
P-wave anelasticity in
hydrate-bearing sediments
based on a triple-porosity model

Jing Ba1*, Fulin Guo1, José M. Carcione1,2 and Davide Gei1,2

1School of Earth Sciences and Engineering, Hohai University, Nanjing, China, 2National Institute of
Oceanography and Applied Geophysics—OGS, Trieste, Italy

P-wave anelasticity (attenuation and dispersion) of hydrate-bearing sediments

depends on several factors, namely the properties of the mineral components,

hydrate content and morphology, and fluid saturation. Anelasticity is analyzed

with a triple-porosity model (stiff pores, clay micropores and hydrate

micropores), by considering hydrate as an additional solid skeleton. We

relate the hydrate volume ratio, porosity and radii of the hydrate inclusion

and claymineral to the P-wave velocity and attenuation. Themodel takes wave-

induced local fluid flow (mesoscopic loss) at the grain contacts into account.

The results are compared with those of a double-porosity and load-bearing

models, and verified with well-log data from Offshore Drilling Program sites

1247B and 1250F, and data reported in Nankai Trough, Japan. Model results and

data show a good agreement.
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Introduction

Gas hydrate is an ice-like crystalline medium with a microporous structure composed

of gas and water molecules that are formed at low temperature, high pressure and certain

gas saturation (Sloan, 1990). Identification of hydrate reservoirs in engineering

applications worldwide mainly relies on seismic exploration techniques. The existence

of hydrates highly affects the acoustic wave velocity and attenuation. Generally, hydrate-

bearing sediments show high compressional (P-) and shear (S-) wave velocities. These

velocities and attenuation are usually adopted to estimate the presence of hydrates (Waite

et al., 2009). With the increasing hydrate content, the wave velocity increases. Moreover,

the morphology and distribution of hydrate also have an effect on the velocities (Ecker

et al., 1998; Ecker et al., 2000). However, the relation between attenuation and hydrate

content is more complex, as it is associated with mechanisms due to different

microporous hydrate forms (Best et al., 2013).

Rock physics is an effective approach to describe the quantitative relation between the

rock microstructure and the wave properties. A suitable model associated with the hydrate

morphology could be helpful to improve the accuracy in the estimation of hydrate content

(Pan et al., 2019). In fact, the hydrate-bearing sediment is a three-phase porous medium,

composed of a rock frame saturated with a fluid (usually water) and hydrates (Liu et al.,
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2021). Biot (1962) considered wave propagation in fully saturated

porous media including anisotropy and viscoelasticity, and a loss

mechanism related to the differential motion between the frame

and the fluid. Stoll and Bryan. (2009) was the first to

systematically apply Biot’s theory to marine sediments.

Carcione and Gei (2004) proposed a Biot-type theory of two

solids and one fluid, in which hydrate is considered as a second

skeleton (frame) and water is the pore fluid—grain cementation

and friction between the two frames have been considered (see

also, Carcione et al. (2005); Gei and Carcione (2003); Gei et al.

(2022)). This model has also been used by Guerin and Goldberg

(2005).

On the other hand, Ba et al. (2011); Ba et al. (2016) proposed

a double-porosity model to describe attenuation due to local fluid

flow between soft and stiff pores (mesoscopic or microscopic

loss). For the same purpose, Zhang et al. (2017) presented an

alternative model based on the triple-porosity structure of sand,

gravel and mudstone while, Zhang et al. (2016) applied the BISQ

(Biot/squirt) model specifically to marine unconsolidated

hydrate-bearing sediments. They found that wave velocity and

attenuation increase with increasing hydrate content, in

agreement with some measurement data (Chand and

Minshull, 2004; Guerin and Goldberg, 2005; Matsushima,

2006), and that porosity has a weak effect on attenuation.

Zhan et al. (2022) discussed and compared the feasibility and

limitations of existing rock physics models. The combination of

different models may be more conducive to explaining the

mechanism of attenuation.

