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An energy balance equation and fundamental relations are obtained for wave motion
in anisotropic poro-viscoelastic media. The balance of energy identifies the strain and
kinetic energy densities, and the dissipated energy densities due to viscoelastic and
viscodynamic effects. The relations allow the calculation of these energies in terms
of the Umov–Poynting vector and kinematic variables.
The energy balance is obtained for time-harmonic fields, while the following rela-

tions are valid for inhomogeneous body waves.

(i) The magnitude of the phase velocity is equal to the projection of the energy
velocity vector onto the propagation direction.

(ii) The time-average of the dissipated energy density is obtained from the projec-
tion of the average power-flow vector onto the attenuation direction.

(iii) The time-average energy density (kinetic plus strain) is obtained from the
projection of the average power-flow vector onto the propagation direction.

(iv) The strain energy equals the kinetic energy when the medium is lossless.

These relations are shown to be valid for anisotropic poro-viscoelasticity at all fre-
quency ranges.
An example of ultrasonic wave propagation in an orthorhombic medium (human

femoral bone saturated with water) illustrates the theory. Measurable quantities, like
the attenuation factor and the energy velocity, can easily be interpreted in terms of
microstructural properties such as tortuosity and permeability.

Keywords: porous media; viscoelasticity; anisotropy; energy balance;
wave propagation; eigenstrain

1. Introduction

Anisotropic poroelasticity was introduced by Biot (1955, 1956) and Biot & Willis
(1957) in terms of bulk parameters of total stress and strain. To our knowledge,
Brown & Korringa (1975) were the first to obtain the material coefficients in terms
of the properties of the grain, pore-fluid and frame. Later, Carroll (1980) and Thomp-
son & Willis (1991) presented further micromechanical analysis of the constitutive
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equations. Recently, Cheng (1997) related the Hookean constants to the engineering
constants (obtained from laboratory measurements), including explicit relations for
the orthorhombic and transverse isotropy material symmetries. This theory assumes
that the solid constituent is isotropic and that anisotropy is due to arrangements of
the grains (i.e. the frame is anisotropic). Complete experimental data for anisotropic
media is scarce. Experiments on real rocks can be found in Lo et al . (1986) and Aoki
et al . (1993).
The poroelastic equations of motion combine the constitutive equations with the

equations of momentum conservation and the dynamic Darcy’s law in the frame-
work of Biot’s theory. This theory predicts two compressional waves (the fast P-
wave and the so-called Biot slow wave) and two shear waves. Wave propagation in
anisotropic poroelastic rocks was investigated by Norris (1993), Ben-Menahem &
Gibson (1993) and Gelinsky & Shapiro (1997), who studied plane layered systems
and the effects of anisotropic permeability. Numerical simulations of wave propaga-
tion for the transversely isotropic case (in rocks and synthetic materials) are given
in Carcione (1996).
The behaviour of anisotropic, viscoelastic waves departs substantially from the

behaviour of isotropic, elastic waves. Anisotropy implies that, in general, the wave-
field is not pure longitudinal or pure transverse, and therefore there is not a single
relation between the propagation direction and the direction of particle displacement.
As a consequence, wavefronts are not spherical and the direction of energy flux (ray)
does not coincide with the wavenumber direction. On the other hand, in viscoelastic
media, the existence of the so-called inhomogeneous waves (not the interface waves of
elastic media) is necessary to satisfy the boundary conditions at interfaces. For these
waves, the propagation direction does not coincide with the attenuation direction,
and particle motions are in general elliptical (Buchen 1971). Carcione & Cavallini
(1993) showed that in single-phase anisotropic-viscoelastic media the phase velocity
is the projection of the energy velocity vector onto the propagation direction, and
generalized other similar relations valid in the isotropic viscoelastic case. Here, those
relations are further generalized for anisotropic poro-viscoelastic media. First, they
provide a simple and useful means for evaluating the time-average kinetic, strain
and dissipated energy densities from the wavenumber, attenuation and energy flow
vectors. Second, they can be used to verify the kinematic and dynamic (in terms
of energy) properties of complex porous materials. For instance, the above relation
between phase and energy velocities has immediate implications for ultrasonic experi-
ments. If a pulse of acoustic energy is radiated by a plane wave transducer, the Fourier
components travel along the wavenumber direction, which is normal to the trans-
ducer surface, but the wave packet modulation envelope travels in the direction of
the energy velocity. This means that the receiving transducer must be offset in order
to intercept the acoustic pulse, and the corresponding angle is the angle between
the wavenumber and energy velocity vectors. Although that relation between the
velocities is well known for anisotropic lossles media (see, for example, Auld 1991), it
is not immediately evident that it holds for poro-viscoelastic and anisotropic media.
To our knowledge, the derived relations are not known for any other particular case,
such as anisotropic poroelasticity or isotropic poro-viscoelasticity, mainly due to the
fact that the published research is mainly devoted to the constitutive equations, and
a complete dynamic formulation of the problem in terms of energy is not provided
(see, for example, Thompson & Willis 1991).
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We consider wave propagation in one of the planes of mirror symmetry of an
orthorhombic material (human femoral bone). Bulk viscoelasticity is modelled by
using the concept of eigenstrain (Carcione & Cavallini 1994) and the low-frequency
viscodynamic operator is used to model Biot-type dissipation.
In the following, the spatial variables x, y and z are denoted by the indices i, j =

1, 2, 3, respectively, a partial derivative with respect to a variable xi with ∂i, and
the upper case indices I, J = 1, . . . , 6 indicate the shortened matrix notation, where
pairs of subscripts (i, j) are replaced by a single number (I or J) according to the
correspondence (11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4, (13) = (31) → 5,
(12) = (21) → 6. Matrix transposition is denoted by a superscript T and complex
conjugation by a superscript ∗.

