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AVO effects of a hydrocarbon source-rock layer

José M. Carcione∗

ABSTRACT

The organic content of petroleum source-rock layers
can be determined from seismic data with a suitable AVO
technique. Since the source rock has a layered structure,
the best forward model is a transversely isotropic layer
between two isotropic half-spaces, parameterized by the
layer thickness and the amount of organic material. This
limited number of parameters is essential to obtain a
robust inversion method. Here, I compute the PP- and
PS-reflection coefficients of the source bed as a func-
tion of layer thickness and organic content, including
attenuation mechanisms related to different stages of
maturation.

The source rock is modeled as a viscoelastic medium
composed of illite/smectite, solid organic matter (kero-
gen), and fluids (oil and water). The properties of the
kerogen/oil/water mixture are obtained with the Kuster
and Toksöz model, assuming that oil and water are the
inclusion in a kerogen matrix. Then, Backus averaging
gives the complex stiffnesses of the layer. To derive the
reflection coefficients, I relate the particle velocities and
stresses on the top and bottom interfaces between the
layer and the substrates.

The results indicate that there is ambiguity regard-
ing the layer thickness, since two or more values can
have similar reflection coefficients. For instance, for mod-
erate offsets and 25% kerogen content, the reflection-
coefficient curves oscillate with a period of 70 m for PP-
waves and 40 m for PS-waves. On the other hand, the re-
flection coefficients have a mimimum at approximately
5% kerogen content and increase monotonically above
this value. Therefore, the inversion may provide reliable
values above approximately 10% kerogen content.

INTRODUCTION

Maps of the regional distributions of organic matter and its
maturation level, showing the degree of kerogen-to-oil conver-
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sion, are essential for understanding the oil generation and mi-
gration processes. Recent petrophysical analyses of petroleum
source rocks (Vernik and Landis, 1996) indicate that strong ve-
locity anisotropy can be associated with the presence of organic
matter and its distribution in the rock matrix. Hydrocarbon
source rocks are laminated structures composed of kerogen,
oil, water, and illite layers. When the wavelength of the seismic
pulse is much larger than the thickness of the single layers, the
finely layered medium behaves as a homogeneous transversely
isotropic (TI) material, whose stiffnesses can be obtained by
the so-called Backus averaging technique (Carcione, 2000).

A typical situation in the North Sea is represented by the
Kimmeridge Shale, a source rock from the Draupne Formation
with a maximum thickness of nearly 200 m, overlain by a high-
velocity chalk. Detection of the amount of kerogen with AVO
methods (Helle and Stovas, 1997) requires a suitable model
with a reduced number of parameters. Since the thickness of
the source bed is comparable to the seismic wavelength, the
model for the AVO analysis must be a layer between two half-
spaces. The inversion parameters are the layer thickness and
the oil and water saturations. In the case of an immature rock
without water, the parameters are the thickness of the layer and
the kerogen content. In this framework, I calculate the PP- and
PS-reflection coefficients of a TI layer between two isotropic
half-spaces, including dissipation mechanisms attributable to
the presence of organic matter and water.

ACOUSTIC PROPERTIES OF THE SOURCE ROCK

I assume the source rock is a layered composite made of
illite, kerogen, oil, and water where the amount of oil deter-
mines the degree of maturity of the rock. The organic ma-
terial can be viewed as an amorphous (isotropic) substance
subject to liquefaction with increasing temperature and pres-
sure. I assume that the properties of the source rock depend on
the maturation stage (Vernik, 1994). From normal pore pres-
sure (immature rock) to high pore pressure (mature rock), the
kerogen is gradually transformed to oil. Mature rocks have
a more plastic behavior because of their higher hydrocarbon
content (HC); therefore, anelasticity is enhanced in this con-
text (Johnston, 1987). The presence of a more compliant and
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liquid-like medium (kerogen + oil and water) triggers new at-
tenuation mechanisms. Moreover, dissipation is also enhanced
by the creation of microcracks by hydrocarbon-generation-
induced overpressuring.