Attenuation also depends on the hydrate morphology and

microstructure (Priest et al., 2009), as shown by laboratory

measurements, including local viscous fluid flow related to the

microporous structure of hydrate containing gas and water (Best

et al., 2013). Leurer and Brown (2008) proposed a model to

explain the viscoelasticity generated by local fluid flow in the

presence of clay at grain contacts. Marín-Moreno et al. (2017)

developed the hydrate-bearing effective sediment model (HBES)

to analyze various loss mechanisms, including those caused by

squirt flow in microporous hydrate, viscoelasticity of the hydrate

frame and Biot global flow. They analyzed the effect of hydrate

morphology on attenuation by comparing results between

sediments with and without hydrates. Sahoo et al. (2019)

performed high-precision ultrasonic pulse-echo measurements

of wave velocity and attenuation in hydrate-bearing sediments. Li

et al. (2015) studied the effect of clay content on the mechanical

properties of these sediments by applying the tests of multi-stage

loading triaxial compression and hydrate decomposition. On the

basis of six microscopic hydrate morphologies, Pan et al. (2019)

obtained rock-physics templates (RPTs), based on an amplitude-

variation with offset (AVO) analysis, and predicted hydrate

content, porosity and clay content of permafrost-associated

hydrate-bearing sediments at Mount Elbert, North Slope of

Alaska.

The hydrate distribution in the pore space is important. In

the formation process, gas hydrate is present in different

forms due to the influence of the geological setting,

formation pressure and geothermal gradient. Ecker et al.

(1998) proposed three types of hydrate distributions,

namely, grain-contact cementing, grain coating and absent

in the grain contacts. Dai et al. (2004) proposed six

distributions: grain-contact cementing, grain coating,

supporting matrix/grains, pore-filling, matrix and

inclusions, and nodules/fracture fillings. Zhan and

Matsushima. (2018) considered four distributions: grain-

contact cementing, grain coating, load-bearing and pore-

filling (Schicks et al., 2006). Three microscopic distribution

patterns of hydrates, namely pore filling, contact or

encapsulated cementation and load-bearing hydrates, are

discussed by Waite et al. (2009).

Understanding the effect of anelasticity on the acoustic

properties is not clear, mainly because attenuation behaves

differently at different frequency bands. Here, we consider the

local fluid flow between stiff pores, hydrates, and clay, based on a

triple-porosity model (Zhang et al., 2017). In addition to the

double-porosity model, the new model considers the effects of

clay micropores. The results agree with log data, providing an

effective approach to model the P-wave anelasticity mechanisms

of hydrate-bearing sediments.

The model

We consider the main frame or skeleton containing

intergranular pores as the host phase, hydrate and clay as

two different types of multi-pore inclusions, and describe the

hydrate-bearing sediments with a triple-porosity model. It

has been observed that hydrate can cement the mineral grain

and contributes to the solid skeleton or being part of pore-

filling material. Cementation decreases the porosity and

increases the bulk modulus of the skeleton. Figure 1 shows

three cases where hydrate is 1) part of the pore infill; 2) part of

the frame; 3) cementing the grains. We consider the case in

panel 2).

In this case, the hydrate-bearing sediment can be

regarded as a composite of three skeletons: rock

(minerals), hydrate and clay. Basically, hydrate and clay

reduce the bulk porosity and combine with the minerals

as shown in Figure 2, and then the resulting frame is

saturated.

As stated above, the understanding on wave-loss

mechanisms of hydrate-bearing sediments is still limited (Best

et al., 2013). Figure 3 shows the mechanisms considered in our

triple-porosity model, i.e., local fluid flow between the rock

skeleton and hydrate and clay frames, and the classical Biot

global flow (Zhang et al., 2022).
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Properties of fluid

If hydrate is part of the frame, the pore fluid is a mixture of

water and free gas, such that its effective bulk modulus is (Wood,

1955; Wood et al., 2000; Liu et al., 2017)

Kf � Sw
Kw

+ Sg
Kg

( )−1
(1)

where Sw and Sg are the water and free gas saturations, Kg and

Kw are the respective bulk moduli with Sw + Sg � 1.

The effective density of the fluid is

ρf � ρwSw + ρgSg (2)

where ρf, ρw and ρg are the densities of fluid, water and gas,

respectively.

Properties of solid phase (composite
mineral)

According to the Hill average (Hill, 1952), the moduli of the

solid phase considering the presence of hydrate are (Helgerud

et al., 1999; Ecker et al., 2000)

FIGURE 1
Scheme showing the three hydrate morphologies.