2. Stress–strain relations

The constitutive equations for anisotropic poroelasticity were introduced by Biot
(1955, 1956). They can be expresses in terms of the microstructural properties as
(Cheng 1997)

T = Cu · S, (2.1)

where

T T = [τ11, τ22, τ33, τ23, τ13, τ12,−p] (2.2)

is the stress vector, with τij the components of the total stress and p the fluid
pressure,

ST = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12,−ζ] (2.3)

is the strain vector, with εij the strain components of the porous frame and ζ the
variation of fluid content,

Cu =




cu
11 cu

12 cu
13 cu

14 cu
15 cu

16 Mα1
cu
12 cu

22 cu
23 cu

24 cu
25 cu

26 Mα2
cu
13 cu

23 cu
33 cu

34 cu
35 cu

36 Mα3
cu
14 cu

24 cu
34 cu

44 cu
45 cu

46 Mα4
cu
15 cu

25 cu
35 cu

45 cu
55 cu

56 Mα5
cu
16 cu

26 cu
36 cu

46 cu
56 cu

66 Mα6
Mα1 Mα2 Mα3 Mα4 Mα5 Mα6 M



, (2.4)

where

cu
IJ = cIJ +MαIαJ (2.5)

are the components of the undrained stiffness tensor, with cIJ the dry-rock stiffness
components, M the fluid/solid coupling modulus and αI = αij the effective stress
components. The components of the tensor given in (2.4) can be expressed in terms
of the properties of the frame and of the single constituents (see the appendix). The
variation of fluid content is given by

ζ = −div[φ(uf − u)], (2.6)
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where uf and u are the average fluid and solid displacements vectors, respectively.
The rate of the strain vector can be written as

∂tS = ∇T · V , (2.7)

where

V ≡ [v1, v2, v3, q1, q2, q3]T, (2.8)

with v and q denoting the solid and fluid (relative to the solid) particle velocities,
respectively (q = φ(∂tuf − v) and v = ∂tu), and

∇ =




∂1 0 0 0 ∂3 ∂2 0
0 ∂2 0 ∂3 0 ∂1 0
0 0 ∂3 ∂2 ∂1 0 0
0 0 0 0 0 0 ∂1
0 0 0 0 0 0 ∂2
0 0 0 0 0 0 ∂3



. (2.9)

The form (2.7) relating the particle velocities to the strain components and the
differential operator (2.9) are generalizations of those used by Auld (1991).
Biot (1956) developed a generalization of the constitutive equations to the vis-

coelastic case by invoking the correspondence principle and using relaxation func-
tions based on mechanical models of viscoelastic behaviour. Viscoelasticity is due to
a variety of dissipation mechanisms. One of these mechanisms is the squirt-flow (Biot
1962; Dvorkin et al . 1994), by which a force applied to the area of contact between two
grains produces a displacement of the surrounding fluid in and out of this area. Since
the fluid is viscous, the motion is not instantaneous and energy dissipation occurs.
Other important attenuation mechanisms are discussed by Biot (1962). Using the
correspondence principle (Ben-Menahem & Singh 1981), we generalize to relaxation
functions the elements of matrix Cu and (2.1) becomes

T = Ψ ∗ ∂tS, (2.10)

where Ψ is the relaxation matrix and the asterisk denotes time convolution and
matrix product. The matrix Cu is obtained from Ψ when t → 0 if we consider that
the elastic Biot’s poroelastic theory corresponds to the unrelaxed state.

3. Biot–Newton’s equation

The dynamic equations describing wave propagation in heterogeneous porous media
were obtained by Biot (1962). They are

∂1τ11 + ∂2τ12 + ∂3τ13 = ρ∂tv1 + ρf∂tq1 + f1, (3.1)
∂1τ12 + ∂2τ22 + ∂3τ23 = ρ∂tv2 + ρf∂tq2 + f2, (3.2)
∂1τ13 + ∂2τ23 + ∂3τ33 = ρ∂tv3 + ρf∂tq3 + f3, (3.3)

where f denotes body force and ρ = (1 − φ)ρs + φρf is the composite density, with
ρs and ρf the solid and fluid densities. On the other hand, dynamic Darcy’s law,
generalized to the anisotropic case, can be expressed as

