum) implies

µ̃ = µ0

a
, ε̃ = aε, and σ̃ = aσ, (10)

where

a =
√
ε0

ε
. (11)

Then, I∞ = I0, and equation (8) is satisfied.

The frequency- and time-domain electromagnetic equations
are given in the Appendix. The radargrams are computed in
the space-time domain.

SIMULATIONS

We used this methodology to obtain the response to a model
of a ninteenth-century tomb found at the church of S. Nicolò
of Belgrado di Varmo (Friuli-Venezia-Giulia, Italy). We identi-
fied the tomb in the church as shown in Figure 2. The data were
acquired with a GSSI SIR 2000 control unit and a 400-MHz an-
tenna unit. The trace window was 100 ns and digitized at 1024
samples per trace with a dynamic range of 16 bits. The spac-
ing between adjacent traces is 5 cm. We acquired five parallel
profiles each 1.8-m long and 0.5-m apart.

Using the methodology described in this paper, we obtained
a model based on the geometrical characteristics of the tomb
observed in the excavations. A vertical section of the model
is shown in Figure 3, where the raypaths are displayed. The
numbers correspond to materials whose properties are given in
Table 1. The dielectric constants and conductivities are in good
agreement with values reported by Stewart et al. (1994) and

Table 1. Electromagnetic properties.∗

Medium Description ε (ε0) σ (S/m)

1 Cement 9 0.01
2 Gravel 8 0.1
3 Clayey soil 25 0.1
4 Tomb (brick) 9.5 0.1
5 Air 1 0
6 Water 80 0.01

∗ε0 = 8.85 10−12 F/m; µ0 = 4π10−7 H/m.

Figure 2. The nineteenth-century tomb (attributed to the priest
Josepho Lotti) found at the church of S. Nicolò of Belgrado di
Varmo (Friuli-Venezia-Giulia, Italy).
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Daniels (1996). These values correspond to wet conditions (the
weather was rainy before the survey). The interfaces used to
trace the rays are shown as continuous and smooth lines going
from one side to the other side of the model (smoothness of the
interfaces is a requirement of the algorithm). The geometries
obtained from the ray tracing coincide with the real features
of the tomb.

The numerical mesh for both plane-wave and exploding re-
flector experiments has 225× 225 grid points, with a grid spac-
ing of 1 cm. The source is an horizontal electric current (Jy),
whose time history corresponds to that of the antenna mea-
sured in air, with a central frequency of nearly 400 MHz. To
avoid wraparound, absorbing layers of length 30 grid points
are implemented at the sides of the numerical mesh, with the
upper absorbing layer located at the bottom of the mesh, be-
cause the Fourier differentiation is periodic. The Runge-Kutta
method requires a time step of 0.01 ns.

Figure 4 shows the recorded data (a), the monostatic sim-
ulation (b), the plane-wave simulation (c) and the exploding-
reflector simulation (d). The monostatic simulation consists of
33 numerical computations. The gain applied to the data and
simulations is −0.8 log j + 0.03 j + 2, where j is the sample
number. The reflection events have the following correspon-
dence: (A) cement/gravel interface, (B) gravel/clayey soil in-
terface, (C) clayey soil/brick interface, (D) brick/air interface,
(E) air/water interface, and (F) clayey soil/brick interface (sides
of the tomb). The exploding-reflector traveltimes are greater
than the plane-wave traveltimes and coincide with those of
the real radargram. The amplitude and phases of radargrams
(a) and (d) are in good agreement. Differences between the
exploding-reflector simulations and the real radargram can be
due to scattering from inhomogeneities and to the presence of
multiple reflections (see the reflection peaking at 11 ns) in the
real radargram.

Figure 3. Cross-sectional representation of the excavation and
modeled raypaths. The numbers correspond to materials whose
properties are given in Table 1. The interfaces used to trace the
rays are shown as continuous and smooth lines.

CONCLUSIONS

The exploding-reflector and plane-wave methods constitute
a simple and efficient methodology for interpreting monos-
tatic surveys. The exploding-reflector method provides the cor-
rect traveltimes of diffractions and reflections events, whereas
the plane-wave method yields more realistic amplitudes and
multiple reflections. A modification of the first method to in-
clude transmission losses and geometrical spreading make it
more suitable for approximating monostatic surveys regard-
ing the amplitudes. However, it is important to note that when
the velocity variations are rapid in the horizontal direction,
the exploding-reflector model may give incorrect results (this
is the case when different rays cross each other on the way to
the surface). These methods, aided by ray tracing, have been
successfully used to analyze the radargram corresponding to a
nineteenth-century tomb. This example shows that the method-
ology is effective in properly finding the geometrical features
of the tomb. In this sense, this approach can be a useful tool for
the interpretation of the GPR response of complex targets. A
limitation is that a priori knowledge is required, either of the
electromagnetic properties of the media or the geometrical
features of the target. Monostatic surveys should then be com-
plemented with wide-angle reflection profiles to estimate the
electromagnetic velocities, and borehole logging can be useful
to determine the soil conditions and properties. With regard
to the exploding-reflector method, it is also useful to approx-
imate stacked radargrams with a single calculation, and for
migration algorithms, where it is necessary to avoid interlayer
reverberations.
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APPENDIX A

TIME-DOMAIN TE EQUATIONS

Maxwell’s equations for isotropic media and time harmonic
fields with time dependence exp(iωt), where ω is the angular
frequency, read:

∇ × E = −iωµ0H+M

∇ ×H = iωεE+ σE+ Js = iωε∗E+ Js, (A-1)

where the symbol× denotes the vector product, i =√−1, E is
the electric field, H is the magnetic field, Js is any electric source,
M is any magnetic source, µ0 is the magnetic permeability of
vacuum (appropriate for GPR applications), ε is the dielectric
permittivity, σ is the conductivity, and

ε∗(ω) = ε − i

ω
σ (A-2)

is the complex permittivity (Chew, 1990). Equation (A-1) can
then be combined to produce wave equations for both the
transverse electric (TE) and the transverse magnetic (TM)
fields. For GPR applications, we are interested in TE prop-
agation.
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Figure 4. Recorded data (a), monostatic simulation (b), plane-wave simulation (c), and exploding-reflector simulation (d). The
monostatic simulation consists of 33 computations. The reflection events are: (A) cement/gravel interface, (B) gravel/clayey soil
interface, (C) clayey soil/brick interface, (D) brick/air interface, (E) air/water interface, and (F) clayey soil/brick interface (sides of
the tomb).

The radargrams are computed in the space-time domain. We
assume propagation in the (x, z)-plane, and that the material
properties and source characteristics are constant with respect
to the y-coordinate. Let us denote by E andH andJ the corre-
sponding time-domain electric and magnetic fields and source,
and for convenience, the medium properties are indicated by
the same symbols, in both the time and the frequency domains.
Under these conditions, Ex , Ez and Hy are decoupled from Ey,
Hx and Hz, and the second set of components obeys the TE
wave differential equations:

∂Hx

∂z
− ∂Hz

∂x
= ε ∂Ey

∂t
+ σEy + Jy

∂Ey

∂z
= µ∂Hx

∂t

− ∂Ey

∂x
= µ∂Hz

∂t
. (A-3)

The numerical solver used here consists of the pseudospectral
Fourier method for computing the spatial derivatives, and a
Runge-Kutta method for time integration (Carcione, 1996a, b).
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