FIGURE 2
Diagram showing hydrate as part of the solid frame (skeleton).
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Ks � 1
2

∑4
i�1
fiKi + ∑4

i�1

fi

Ki

⎛⎝ ⎞⎠−1⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (3a)

Gs � 1
2

∑4
i�1
fiGi + ∑4

i�1

fi

Gi

⎛⎝ ⎞⎠−1⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (3b)

where i � 1, 2, 3 and 4 indicate calcite, quartz, hydrate and clay,

respectively, Ki and Gi are the respective bulk and shear moduli

of the i − th constituent, and fi is the volume fraction of the

i − th constituent, with ∑4

1
fi � 1.

Properties of the frame

Let us define the volume ratios, local porosities and

absolute porosities of the host phase made of quartz and

calcite, hydrate skeleton and clay skeleton as ]2, ]1 and ]3,
ϕ20, ϕ10 and ϕ30, and ϕ2, ϕ1 and ϕ, respectively, with ϕ1 � ϕ10]1,
ϕ2 � ϕ]2 and ϕ3 � ϕ30]3 (Zhang et al., 2017; Wang et al., 2021;

Zhang et al., 2021), and

]2 � 1 − ]1 − ]3 (4a)
f3

]1 1 − ϕ10( ) � f4

]3 1 − ϕ30( ) � f1 + f2

]2 1 − ϕ20( ) (4b)

The porosity of the host phase is

ϕ2 � ϕ − ϕ1 − ϕ3 (5)

where ϕ is the porosity of the rock with hydrate formation.

Compared to the Hashin-Shtrikman upper bound, the

Hashin-Shtrikman lower bound is appropriate for

estimating the elastic moduli of submarine sediments,

where the soft components (clay or soft minerals) are

majorly distributed surrounding the stiff grains. The dry-

rock elastic moduli are obtained by the modified Hashin-

Shtrikman lower bound (Ecker et al., 1998; Dvorkin et al.,

1999; Helgerud et al., 1999)

Kb � ϕ/ϕc

KHM + 4
3GHM

+ 1 − ϕ/ϕc

Ks + 4
3GHM

( )−1
− 4
3
GHM ϕ< ϕc (6a)

Kb � 1 − ϕ( )/ 1 − ϕc( )
KHM + 4

3GHM
+ ϕ − ϕc( )/ 1 − ϕc( )

4
3GHM

( )−1
− 4
3
GHM ϕ> ϕc

(6b)

Gb � ϕ/ϕc

GHM + Z
+ 1 − ϕ/ϕc

Gs + Z
( )−1

− Z ϕ<ϕc
(7a)

Gb � 1 − ϕ( )/ 1 − ϕc( )
GHM + Z

+ ϕ − ϕc( )/ 1 − ϕc( )
Z

( )−1
− Z ϕ>ϕc

(7b)
where KHM and GHM are the bulk and shear moduli of the rock

under the critical porosity, respectively, and

Z � GHM

6
9KHM + 8GHM

KHM + 2GHM
[ ] (8a)

KHM � G2
s n

2 1 − ϕc( )2
18π2 1 − σ( )2 P[ ] 1

3

(8b)

GHM � 5 − 4σ
5 2 − σ( )

3G2
s n

2 1 − ϕc( )2
2π2 1 − σ( )2 P[ ] 1

3

(8c)

where ϕc is the critical porosity, ranging from 0.36 to 0.4, n is the

coordination number (the average number of contacts per grain,

ranging from 8 to 9.5), P is the effective stress,

P � (1 − ϕ)(ρs − ρf)gh, ρs is the average density of the

skeleton, ρs � ∑m

1
fiρi, where ρi is the density of the i − th

constituent, h is the depth below sea floor, g is the

acceleration of gravity, and σ is the Poisson ratio of the solid

phase.

Properties of the saturated sediment

There are two approaches to relate the hydrate content to the

P-wave velocity. One method is the use of empirical relations,

such as the time-average equation (Wyllie et al., 1958) and Lee

FIGURE 3
Attenuation mechanisms of the triple-porosity model.
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weighted equation (Lee et al., 1996; Lee and Collett, 2009), by

combining the Wood and time-average equations (Helgerud

et al., 1999). Other approaches are poroelasticity and effective

medium theories (Helgerud et al., 1999). These methods involve

input parameters which are difficult to be obtained in actual

applications (Hu et al., 2010).