−∂1p = ρf∂tv1 + ψ1 ∗ ∂tq1, (3.4)
−∂2p = ρf∂tv2 + ψ2 ∗ ∂tq2, (3.5)
−∂3p = ρf∂tv3 + ψ3 ∗ ∂tq3, (3.6)
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where the asterisk denotes time convolution and ψl, l = 1, . . . , 3, are time-dependent
functions related to Biot’s viscodynamic effects (Biot 1962). In matrix form, equa-
tions (3.1)–(3.6) can be written as

∇ · T = R · ∂tV + F , (3.7)

where

F ≡ [f1, f2, f3, 0, 0, 0, 0]T (3.8)

and

R =




ρ 0 0 ρf 0 0
0 ρ 0 0 ρf 0
0 0 ρ 0 0 ρf
ρf 0 0 ψ1∗ 0 0
0 ρf 0 0 ψ2∗ 0
0 0 ρf 0 0 ψ3∗




(3.9)

is the density matrix. We refer to (3.7) as Biot–Newton’s equation.

4. Time-harmonic fields

Let us consider a time-harmonic field exp(iωt), where ω is the angular frequency and
i =

√−1. The stress–strain relation (2.10) becomes

T = C · S, C = F [∂tΨ ], (4.1)

where C is the complex and frequency-dependent stiffness matrix, and the operator
F denotes time Fourier transform. Equation (2.7) becomes

iωS = ∇T · V . (4.2)

Substituting (4.2) into (4.1) gives

iωT = C · (∇T · V ). (4.3)

On the other hand, Biot–Newton’s equation (3.7) becomes

∇ · T = iωR · V + F , (4.4)

where

R =




ρ 0 0 ρf 0 0
0 ρ 0 0 ρf 0
0 0 ρ 0 0 ρf
ρf 0 0 Y1/(iω) 0 0
0 ρf 0 0 Y2/(iω) 0
0 0 ρf 0 0 Y3/(iω)




(4.5)

and

Yl(ω) = F [∂tψl] (4.6)
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are Biot’s viscodynamic operators for the x-, y- and z-directions. In the low-frequency
range (Biot 1962; Auriault et al . 1985), i.e. for frequencies lower than ωc = min(ωl),
where ωl = η/(mlκl),

ψl(t) = mlδ(t) +
η

κl
H(t), (4.7)

where ml = Tlρf/φ, with Tl the tortuosity, η is the dynamic viscosity, κl, l = 1, 2, 3,
are the principal components of the global permeability tensor, δ(t) is Dirac’s function
and H(t) is the Heaviside function. From (4.6),

Yl(ω) = iωml +
η

κl
. (4.8)

In terms of mechanical models, equation (4.8) represents a Kelvin–Voigt element
(Ben-Menahem & Singh 1981). In the high-frequency range (ω � ωc), the visco-
dynamic operator is strongly influenced by the pore geometry, and a precise evalu-
ation of its frequency dependence requires an experimental determination (Auriault
et al . 1985).
The derivation of the energy balance equation is straightforward when using com-

plex notation. The same procedure given in Carcione & Cavallini (1993) for single-
phase media is used here. The dot product of the complex conjugate of (4.2) with
−T T gives

−T T · ∇T · V ∗ = iωT T · S∗. (4.9)

On the other hand, the dot product of −V ∗T with (4.4) is

−V ∗T · ∇ · T = −iωV ∗T · R · V − V ∗T · F . (4.10)

Adding (4.9) and (4.10) gives

−T T · ∇T · V ∗ − V ∗T · ∇ · T = iωT T · S∗ − iωV ∗T · R · V − V ∗T · F . (4.11)

The left-hand side is simply

−T T · ∇T · V ∗ − V ∗T · ∇ · T = 2div(P ), (4.12)

where

P = −1
2


τ11 τ12 τ13 −p 0 0
τ12 τ22 τ23 0 −p 0
τ13 τ23 τ33 0 0 −p


 · V ∗ (4.13)

is the complex Umov–Poynting vector and ‘div’ is the divergence operator. Using
equation (4.12) and the stress–strain relation (4.1), equation (4.11) gives

2 div(P ) = iωST · C · S∗ − iωV ∗T · R · V − V ∗T · F , (4.14)

where we used the fact that C is a symmetric matrix. Equation (4.14) can be rewrit-
ten as

div(P ) = 2iω[14 Re(S
T · C · S∗) − 1

4 Re(V
∗T · R · V )]

+ 2ω[−1
4 Im(ST · C · S∗) + 1

4 Im(V ∗T · R · V )] − 1
2V ∗T · F , (4.15)
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where ‘Re’ and ‘Im’ take real and imaginary parts, respectively. The significance of
this equation becomes clear when we recognize that each of its terms has a precise
physical meaning on a time-average basis. When using complex notation for plane
waves, the field variables are obtained as the real part of the corresponding complex
fields. For generic field variables A and B and a symmetric matrix D, the time-
average over a cycle of period 2π/ω has the following properties

〈Re(AT) · Re(B)〉 = 1
2 Re(A

T · B∗) (4.16)