I consider illite transversely isotropic, the kerogen/oil/water
mixture isotropic, and both viscoelastic. Backus averaging gives
a TI equivalent medium described by five complex stiffnesses
c∗IJ (Schoenberg and Muir, 1989), where
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with cIJ the complex stiffnesses corresponding to the single
constituents. Denoting the proportion of pore material by φ
(kerogen, oil, and water), the weighted average of a physical
quantity a is defined as

〈a〉 = (1− φ)ai + φap, (2)

where the subscripts i and p indicate illite and pore material.
The kerogen content is given by

K = φSk = φ(1− So − Sw), (3)

where Sk is the kerogen saturation and where So and Sw are
the oil and water saturations. Note the real porosity, i.e., that
related to fluid content, is φ(So + Sw).

For illite, I assume two relaxation functions: M1 related to
dilatational deformations and M2 related to shear deformations
(Carcione et al., 1998). The complex stiffnesses for such TI and
viscoelastic medium are

cI (I ) = ĉI (I ) − D + BM1 + 4
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and
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3
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where ĉIJ are the unrelaxed (high-frequency-limit) elastic con-
stants.

Kerogen is described by the complex Lamé parameters given
by (Carcione et al., 1998)
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c55 = ρkV2
55k M2,

where V11k and V55k are the elastic high-frequency-limit com-
pressional and shear velocities and ρk is the density. Since the
medium is isotropic, c11= c33= c13+ 2c55 and c66= c55.

The following attenuation model assumes a single standard
linear solid element (Ben-Menahem and Singh, 1981) describ-
ing each anelastic deformation mode (identified by the sub-
script ν), whose (dimensionless) complex moduli can be ex-
pressed as

Mν(ω) =
√

Q2
ν + 1− 1+ iωQντ0√

Q2
ν + 1+ 1+ iωQντ0

, ν = 1, 2, (10)

where ω is the angular frequency. The quality factor associated
with each modulus is equal to the real part of Mν divided by
its imaginary part. At ω0= 1/τ0, the curve quality factor has
its highest value Qν . For a given angular frequency ω, I take
τ0ω= 1. The high-frequency limit corresponds to the elastic
case with Mν→ 1.

I consider that the kerogen/oil/water mixture consists of
oil/water bubbles embedded in a kerogen matrix. The bulk
modulus of the oil/water mixture is calculated by using Wood’s
equation (Wood, 1941):

So + Sw
Kow

= So

Ko
+ Sw

Kw

, (11)

where Ko and Kw are the complex moduli of oil and water.
The complex stiffnesses of the mixture can be calculated by
using the model developed by Kuster and Toksöz (1974). If
s= So+ Sw , the stiffnesses are
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, (13)

where Kk= c13+ 2c55/3 and µk= c55, with c13 and c55 given in
equation (9). The oil and water bulk moduli are given by

Ko = ρoV2
11oM1, Kw = ρwV2

11wM1, (14)

where V11o and V11w are the elastic high-frequency-limit com-
pressional velocities, M1 is the dimensionless dilatational mod-
ulus, and ρo and ρw are the densities of oil and water, respec-
tively. The density of the mixture is ρp= Skρk+ Soρo+ Swρw ,
and the rock density is ρ= (1− φ)ρi +φρp.

REFLECTION COEFFICIENTS OF THE
SOURCE-ROCK LAYER

The source-rock layer is located between two lossy isotropic
formations, as shown in Figure 1. The anelastic properties of the
upper and lower formations are described with the same model
used for kerogen [see equations (9) and (10)], where c13 and c55

play the role of the Lamé constants (see also the appendix). Let
us assume that a compressional wave is incident on the plane
of vertical symmetry of the orthorhombic source rock. Then,
the problem is that of propagation of q P–qS-waves decoupled
from the SH-waves. This has been solved by Rokhlin and Wang
(1992) for the purely elastic case. However, since the problem
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includes dissipation, I reformulate it from the begining using
a different approach based on complex slowness components
instead of propagation angles as in Rokhlin and Wang (1992).
The calculation is developed in the Appendix. For instance, for
an incident compressional wave the reflection and transmission
coefficient vector r = [RPP, RPS, TPP, TPS]> is given by

r = −(A1 − BA2)−1 iP, (15)

where A1 and A2 are the propagator matrices related to the
upper and lower media [equations (A-25) and (A-27), re-
spectively], B is the propagator matrix of the orthorhombic
layer [equation (A-10)], and iP is the incidence vector [equ-
ation (A-24)].