The double-porosity theory considers that in the process of

seismic wave propagation, the micropore structure of the hydrate

phase induces a local flow between these micropores and the stiff

pores and causes energy loss and velocity dispersion (see

Figure 4). This theory, however, ignores the presence of clay,

which may also cause flow (Wang et al., 2021). The inclusion of

clay leads to the triple-porosity model (see red arrow in Figure 4).

Zhang et al. (2017) developed a theory to model the

properties of a saturated medium, where the local fluid-flow

mechanisms, responsible for wave attenuation and dispersion,

are considered. Based on Hamilton’s principle, the dynamical

equations can be obtained from the strain energy, kinetic energy

and dissipation potential of a triple-porosity medium. The

differential equations of motion, extended to the case of

hydrate-bearing sediments, are

Gb∇
2u + A + Gb( )∇e + Q1∇ ξ1 + ϕ2ζ12( )

+ Q2∇ ξ2 − ϕ1ζ12 + ϕ3ζ23( ) + Q3 ξ3 − ϕ2ζ23( )
� ρ00€u + ρ01 €U

1( ) + ρ02 €U
2( ) + ρ03 €U

3( ) + b1 _u − _U
1( )( )

+ b2 _u − _U
2( )( ) + b3 _u − _U

3( )( ) (9a)

Q1∇e + R1∇ ξ1 + ϕ2ζ12( ) � ρ01€u + ρ11 €U
1( ) − b1 _u − _U

1( )( ) (9b)

Q2∇e + R2∇ ξ2 − ϕ1ζ12 + ϕ3ζ23( ) � ρ02€u + ρ22 €U
2( ) − b2 _u − _U

2( )( )
(9c)

Q3∇e + R3∇ ξ3 − ϕ2ζ23( ) � ρ03€u + ρ33 €U
3( ) − b3 _u − _U

3( )( ) (9d)
1
3
ρfR

2
12
€ζ12ϕ

2
2ϕ1

1
5
+ ϕ10

ϕ20

( ) + 1
3

η

5κ1
+ η

κ2
( )R2

12
_ζ12ϕ

2
2ϕ1ϕ10

� ϕ2 Q1e + R1 ξ1 + ϕ2ζ12( )( )
− ϕ1 Q2e + R2 ξ2 − ϕ1ζ12 + ϕ3ζ23( )( ) (9e)

ϕ3

3
ρfR

2
23
€ζ23ϕ2

2 1
5
+ ϕ30

ϕ20

( ) + 1
3

η

κ2
+ η

5κ3
( )R2

23
_ζ23ϕ2

2ϕ3ϕ30

� ϕ3 Q2e + R2 ξ2 − ϕ1ζ12 + ϕ3ζ23( )( )
− ϕ2 Q3e + R3 ξ3 − ϕ2ζ23( )( ) (9f )

where _u, _U
(1)
, _U

(2)
, and _U

(3)
are the displacement vector of the

frame and the average fluid displacement vectors in the hydrate

internal pores, intergranular pores and clay micropores,

respectively; e, ξ1, ξ2, ξ3 are the displacement divergence fields

of the solid and fluids in the three types of pore systems,

respectively; ζ12, ζ23 are the bulk strain increments caused by

the local flow between the hydrate micropores and intergranular

pores, and the local flow between the clay micropores and

intergranular pores, respectively; ρ00, ρ01, ρ02, ρ03, ρ11, ρ22, and

ρ33 are the Biot density coefficients; b1, b2, and b3 are dissipation

coefficients (Biot, 1962; Zhang et al., 2017; see Appendix A); Q1,

Q2 andQ3, are the elastic parameters of coupled solid and fluid,A

is the elastic parameter of solid phase, and R1, R2, and R3 are the

elastic parameters of flow phase (see Appendix A); κ1, κ2 and κ3
denote the permeabilities of the hydrate skeleton, host phase and

clay skeleton, respectively; η is fluid viscosity, R12 and R23 denote

the hydrate inclusion radius and clay inclusion radius,

respectively. The above equations are solved with a plane-

wave analysis to obtain the phase velocity and attenuation

(see Appendix B) (Ba et al., 2011; Ba et al., 2012; Carcione, 2022).