(Booker 1992), and

〈Re(AT) · Re(D) · Re(A)〉 = 1
2 Re(A

T · D · A∗), (4.17)

〈Re(AT) · Im(D) · Re(A)〉 = 1
2 Im(AT · D · A∗) (4.18)

(Carcione & Cavallini 1993). Using these relations, we identify
1
4 Re(S

T · C · S∗) = 1
2〈Re(ST) · Re(C) · Re(S)〉 ≡ 〈S〉 (4.19)

as the strain energy density,

1
4 Re(V

∗T · R · V ) = 1
2〈Re(V ∗T) · Re(R) · Re(V )〉 ≡ 〈K〉 (4.20)

as the kinetic energy density,

− 1
2ω Im(ST · C · S∗) + 1

2ω Im(V ∗T · R · V )

= −ω〈Re(ST) · Im(C) · Re(S)〉 + ω〈Re(V T) · Im(R) · Re(V )〉
≡ −〈ḊS〉 − 〈ḊK〉 (4.21)

as minus the mean (time-average) rate of dissipated strain energy density (−〈ḊS〉,
the first term) minus the dissipated kinetic energy density (−〈ḊK〉, the second term),
and

−1
2V ∗T · F ≡ Ps (4.22)

as the complex power per unit volume supplied by the body forces. We may define
the corresponding time-average energy densities 〈DS〉 and 〈DK〉 by the relations

〈ḊS〉 = ω〈DS〉 and 〈ḊK〉 = ω〈DK〉. (4.23)

Substituting the preceding expressions into (4.15) gives the energy balance equation

div(P ) − 2iω(〈S〉 − 〈K〉) + ω〈D〉 = Ps, (4.24)

where

〈D〉 = 〈DS〉 + 〈DK〉 (4.25)

is the total time-average dissipated energy density.
The total stored energy density is

〈E〉 = 〈S〉 + 〈K〉. (4.26)

If there is no dissipation (〈D〉 = 0) and since, in the absence of sources (Ps = 0),
the net energy flow into, or out of, a given closed surface must vanish, div(P ) = 0.
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Thus the average kinetic energy equals the average strain energy. As a consequence,
the stored energy is twice the strain energy.
The energy balance equation as given by (4.24) is analogous to a similar relation

for complex power in sinusoidal steady-state circuit theory,
1
2V I∗ − 2iω(〈EC〉 − 〈EL〉) + 〈PR〉 = 0 (4.27)

(Fano et al . 1960), where the first term is the complex power, V is the voltage phasor,
I is the current phasor, 〈EC〉 and 〈EL〉 are the time-average stored energies in the
capacitors and inductors, respectively, and 〈PR〉 is the average power dissipated in
the resistors, which is equivalent to the dissipated strain energy density.

5. Inhomogeneous plane waves

A general plane wave solution for the particle velocity vector is

V = V0 exp[i(ωt − k · x)], (5.1)

where V0 represents a constant complex vector and k is the complex wavevector.
The wavevector is, in general, complex and can be written as

k ≡ κ − iα = (k1, k2, k3), (5.2)

where κ and α are the real wavevector and attenuation vector, respectively. They
indicate the directions and magnitude of the wavevector and attenuation vector. In
general, these directions differ and the plane wave is termed inhomogeneous. For
inhomogeneous viscoelastic plane waves, the operator (2.9) takes the form

∇ → −iK (5.3)

in frequency domain, where

K =




k1 0 0 0 k3 k2 0
0 k2 0 k3 0 k1 0
0 0 k3 k2 k1 0 0
0 0 0 0 0 0 k1
0 0 0 0 0 0 k2
0 0 0 0 0 0 k3



. (5.4)

When the operator is applied to a conjugated field, ∇ should be replaced by iK∗.
Substituting the differential operator into (4.9) and (4.10) and assuming zero body

forces yields

−T T · K∗T · V ∗ = ωT T · S∗ (5.5)

and

−V ∗T · K · T = ωV ∗T · R · V , (5.6)

respectively. The left-hand sides of (5.5) and (5.6) contain the complex Umov–
Poynting vector (4.13). In fact, by virtue of (5.2), equations (5.5) and (5.6) become

2k∗T · P = ωT T · S∗ (5.7)
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and

2kT · P = ωV ∗T · R · V , (5.8)

respectively. Adding (5.7) and (5.8), and using (5.2) (k∗ + k = 2κ), yields

4κT · P = ω(T T · S∗ + V ∗T · R · V ). (5.9)

Using (4.16), the time-average of the real Umov–Poynting vector (4.13),

−Re


τ11 τ12 τ13 −p 0 0
τ12 τ22 τ23 0 −p 0
τ13 τ23 τ33 0 0 −p


 · Re(V ), (5.10)

is

〈P 〉 = Re(P ), (5.11)

which gives the average power flow.
As in the previous section, the time-average of the strain energy density

〈S〉 = 1
2 Re(T

T) · Re(S) (5.12)

is

〈S〉 = 1
4 Re(T

T · S∗) = 1
4 Re(S

∗T · C · S). (5.13)