I assume that the incident wave is a homogeneous viscoelas-
tic wave for which the directions of propagation and attenua-
tion coincide. Then, the horizontal and vertical slowness com-
ponents are

s= sin θ/VP1, sP1 = cos θ/VP1, (16)

where θ is the propagation angle, measured with respect to the
z-axis, and VP1 is the complex velocity of the upper medium.

EXAMPLES

The material properties of the different media are given in
Table 1, where VIJ=

√
ĉIJ/ρ are the elastic (unrelaxed) veloci-

ties (here ρ denotes the density of a single constituent) and

FIG. 1. Diagram showing an orthorhombic layer (source rock)
embedded between two isotropic media (chalk and sandstone).

Table 1. Material properties.

V11 V33 V55 V66 V13 ρ

Medium (km/s) (km/s) (km/s) (km/s) (km/s) ε γ δ (g/cm3) Q1 Q2

Illite 4.7 4.36 2.46 2.77 2.43 0.08 0.1 −0.05 2.7 270 200
Kerogen 2.6 2.6 1.2 1.2 1.97 0 0 0 1.4 30 20
Oil∗ 0.73 0.73 0 0 0.73 0 0 0 0.9 10 –
Water 1.5 1.5 0 0 1.5 0 0 0 1.04 10 –
Chalk 4.1 4.1 2.5 2.5 2.08 0 0 0 2.8 200 150
Sandstone 3.6 3.6 1.9 1.9 2.36 0 0 0 2.7 80 50
∗Oil/bitumen (McCain, 1984).

where ε, γ , and δ denote the unrelaxed anisotropic coeffi-
cients introduced by Thomsen (1986). The properties of illite
and kerogen are obtained by fitting experimental data for the
Kimmeridge Shale provided by Vernik (1995). The clay in this
shale is predominantly represented by illite and kaolinite, with
the volume percent of smectite varying from 0 to 10% of the
rock. The low velocities for illite take into account a fluid soft-
ening effect by hydration of the smectite, and the values of
the quality factors are based on in-situ measurements for shale
at a depth of 1700 m (Hauge, 1981). Additional dissipation
mechanisms are englobed in the dilatational quality factor Q1,
assigned to kerogen and oil.

Since illite has a lenticular textural pattern, I assume that
only the stiffnesses parallel to bedding are affected. Following
Vernik (1994) I modify the stiffnesses c11 and c66 as

c11→〈c11〉, c66→〈c66〉, (17)

which incorporate the respective local constants of both illite
and kerogen.

The marine Kimmeridge Shale of the Draupne Formation
is located between 3480 and 3580 m, and its sonic log is dis-
played in Figure 2, together with total organic content (TOC)

FIG. 2. Log responses of the Kimmeridge Shale, Viking
Graben.
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values obtained from resistivity measurements (Vernik, 1995).
The relation between TOC (in percent) and kerogen content
(in percent) is

TOC = 0.75ρkK
ρi −K(ρi − ρk)

(18)

(Vernik and Nur, 1992). In the area investigated, the source
rock is embedded between a chalk and a sandstone with the
properties indicated in Table 1. All the examples consider a
dominant frequency f0= 25 Hz.