Example

The minerals are calcite, quartz, clay and hydrate, with

volume fractions of f1 = 4%, f2 = 70%, f4 = 20% and f3 = 6%,

respectively. The rock porosity with hydrate formation is ϕ =

35%, and the free gas saturation is Sg = 2%. The volume ratios of

the hydrate and clay frames are ]1 = 4% and ]3 = 13.1%,

respectively, and the corresponding local porosities are ϕ10 =

2% and ϕ30 = 0.5%, respectively. The bulk modulus of hydrate,

rock and clay frames are Kb1 = 0.76 GPa, Kb2 = 1.27 GPa, and

Kb3 = 1.02 GPa, respectively, the permeability of the host phase is

κ2 = 1×10–11 m2, the permeability of the hydrate or clay frames is

κ1 = κ3 = 1×10–13 m2, and the fluid viscosity is η = 0.001 kg/(m · s).
Table 1 shows the properties of the different phases.

The energy loss caused by the fluid flow depends on the

radius of the hydrate inclusions with micropores. Figure 5 shows

FIGURE 4
Schematic diagram of the proposed triple-porosity model.
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TABLE 1 Properties of the phases (Helgerud et al., 1999).

Mineral Bulk modulus (GPa) Shear modulus (GPa) Density (g/cm3)

Quartz 36.00 45.00 2.65

Calcite 76.80 32.00 2.71

Clay 20.90 6.85 2.58

Water 2.25 0.00 1.00

Gas 0.10 0.00 0.23

Hydrate 7.90 3.30 0.90

FIGURE 5
Frequency dependence of the P-wave velocity (A) and
attenuation (B) corresponding to the double-porosity model with
two radii of the hydrate inclusions.

FIGURE 6
Frequency dependence of the P-wave velocity (A) and
attenuation (B) corresponding to the triple-porosity model with
two radii of the hydrate inclusions.
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the results of the double-porosity theory (clay is considered part

of the host phase and hydrate is an inclusion), where we can

observe a single inflection point and attenuation peak. With

increasing radius of these inclusions, the local fluid-flow

attenuation peak moves to the low frequencies. The global

fluid-flow peak, occurring at high frequencies, is much

weaker, almost negligible.

On the other hand, Figure 6 shows the results of the triple-

porosity theory, which exhibits the two local fluid-flow

mechanisms, between the stiff pores and the soft pores of clay

and hydrate phases. The global Biot peak is also present. The clay

inclusion radius is R23 = 0.005 cm. The peak due to hydrate

merges with the global flow peak when the radius of the hydrate

inclusions increase, while the peaks due to clay is not affected.

Figures 7A, B show the P-wave velocity and dissipation

factor as a function of frequency for different clay inclusion

radii, respectively. Changes can be observed at high

frequencies. When the peaks are close, higher attenuation is

observed.

Figures 8A, B show the P-wave velocity and dissipation

factor as a function of frequency for different hydrate

inclusion radii, respectively, where we can see differences at

middle frequencies.

Figures 9A, B show the P-wave velocity and dissipation

factor as a function of frequency for different porosities,

respectively, where we can see that increasing porosity

enhances the loss due to the local flow related to clay and

the global flow.

FIGURE 7
Effect of the clay inclusion radius on the P-wave velocity
dispersion (A) and attenuation (B). The radius of the hydrate
inclusion is R12 = 0.05 cm, and the rock porosity is ϕ = 20%.

FIGURE 8
Effect of the hydrate inclusion radius on the P-wave velocity
dispersion (A) and attenuation (B). The radius of the clay inclusion
is R23 = 0.005 cm, and the rock porosity is ϕ = 20%.
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Finally, Figures 10A, B show the P-wave phase velocity and

dissipation factor as a function of frequency for different hydrate

volume ratios, respectively. With the increase of hydrate volume

ratio, the P-wave anelasticity due to the hydrate inclusions

increase, while those of the clay local flow and global flow

decrease. The hydrate volume ratio has no apparent effect on

the characteristic frequencies of the peaks.