Similarly, the time-average kinetic energy density is

〈K〉 = 1
4 Re(V

∗T · R · V ) (5.14)

and the time-average strain and kinetic dissipated energy densities are

〈DS〉 = 1
2 Im(S∗T · C · S) (5.15)

and

〈DK〉 = −1
2 Im(V ∗T · R · V ), (5.16)

respectively. The last two quantities represents the energy loss per unit volume due
to viscoelastic and viscodynamic effects, respectively. The minus sign in (5.16) is due
to the fact that Im(YI)/(iω) < 0 (see (4.5)). It can be shown that the dissipated
energies should be defined with the opposite sign if an exp(−iωt) kernel is used. This
is the case for the dissipated kinetic energy in Carcione (1996).
Substituting (5.11), (5.13) and (5.14) into the real part of (5.9) yields

κT · 〈P 〉 = ω(〈S〉 + 〈K〉) = ω〈E〉, (5.17)

where 〈E〉 is the stored energy density (4.26). On the other hand, the imaginary part
of (5.9) gives

2κT · Im(P ) = ω(〈DS〉 − 〈DK〉). (5.18)

The wave surface is the locus of the end of the energy velocity vector multiplied by
one unit of propagation time, with the energy velocity defined as the ratio of the
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average power-flow density 〈P 〉 to the total energy density 〈E〉. Since this is equal to
the sum of the average kinetic and strain energy densities 〈K〉 and 〈S〉, the energy
velocity is

Ve =
〈P 〉

〈K + S〉 . (5.19)

Dissipation is quantified by the quality factor, which can be defined as

Q =
2〈S〉
〈D〉 . (5.20)

Using the definition of the energy velocity and (5.17) gives

κ̂T · Ve = Vp, (5.21)

where Vp = ω/κ is the phase velocity and κ̂ is a unit vector along the wavenumber
or propagation direction. Relation (5.21), as in a single-phase medium (Carcione &
Cavallini 1993), means that the phase velocity is simply the projection of the energy
velocity onto the propagation direction.
On the other hand, subtracting (5.7) from (5.8) and using (5.2) yields the energy

balance equation,

−2αT · P = 2iω(〈S〉 − 〈K〉) − ω〈D〉. (5.22)

Taking the real part of (5.22) yields

2αT · 〈P 〉 = ω〈D〉. (5.23)

This equation is the generalization of a similar relation for viscoelastic single-phase
media, stating that the time-average dissipated energy can be obtained as the pro-
jection of the average power-flow density onto the attenuation direction.
As stated in § 1, the derived relations are not known for the different simplified

cases of dynamic poro-viscoelasticity, as, for instance, isotropic poro-viscoelasticity or
anisotropic poroelasticity. Similar relations in the isotropic viscoelastic case were first
obtained by Buchen (1971). In this respect, equations (5.17), (5.21) and (5.23) are
equivalent in form to (38), (40) and (34) of Buchen (1971). A substantial difference is
that the dissipated kinetic energy density is zero in single-phase viscoelastic media,
because the attenuation effects arise from the constitutive equations.

6. Homogeneous plane waves

For homogeneous waves, the propagation and attenuation directions coincide and
the wavevector can be written as

k = (κ − iα)κ̂ ≡ kκ̂, (6.1)

where

κ̂ = (l1, l2, l3) (6.2)
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defines the propagation direction through the directions cosines l1, l2 and l3. For
homogeneous waves,

K → kL = k




l1 0 0 0 l3 l2 0
0 l2 0 l3 0 l1 0
0 0 l3 l2 l1 0 0
0 0 0 0 0 0 l1
0 0 0 0 0 0 l2
0 0 0 0 0 0 l3



, (6.3)

where k is the complex wavenumber. Using (5.3), equations (4.3) and (4.4) give

(R−1 · Γ − V 2I6) · V = 0, (6.4)

where

Γ = L · C · LT (6.5)

is the Christoffel matrix,

V = ω/k (6.6)

is the complex velocity, and I6 denotes the six-dimensional unit matrix.
Making zero the determinant, equation (6.4) gives the following dispersion relation:

det(R−1 · Γ − V 2I6) = 0. (6.7)

The eigensystem formed by (6.4) and (6.7) gives six eigenvalues and the correspond-
ing eigenvectors. Four of them correspond to the wave modes, and the others equal
zero. These modes correspond to the fast and slow quasi-compressional waves, and
the two quasi-shear waves.
The slowness and attenuation vectors for homogeneous waves can be expressed in

terms of the complex velocity as

s = Re
(
1
V

)
κ̂ (6.8)

and

α = −ω Im
(
1
V

)
κ̂, (6.9)

respectively (Re(1/V ) is the reciprocal of the phase velocity).
The average strain energy density (5.13) can be written in terms of the density

matrix R using (4.2), (5.3) and (6.3)–(6.6),

〈S〉 = 1
4 |V |−2 Re(V 2V T · R · V ∗), (6.10)

where we used the fact that R and Γ are symmetric matrices.
Equation (6.10) is formally similar to the strain energy density in single-phase

anisotropic viscoelastic media, where 〈S〉 = 1
4ρs|V |−2V 2|V |2 (see Carcione & Cav-

allini 1993). In the single-phase medium, every particle velocity component is equally
weighted by the density. Note that, when the medium is lossless, V is real and the
average strain energy density equals the average kinetic energy density (5.14).
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From (5.13) and (5.14), and using the property V T · R · V ∗ = V ∗T · R · V (since
R is symmetric), the stored energy density (4.26) becomes