In the first example, I assume a porosity φ= 0.5, oil satura-
tion So= 0.2, and water saturation Sw = 0.2 (the real porosity
is 0.2) and then compute the PP- and PS-reflection coefficients
for different values of the layer thickness h (see Figure 3).
For near and medium offsets (from 0◦ to 30◦ and 40◦) and a
given layer thickness, the PP-reflection coefficient decreases
with increasing incidence angle, whereas the PS-reflection co-
efficient increases. A numerical solution of the reflection prob-
lem has been obtained with a 2-D anisotropic and viscoelastic
wave-modeling algorithm. This is based on the Fourier method
to compute the spatial derivatives and a fourth-order Runge-
Kutta technique to compute recursively the wavefield in time

FIG. 3. (a) PP- and (b) PS-reflection coefficients versus inci-
dence angle for different values of layer thickness h. The kero-
gen content is K = 0.3, and the oil and water saturations are
So= Sw = 0.2.

(Carcione, 1995). The algorithm uses two standard linear-solid
mechanisms to model the dilatational and shear relaxation
functions, respectively. The properties of the shale layer are
V11= 2897 m/s, V33= 1924 m/s, V13= 1245 m/s, V55= 914 m/s,
ρ= 1964 kg/m3, Q1= 100, and Q2= 20, corresponding to the
porosity and saturations indicated above. The numerical mesh
has 231× 231 points with a grid spacing DX = DZ = 10 m,
and the source is an explosion with a Ricker time history of
25 Hz dominant frequency, located 520 m above the inter-
face. Figure 4 shows a CDP gather of the vertical particle ve-
locity for (a) h= 0 m (i.e, no shale layer) and (b) h= 30 m.
The seismogram in Figure 4a has been enhanced by a factor
of six compared with the seismogram in Figure 4b. The first
event is the PP-reflection, and the second event is the PS-
reflection. The simulations are in good agreement with the
behavior of the curves shown in Figure 3. However, a rig-
orous approach requires a plane-wave decomposition of the

FIG. 4. Common midpoint (CMP) gather of the vertical parti-
cle velocity for (a) h= 0 m (i.e, no shale layer) and (b) h= 30 m.
The kerogen content is K = 0.3, and the oil and water satura-
tions are So= Sw = 0.2. The dominant frequency of the source
is 25 Hz. The seismogram in (a) has been enhanced by a factor
of six compared with the seismogram in (b).
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seismograms (for instance, a τ -p transform) and a comparison
of the maximum amplitudes to the corresponding reflection co-
efficients. In addition, one should consider that the reflection
coefficients are weighted by the polarization components [see
equations (A-14) and (A-15)].

The second example considers So= Sw = 0, no intrinsic loss,
and φ= K = 0.2. The shale consists only of illite and kerogen.
Figure 5 represents the PP- and PS-reflection coefficients for
different values of layer thickness h. The curves are qualita-
tively similar to those of Figure 3. The differences are mainly
from the presence of fluids, which modify the stiffness and
anelastic properties of the shale.

The following example considers a thickness of h= 25 m,
So= Sw = 0, and no intrinsic loss. In this case, I compute the
reflection coefficients for different kerogen concentrations
(Figure 6). The AVO behavior is similar to the case of vary-
ing layer thickness, that is, decreasing PP- and increasing
PS-reflection coefficients for moderate incidence angles.

The PP- and PS-reflection coefficients versus layer thickness
are represented in Figures 7a and 7b, respectively, where the
incidence angle is 20◦. The oscillatory character of the curves

FIG. 5. (a) PP- and (b) PS-reflection coefficients versus inci-
dence angle for different values of layer thickness h. The kero-
gen content is K = 0.2. There are no fluids (So= Sw = 0) and no
intrinsic loss mechanisms in the shale. The label corresponding
to each curve is the same as Figure 1.

implies an ambiguity of the coefficients with respect to the
layer thickness, since two or more values of h may correspond
to the same value of the reflection coefficient. The period of the
oscillations depends on the frequency and the layer thickness.
For instance, the second minimum in Figure 7a is obtained by
setting

ω0

Vph
h = π,

where ω0= 2π f0 and Vph is the phase velocity of the P-wave
in the layer along the the refracted ray. It can be verified that
Vph= 3500 m/s at 20◦ incidence angle, implying a minimum
value at h= 70 m. For increasing (decreasing) frequencies,
the period of the oscillations decreases (increases). The same
reasoning holds for the shear wave (Figure 7b). In practice,
however, this ambiguity can be solved, since for a layer thick-
ness greater than, say, πVph/(2ω0), the top and bottom seismic
events can in principle be distinguished.