Comparison with well-log data

The Offshore Drilling Program (ODP) drilled through a

gas hydrate stabilization zone on the Cascadia edge

off Oregon, providing information on the physical

properties of hydrate-bearing sediments. The present

model is applied to log data of wells 1247B and 1250F of

the ODP204 cruise by Pan et al. (2019) and to data obtained

by Zhan and Matsushima. (2018) in the Nankai Trough, in

Japan.

ODP data

Figures 11A, B show the theoretical and measured (symbols)

P-wave velocities as a function of porosity and hydrate

saturation, where Sh denotes hydrate saturation (with the

relation of ]1 � ϕSh ), between 0 and 19%, corresponding to

FIGURE 9
Effect of porosity on the P-wave velocity dispersion (A) and
attenuation (B). The radius of the hydrate inclusion is R12 =
0.005 cm, and the radius of the clay inclusion is R23 = 0.05 cm.

FIGURE 10
Effect of the hydrate volume ratios on the P-wave velocity
dispersion (A) and attenuation (B). The radius of the hydrate
inclusions is R12 = 0.005 cm, and the radius of the clay inclusions is
R23 = 0.05 cm.
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wells 1247B and 1250F, respectively. The variations of scatters

with respect to the colorbar reflect the trend that the P-wave

velocity of hydrate reservoir rocks decreases with increasing

porosity and increases with hydrate saturation. The agreement

is good, with the velocity decreasing with increasing porosity and

decreasing hydrate saturation.

Figures 12A, B shows the P-wave velocity as a function of the

hydrate saturation in the two wells. In well 1247B the porosity

range is ϕ = 0.525–0.535, with an average of 0.53, while that of

well 1250F is ϕ = 0.545–0.555 with an average of 0.55. The clay

volume ratio in both wells is 0.2 (Pan et al., 2019). Again, the

agreement is satisfactory. There is a positive correlation between

the P-wave velocity and hydrate saturation. Also shown are the

results of the load-bearing model (Best et al., 2013), whose values

are generally higher than the measured ones. For well 1250F, at

the hydrate saturation range of 0.1–0.15, the average deviation

of the triple-porosity model predictions with respect to the

logging data is 22.84 m/s and that of the load-bearing model is

48.93 m/s.

Nankai-trough data

We consider the sonic-log and VSP data obtained by Zhan

and Matsushima. (2018) in the Nankai Trough, Japan. The

frequency is 14 kHz, the strata rock porosity is approximately

in the range of ϕ = 35%–43%, the grain coordination number is

n = 8.5, and the seawater viscosity is η = 0.0018 kg/(m•s). Figures
13A, B compare the measured and theoretical P-wave velocities

and dissipation factor as a function of hydrate saturation, for the

double- and triple-porosity models. The theoretical porosity is

ϕ = 35%, the clay radius is R23 = 0.2 cm, and the hydrate inclusion

radius is R12 = 0.075 cm. The velocity gradually increases with

hydrate saturation, and the variation of the measured P-wave

attenuation is relatively large, possibly related to different hydrate

morphologies not considered here (see Figure 1). The first model

predicts a higher velocity when the hydrate saturation exceeds

20%. The triple-porosity model shows a better agreement.

FIGURE 11
Measured P-wave velocity (symbols) as a function of porosity
for different hydrate saturations in wells 1247B (A) and 1250F (B)
compared to the model results (solid lines).

FIGURE 12
Measured P-wave velocity data (symbols) compared to the
results of the triple-porosity and load-bearingmodels varying with
hydrate saturation in Wells 1247B (A) and 1250F (B).
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Conclusion

The mechanisms of wave propagation in hydrate-bearing

sediments are analyzed by using a triple-porosity model.