〈E〉 = 1
4 Re

[(
1 +

V 2

|V |2
)

V T · R · V ∗
]
. (6.11)

When the medium is lossless, V and R are real and 〈E〉 is equal to twice the average
kinetic energy (5.14).
For calculation purposes, the Umov–Poynting vector (4.13) can be expressed in

terms of the eigenvector V and complex velocity V . The average power flow (5.11)
can be written as

〈P 〉 = −1
2 Re[êi(U i · T T) · V ∗], (6.12)

where êi is the unit Cartesian vector and the Einstein convention for repeated indices
is used; U i are 6× 7 matrices with most of their elements equal to zero, except U1

11,
U1

26, U
1
35, U

1
47, U

2
16, U

2
22, U

2
34, U

2
57, U3

15, U3
24, U3

33 and U3
67, which are equal to one.

Substitution of the constitutive equation (4.1) into (6.12) and use of (4.2), (5.3)
and (6.3)–(6.6) yields the desired expression,

〈P 〉 = 1
2 Re[V

−1V T · L · C · (êiU
iT) · V ∗]. (6.13)

To obtain the quality factor (5.20), we follow the same steps that led to (6.10) and
note that the dissipated energy (4.25) can be written as

〈D〉 = 1
2 Im

[(
−1 +

V 2

|V |2
)

V T · R · V ∗
]
. (6.14)

Using (6.10) and a few calculations gives

Q =
2〈S〉
〈D〉 =

Re(V 2V T · R · V ∗)
2 Im(V )Re(V V T · R · V ∗)

. (6.15)

If there are no losses due to viscosity effects (R is real and 〈DK〉=0), V T · R · V ∗ is
real and

Q =
Re(V 2)
Im(V 2)

, (6.16)

as in the single-phase case (Carcione & Cavallini 1993).

7. Example

The following example is intended to illustrate a practical application of the theory,
starting from the definition of the constitutive equations to the calculation of observ-
able quantities, such as the energy velocity and the attenuation factor. The example
involves the calculation of the wavevector, the attenuation and energy flow vector
and the different energy densities. The fundamental relations are used to verify the
calculations.
The problem with anisotropic lossy media is the determination of the time (or fre-

quency) dependence of the relaxation tensor (21 components in triclinic media). Most
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applications use the Kelvin–Voigt constitutive law, based on 21 independent viscos-
ity functions (Auld 1991), corresponding to imaginary constants in the frequency
domain. Sometimes it has been possible to estimate all these constants satisfactorily
(Hosten et al . 1987). Here, we use a model based on few parameters, which are not
the imaginary elasticities in themselves, but real quality factors (often more readily
available in the seismic practice).
Let us consider propagation of homogeneous plane waves in human femoral bone

(orthorhombic symmetry), investigated by Carcione et al . (1998) using a single-phase
theory for anisotropic and viscoelastic media. To introduce viscoelastic attenuation,
they use a constitutive equation based on the fact that each eigenvector (called eigen-
strain) of the stiffness matrix defines a fundamental deformation state of the medium.
The six eigenvalues (called eigenstiffnesses) represent the intrinsic elastic parameters.
In the elastic case, the strain energy is uniquely parametrized by the six eigenstiff-
nesses. These ideas date back to the middle of the 19th century when Lord Kelvin
introduced the concept of ‘principal strain’ (eigenstrain in modern terminology) to
describe the deformation state of a medium (Thomson 1856). From this fact and the
correspondence principle, Carcione & Cavallini (1994) inferred that in a real medium
the rheological properties depend essentially on six relaxation functions, which are
the generalization of the eigenstiffnesses to the viscoelastic case. The existence of six
or less complex moduli depends on the symmetry class of the medium.
We assume that the bone is saturated with water of bulk modulus Kf = 2.5 GPa,

density ρf = 1000 kg m−3 and viscosity η = 1 cP. Furthermore, the grain bulk mod-
ulus is Ks = 28 GPa, the grain density is ρs = 1815 kg m−3, the porosity is φ = 0.4,
the tortuosites are T1 = 2, T2 = 3 and T3 = 3.6, and the matrix permeabilities are
κ1 = 1.2 × 10−12, κ2 = 0.8 × 10−12 and κ3 = 0.7 × 10−12 m2. The drained stiffness
matrix (cIJ , see the appendix) in Voigt notation is




18 9.98 10.1 0 0 0
9.98 20.2 10.7 0 0 0
10.1 10.7 27.6 0 0 0
0 0 0 6.23 0 0
0 0 0 0 5.61 0
0 0 0 0 0 4.01