Finally, Figures 8a and 8b show the PP- and PS-reflection
coefficients versus kerogen, where the incidence angle is 20◦.
There is a minimum value of the reflection coefficients at low
kerogen content, approximately at K0= 5%. Above this value

FIG. 6. (a) PP- and (b) PS-reflection coefficients versus inci-
dence angle for different values of the kerogen content K .
Saturation are So= Sw = 0. The layer thickness h is 25 m.



424 Carcione

the coefficients increase monotonically with K . It can be shown
that K0 does not depend on frequency and layer thickness but
on the material properties of the source-rock layer. For in-
stance, K0 increases for increasing V11 in the illite layers.

CONCLUSIONS

I investigated the AVO response of a source-rock layer em-
bedded between a chalk and a sandstone, a situation repre-
sented by the Kimmeridge Shale in the North Sea. Formally,
the problem is to find the PP- and PS-reflection coefficients
of a viscoelastic orthorhombic layer between two viscoelas-
tic isotropic half-spaces. The orthorhombic layer is considered
in its plane of symmetry; therefore, it is equivalent to a TI
medium.

The use of a limited number of parameters is essential for
implementing a robust AVO inversion method. Here, I ana-
lyzed the reflection coefficients of the source bed as a function
of the layer thickness and organic content. The results of the
numerical simulations can be summarized as follows.

1) For near and medium offsets (from 0◦ to 30◦ and
40◦) and a given layer thickness and kerogen content,

FIG. 7. (a) PP- and (b) PS-reflection coefficients versus layer
thickness h for θ = 20◦. The kerogen content K is 0.2. There
are no fluids (So= Sw = 0) and no intrinsic loss mechanisms in
the shale.

the PP-reflection coefficient decreases with increasing
incidence angle, whereas the PS-reflection coefficient
increases.

2) For a given kerogen content and incidence angle, the re-
flection coefficients versus layer thickness have an oscil-
latory character. The period of the oscillations depends
on the frequency of the signal. For instance, for seismic
waves of dominant frequency 25 Hz and 20◦ incidence
angle, the period is 70 m.

3) For a given layer thickness and incidence angle, there is a
minimum value of the reflection coefficients at low kero-
gen content—approximately at 5%. Above this value the
coefficients increase monotonically with kerogen con-
tent. The minimum does not depend on frequency and
layer thickness but on the material properties of the
source-rock layer.

A straightforward generalization of the method for comput-
ing the response of a single layer yields a reflectivity numerical
algorithm for computing the response of a stack of anisotropic
and viscoelastic layers. The next step of the research is to de-
sign a suitable AVO algorithm based on the present forward-
modeling tool.

FIG. 8. (a) PP- and (b) PS-reflection coefficients versus kero-
gen content K , with So= Sw = 0. The layer thickness h is 25 m.
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APPENDIX

REFLECTION AND TRANSMISSION COEFFICIENTS OF AN ORTHORHOMBIC
LAYER BETWEEN TWO ISOTROPIC HALF-SPACES

A plane wave with horizontal complex slowness s is inci-
dent on the symmetry plane of the orthorhombic layer from
above, as shown in Figure 1. Inside the layer the particle ve-
locity field is a superposition of upgoing and downgoing quasi-
compressional (P-) and quasi-shear (S-) waves of the form

v =
(
vx

vz

)
= iω

[
U−P

(
βP

−γP

)
exp(iωsPz)

+U−S

(
βS

−γS

)
exp(iωsSz)+U+P

(
βP

γP

)
exp(−iωsPz)