Specifically, we obtain the P-wave velocity and attenuation as

a function of frequency, inclusion radius of the clay and hydrate

phases, porosity, and hydrate volume ratio. The model considers

three attenuation mechanisms, namely, two due to local fluid

flow between the rock frame and clay and hydrate inclusions

(mesoscopic loss) and the classical global Biot loss. Local flow

effects dominate at low (seismic) frequencies. Well-log data from

ODP204 site and offshore Japan are compared to the model

predictions, which show a good agreement.
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Appendix A: The explicit expressions
of the elastic parameters are (Zhang
et al., 2017)

A � 1 − ϕ( )Ks − 2
3
Gb − Ks

Kf
Q1 + Q2 + Q3( )

Q1 � ϕ1β1Ks

β1 + γ
Q2 � ϕ2Ks

1 + γ
Q3 � ϕ3Ks

β2γ + 1

R1 � ϕ1Kf

β1/γ + 1
R2 � ϕ2Kf

1/γ + 1
R3 � ϕ3Kf

1/ β2γ( ) + 1

(A1)

where

γ � Ks

Kf

ϕ1β1 + ϕ2 + ϕ3
β2

1 − ϕ( ) − Kb
Ks

(A2)

and

β1 �
ϕ20

ϕ10

1/Kh
− 1 − ϕ10( )/Kb1

1 /

K m − 1 − ϕ20( )/Kb2

⎡⎢⎢⎣ ⎤⎥⎥⎦ (A3)

β2 �
ϕ30

ϕ20

1/Km
− 1 − ϕ20( )/Kb2

1/Kc
− 1 − ϕ30( )/Kb3

⎡⎢⎢⎣ ⎤⎥⎥⎦ (A4)

whereKb1,Kb2 andKb3 are the bulk moduli of hydrate, rock, and

clay frames, respectively, andKh,Km andKc are the bulk moduli

of hydrate, minerals and clay, respectively.

The tortuosities of the three phases are

χ1 �
1
2

1 + 1
ϕ10

( ) χ2 �
1
2

1 + 1
ϕ20

( ) χ3 �
1
2

1 + 1
ϕ30

( ) (A5)

Then, the density parameters are

ρ11 � χ1ϕ1ρf ρ22 � χ2ϕ2ρf ρ33 � χ3ϕ3ρf
ρ01 � ϕ1ρf − ρ11 ρ02 � ϕ2ρf − ρ22 ρ03 � ϕ3ρf − ρ33
ρ00 � ]1 1 − ϕ10( )ρh + ]2 1 − ϕ20( )ρm + ]3 1 − ϕ30( )ρc − ρ01 − ρ02 − ρ03

(A6)
where ρm, ρh and ρc are the densities of minerals, hydrate and

clay, respectively. Moreover,

b1 � ϕ1ϕ10η

κ1
(A7)

b2 � ϕ2ϕ20η

κ2
(A8)

b3 � ϕ3ϕ30η

κ3
(A9)

A plane-wave analysis is performed by substituting a time

harmonic kernel ej(ωt−k·x) (where ω is the angular frequency, k is

the wave number vector, and x is the spatial variable vector) into

Eqs 9a–9fa–f9a–9f (Zhang et al., 2017). The resulting dispersion

equation is

a11k
2 + b11 a12k

2 + b12 a13k
2 + b13 a14k

2 + b14
a21k

2 + b21 a22k
2 + b22 a23k

2 + b23 a24k
2 + b24

a31k
2 + b31 a32k

2 + b32 a33k
2 + b33 a34k

2 + b34
a41k

2 + b41 a42k
2 + b42 a43k

2 + b43 a44k
2 + b44

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� 0 (B1)

where

a11 � A + 2Gb + Q1ϕ2 − Q2ϕ1( )M 12( )
0 + Q2ϕ3 − Q3ϕ2( )M 23( )

0

a12 � Q1 + Q1ϕ2 − Q2ϕ1( )M 12( )
1 + Q2ϕ3 − Q3ϕ2( )M 23( )

1

a13 � Q2 + Q1ϕ2 − Q2ϕ1( )M 12( )
2 + Q2ϕ3 − Q3ϕ2( )M 23( )

2

a14 � Q3 + Q1ϕ2 − Q2ϕ1( )M 12( )
3 + Q2ϕ3 − Q3ϕ2( )M 23( )

3

a21 � Q1 + ϕ2R1M
12( )

0 a22 � R1 + ϕ2R1M
12( )
1

a23 � ϕ2R1M
12( )

2 a24 � ϕ2R1M
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3

a31 � Q2 − R2 ϕ1M
12( )
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2
2R

2
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1R2
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−ϕ3ϕ

2
2R
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where η is fluid viscosity. j � !!!−1√
.

VP � ω

Re k( ) (B4)

Q−1 � −Im k2( )
Re k2( ) (B5)
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