,

in GPa (Cowin & Mehrabadi 1987). They are used to calculate the elements of matrix
Cu, which correspond to the high-frequency (unrelaxed) limit. It gives

Cu =




19.8 11.7 11.5 0 0 0 3.35
11.7 21.8 12.03 0 0 0 3.14
11.5 12.03 28.7 0 0 0 2.59
0 0 0 6.23 0 0 0
0 0 0 0 5.61 0 0
0 0 0 0 0 4.01 0

3.35 3.14 2.59 0 0 0 6.12




,

in GPa. In order to apply Kelvin’s formulation, Hooke’s law has to be written in
tensorial form. This implies multiplying the (44), (55) and (66) elements of matrix
Cu by a factor 2 (Carcione & Cavallini 1994). Let us call this new matrix (tensor) C̄u.
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This matrix can be diagonalized to obtain

C̄u = Q · Λ · QT, (7.1)

where Λ = diag(λ1, λ2, λ3, λ4, λ5, λ6, λ7)T is the eigenvalue matrix and Q is the
matrix formed with the eigenvectors of C̄u, or more precisely, with the columns of the
right (orthonomal) eigenvectors (note that the symmetry of C̄u implies Q−1 = QT).
Hence, in virtue of the correspondence principle and its application to (7.1), we
introduce the viscoelastic stiffness tensor

C̄ = Q · Λ(v) · QT, (7.2)

where Λ(v) is a diagonal matrix with entries

λ
(v)
I (ω) = λIMI(ω), I = 1, . . . , 7. (7.3)

The quantities MI are complex and frequency-dependent dimensionless moduli. We
describe each of them by a Zener model, whose relaxation frequency is equal to ω
(Carcione et al . 1998). In this case, we have

MI =

√
Q2

I + 1 − 1 + iQI√
Q2

I + 1 + 1 + iQI

, (7.4)

where QI is the quality factor associated with each modulus (we note here that if
a exp(−iωt) kernel is used, iQI should be replaced by −iQI and the dissipated strain
energy should be defined with the opposite sign). To recover the Voigt notation, we
should divide the (44), (55) and (66) elements of matrix C̄ by a factor 2. This gives
the complex matrix C.
In orthorhombic porous media, there are seven distinct eigenvalues, and therefore

seven complex moduli. We assume that the dimensionless quality factors are defined
as QI = (λI/λ6)Q6, I = 1, . . . , 7, with Q6 = 30. This choice implies that the higher
the stiffness, the higher the quality factor (i.e. the harder the medium, the lower the
attenuation). Then matrix C is given by



19.4 + i0.36 11.7 + i0.004 11.5 + i0.002
11.7 + i0.004 21.4 + i0.36 12.03 + i0.002
11.5 + i0.002 12.03 + i0.002 28.3 + i0.37

0 0 0
0 0 0
0 0 0

3.35 + i0.003 3.14 + i0.002 2.59 + i0.0003

0 0 0 3.35 + i0.003
0 0 0 3.14 + i0.002
0 0 0 2.59 + i0.0003
0 0 0

5.42 + i0.18 0 0
0 3.82 + i0.18 0
0 0 0 5.75 + i0.35




in GPa.
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Figure 1. Polar representation of the attenuation factors in one of the planes of mirror symmetry
of human femoral bone saturated with water, where (a) illustrates the fast quasi-compressional
wave qP, the quasi-shear wave qS and the pure anti-plane shear wave S, and (b) the slow
quasi-compressional wave. The frequency is 10 kHz.
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Figure 2. Polar representation of the energy velocities in one of the planes of mirror symme-
tries of human femoral bone saturated with water, where qP is the fast quasi-compressional
wave, qS is the quasi-shear wave, S is the pure anti-plane shear wave and slow qP is the
slow quasi-compressional wave. The tick-marks indicate the polarization directions (v1, 0, v3)
for the qP, slow qP and qS waves, while the polarization of the S wave is (0, 1, 0). The curves
correspond to a frequency of 10 kHz.
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Polar representations of the attenuation factors (6.9) and energy velocities (5.19)
are shown in figures 1 and 2, respectively, for the (x, z) principal plane of the medium
(l2 = 0). Only one-quarter of the curves are displayed because of symmetry consid-
erations. The Cartesian planes of an orthorhombic medium are planes of symmetry,
and therefore one of the shear waves, denoted by S, is a pure anti-plane mode. The
tick-marks in figure 2 indicate the polarization directions (v1, 0, v3), with the points
uniformly sampled as a function of the phase angle. The curves are plotted for a fre-
quency of f = ω/(2π) = 10 kHz, smaller than the characteristic frequency fc (equal
to ηφ/(T3ρfκ3) = 15 kHz), which determines the upper limit of the low-frequency
theory.
The strong dissipation of the slow qP wave is due to the Biot mechanism (i.e. the