+U+S

(
βS

γS

)
exp(−iωsSz)

]
exp[iω(t − sx)], (A-1)

whereω is the frequency, t is the time variable, U− are upgoing-
wave amplitudes, U+ are downgoing-wave amplitudes,

β = pv

[
c∗55s2 + c∗33s2

z − ρ
c∗11s2 + c∗33s2

z + c∗55

(
s2 + s2

z

)− 2ρ

]1/2

, (A-2)

and

γ = ±pv

[
c∗11s2 + c∗55s2

z − ρ
c∗11s2 + c∗33s2

z + c∗55

(
s2 + s2

z

)− 2ρ

]1/2

,

(A-3)
where pv(y)1/2 denotes the principal value of the square root
of the complex number y. The signs + and − correspond to
the qP- and qS-waves, respectively, and sz is the vertical com-
plex slowness, equal to sP for qP-waves and to sS for qS-waves.
Moreover, β and γ are the horizontal and vertical complex
polarizations, respectively (see Carcione, 1997). The complex
slowness relation (Carcione, 1997) is solved for sz, given the

horizontal slowness s. It yields

sz = ± 1√
2

(
K1 ∓ pv

√
K 2

1 − 4K2K3
)1/2

, (A-4)

where

K1 = ρ
(

1
c∗55
+ 1

c∗33

)
+ 1

c∗55

[
c∗13

c∗33

(
c∗13 + 2c∗55

)− c∗11

]
s2,

K2 = 1
c∗33

(
c∗11s2 − ρ), K3 = s2 − ρ

c∗55
.

The signs correspond to

(+,−) downward qP-wave,

(+,+) downward qS-wave,

(−,−) upward qP-wave,

(−,+) upward qS-wave

[the first signs are explicitly given in equation (A-1)].
Normal stresses σ and strains are related by

iωσzz= c∗13vx,x + c∗33vz,z, (A-5)

iωσxz = c∗55(vx,z+ vz,x) (A-6)

(e.g., Carcione, 1997). Using equations (A-1), (A-5), and
(A-6), the velocity-stress vector, inside the layer at depth z,
can be written as

t(z) =


vx

vz

σzz

σxz

 = T(z)


U−P
U−S
U+P
U+S

 , (A-7)



426 Carcione

where

T(z)= iω


βP βS βP βS

−γP −γS γP γS

−ZP −ZS −ZP −ZS

WP WS −WP −WS



×


eiωsPz 0 0 0

0 eiωsSz 0 0

0 0 e−iωsPz 0

0 0 0 e−iωsSz

 , (A-8)

with

W = c∗55(γ s+ βsz) and Z = βc∗13s+ γ c∗33sz. (A-9)

As before, the signs corresponding to the propagation direc-
tions are explicitly given in equation (A-8).

Then, the fields at z= 0 and z= h are related by the following
equation:

t(0) = Bt(h), B = T(0)T−1(h), (A-10)

which plays the role of a boundary condition. Note that when
h= 0, B is the identity matrix.

Let the subscript 1 denote the upper half-space and the sub-
script 2 denote the lower half-space. Moreover, the subscripts I ,
R, and T denote the incident, reflected, and transmitted waves.
Using symmetry properties to define the polarization of the re-
flected waves, the particle velocities for a P-wave incident from
above the layer are given by

v1 = vPI + vPR + vSR, (A-11)

v2 = vPT + vST , (A-12)

where

vPI = iω
(
βP1 , γP1

)> exp
[
iω
(
t − sx− sP1 z

)]
, (A-13)

vPR = iωRPP

(
βP1 ,−γP1

)> exp
[
iω
(
t − sx+ sP1 z

)]
,

(A-14)

vSR = iωRPS

(
βS1 ,−γS1

)> exp
[
iω
(
t − sx+ sS1 z

)]
,

(A-15)

vPT = iωTPP

(
βP2 , γP2

)> exp
[
iω
(
t − sx− sP2 z

)]
,

(A-16)