viscodynamic effect). On the other hand, 〈DS〉 and 〈DK〉 are comparable for the
qP, qS and S waves. This is due to the choice of values for QI and for the pulse
frequency, which is close to the centre frequencies of Biot’s relaxation peaks. At
low (seismic) frequencies, 〈DK〉 is much less than 〈DS〉. Anisotropic permeability
affects the attenuation of the slow qP wave. According to Biot’s theory, the lower
the permeability, the higher the attenuation. In fact, the vertical attenuation factor
is higher than the horizontal attenuation factor. Anisotropic tortuosity mainly affects
the velocity of the slow qP wave. This is (approximately) inversely proportional to
the square root of the tortuosity. Hence the vertical velocity is smaller than the
horizontal velocity.
The three faster waves propagating in the (x, z)-plane of a single-phase orthorhom-

bic medium have the following complex velocities along the coordinate axes

VqS(0) = VqS(90) =
√

c55/ρ,

VqP(0) =
√

c33/ρ, VqP(90) =
√

c11/ρ,

VS(0) =
√

c44/ρ, VS(90) =
√

c66/ρ,




(7.5)

where 0 corresponds to the z-axis and 90 to the x-axis, and cIJ are, in these equa-
tions, complex stiffnesses (they should be the components of C in the porous case,
do not confuse them with the drained elastic moduli defined in the appendix). The
velocities (7.5) do not correspond exactly to the velocities in the porous case, since
here the density is a matrix not a scalar quantity. For instance, the densities corre-
sponding to the S and qS waves along the z-axis are ρ − ρ2

f /R55 and ρ − ρ2
f /R44.

However, the velocities (7.5) can be used to qualitatively verify the values of the
energy velocity curves along the coordinate axes. On the basis of these equations,
figure 2 is in agreement with the values indicated above for matrix C.

8. Conclusions

The present analysis provides fundamental relations and expressions of measurable
quantities for wave motion in anisotropic porous media, including losses due to relax-
ation mechanisms and viscodynamic effects. The relations are

κT · 〈P 〉 = ω(〈S〉 + 〈K〉) = ω〈E〉 or κ̂T · Ve = Vp,

2κT · Im(P ) = ω(〈DS〉 − 〈DK〉),
2αT · 〈P 〉 = ω(〈DS〉 + 〈DK〉) = ω〈D〉,

αT · Im(P ) = ω(〈K〉 − 〈S〉),
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where complex ω is the angular frequency, κ is the wavevector, α is the attenuation
vector, P is the Umov–Poynting vector, S and K are the strain and kinetic energy
densities, DS and DK are the strain and kinetic dissipated energy densities, Ve is
the energy velocity vector and Vp is the phase velocity (〈·〉 denotes a time-average
quantity and ·̂ a unit vector).
The measurable quantities are generalizations of the phase velocity, attenuation

factor, energy velocity and quality factor. For homogeneous plane waves, they can
be explicitly written in terms of the complex velocity, eigenvectors of the Christoffel
matrix, stiffness and density matrices, and direction cosines defining the propaga-
tion direction. The expressions are easily programmed and can be used to analyse
the acoustic properties of complex porous media in order to design laboratory exper-
iments and time-domain numerical simulations of wave propagation.

Appendix A. Stiffness components of anisotropic poroelasticity

Cheng (1997) gives the stiffness matrix Cu in terms of properties of the grain, pore-
fluid and skeleton,

cIJ = stiffness components of the drained skeleton,
Ks = bulk modulus of the grain,
Kf = bulk modulus of the porefluid,
φ = porosity.

Then, under the assumptions of micro-homogeneity and micro-isotropy, we have

cu
IJ = cIJ +MαIαJ , (A 1)

M =
Ks

(1 − K̄/Ks) − φ(1 − Ks/Kf)
, (A 2)

K̄ = 1
9 [c11 + c22 + c33 + 2(c12 + c13 + c23)] (A 3)

and

α1 = 1 − (c11 + c12 + c13)/(3Ks),
α2 = 1 − (c12 + c22 + c23)/(3Ks),
α3 = 1 − (c13 + c23 + c33)/(3Ks),
α4 = −(c14 + c24 + c34)/(3Ks),
α5 = −(c15 + c25 + c35)/(3Ks),
α6 = −(c16 + c26 + c36)/(3Ks).




(A 4)

The effective stress components αI are a property of the solid skeleton only. The
fact that these components constitute a tensor implies that pore pressure induces
not only dilatational deformations, but also shear deformations. The latter is not the
case in an isotropic medium (Cheng 1997).
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Lo, T. W., Coyner, K. B. & Toksöz, M. N. 1986 Experimental determination of elastic anisotropy
of Berea sandstone, Chicopea shale, and Chelmsford granite. Geophysics 51, 164–171.

Norris, A. N. 1993 Low-frequency dispersion and attenuation in partially saturated rocks. J.
Acoust. Soc. Am. 94, 359–370.

Thompson, M. &Willis, J. R. 1991 A reformulation of the equations of anisotropic poroelasticity.
J. Appl. Mech. ASME 58, 612–616.

Thomson, W. 1856 Elements of a mathematical theory of elasticity. Part I. On stress and strains.
Phil. Trans. R. Soc. Lond. 146, 481–498.

Proc. R. Soc. Lond. A (2001)

 on January 13, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/