vST = iωTPS

(
βS2 , γS2

)> exp
[
iω
(
t − sx− sS2 z

)]
,

(A-17)

where(
βP

γP

)
= 1√

s2 + s2
P

(
s

sP

)
,

(
βS

γS

)
= 1√

s2 + s2
S

(
sS

−s

)
,

(A-18)

with

s2 + sP2
i
= ρi

Ei
≡ 1

V2
Pi

, s2 + sS2
i
= ρi

µi
≡ 1

V2
Si

,

i = 1, 2, (A-19)

where VPi and VSi are the complex compressional and shear
velocities, respectively. On the other hand, the W- and Z-coef
ficients for the isotropic half-spaces are

WPi = 2µi sPi sVPi , WSi = µi
(
s2

Si
− s2)VSi , (A-20)

ZPi =
(
λi s

2 + Ei s
2
Pi

)
VPi , ZSi = −2µi sSi sVSi ,

(A-21)

where λi = Ei −2µi andµi are complex Lamé constants. Using
equations (A-11) and (A-13)–(A-17), the velocity-stress field
at z= 0 can be expressed as

t(0) = A1r+ iP, (A-22)

where

r = [RPP, RPS, TPP, TPS]>, (A-23)

iP = iω
[
βP1 , γP1 ,−ZP1 ,−WP1

]>
, (A-24)

and

A1 = iω


βP1 βS1 0 0

−γP1 −γS1 0 0

−ZP1 −ZS1 0 0

WP1 WS1 0 0

 . (A-25)

On the other hand, using equations (A-12) and (A-13)–(A-17),
the velocity-stress field at z= h can be expressed as

t(h) = A2r, (A-26)

where

A2 = iω

×


0 0 βP2 exp

(−iωsP2h
)

βS2 exp
(−iωsS2h

)
0 0 γP2 exp

(−iωsP2h
)

γS2 exp
(−iωsS2h

)
0 0 −ZP2 exp

(−iωsP2h
) −ZS2 exp

(−iωsS2h
)

0 0 −WP2 exp
(−iωsP2h

) −WS2 exp
(−iωsS2h

)

.
(A-27)

Combining equations (A-10), (A-22), and (A-26) yields a
matrix equation for the reflection and transmission coefficient
vector r:

(A1 − BA2)r = −iP. (A-28)

The reflection and transmission coefficients RSP, RSS, TSP, and
TSS for an incident S-wave have the same scattering matrix as
the P incident wave, but the vector iP is replaced by

iS = iω
[
βS1 , γS1 ,−ZS1 ,−WS1

]>
. (A-29)

In the absence of layer h (h= 0), B is the identity matrix, and
I get the system of equations obtained by Carcione (1997).
When the upper and lower half-spaces are the same medium,
the absolute value of the PP-reflection coefficient at normal
incidence is given by

2|R0 sin(kh)|∣∣R2
0 exp(−ikh)− exp(ikh)

∣∣ , (A-30)
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where

k = ω

VP
h, VP =

√
c∗33

ρ

and

R0 = ρVP − ρ1VP1

ρVP + ρ1VP1
,

with subscript 1 denoting the upper and the lower half-spaces.
It is straightforward to generalize this approach for computing
the seismic response of a stack of viscoelastic and anisotropic
layers. I consider N layers with stiffnesses c∗IJα and density ρα ,
each of them with thickness hα , such that the total thickness is

h =
N∑
α=1

hα. (A-31)

Matching boundary conditions at the interfaces between lay-
ers, it is easy to show that the matrix system giving the reflection
and transmission coefficients is[

A1 −
(

N∏
α=1

Bα

)
A2

]
r = −iP(S), (A-32)

where iP(S) is the incidence P(S) vector and

Bα = T(0)T−1(hα), α = 1, . . . , N. (A-33)

This recursive approach, which is the base of most reflectivity
algorithms, dates back to Thomson (1950) and is illustrated by
Brekhovskikh (1960, p. 61) for a stack of isotropic and elastic
layers.


