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Vector attenuation: elliptical polarization, raypaths
and the Rayleigh-window effect
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ABSTRACT
Waves in dissipative media exhibit elliptical polarization. The direction of the major
axis of the ellipse deviates from the propagation direction. In addition, Snell’s law
does not give the raypath, since the propagation (wavevector) direction does not
coincide with the energy-flux direction. Each of these physical characteristics depends
on the properties of the medium and on the inhomogeneity angle of the wave. The
calculations are relevant for multicomponent surveys, where the receivers are placed
on the ocean-floor. An example of the role played by inhomogeneous waves is given
by the Rayleigh-window effect, which implies a significant amplitude reduction of the
reflection coefficient of the ocean-bottom.

I N T R O D U C T I O N

Inhomogeneous plane waves in viscoelastic media exhibit el-
liptical polarization. The degree of ellipticity depends on the
inhomogeneity angle (the angle between propagation and at-
tenuation vectors) and the level of attenuation (Buchen 1971;
Borcherdt, Glassmoyer and Wennerberg 1986). There are two
types of S-wave (Krebes 1983a; Borcherdt and Wennerberg
1985; Borcherdt et al. 1986): type-I and type-II S-waves, which
are denoted by the symbols SV and SH in seismology (Buchen
1971), although this terminology can be misleading, due to
the elliptical character of one of these waves (Borcherdt and
Wennerberg 1985). SH-waves have a linear particle motion,
perpendicular to the plane made by the propagation and at-
tenuation vectors. The particle motion of the type-I S-wave
is elliptical as well as the P-wave particle motion (this can be
appreciated in Figs 1, 2, 3 and 7, which show diagrams illus-
trating the physics).

Winterstein (1987) analysed the variation of the inhomo-
geneity angle in an anelastic layered medium, and showed
that departures from elastic-wave raypaths can be large. In
offshore seismic exploration, the waves transmitted at the
ocean-bottom have a particular characteristic. According to
Snell’s law, their attenuation vectors are perpendicular to
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the ocean-bottom interface, since water is practically loss-
less. Only at normal incidence are the transmitted waves ho-
mogeneous. The inhomogeneity angle can reach values close
to 90◦ (Carcione 1999). Moreover, attenuation can be high,
i.e. the energy loss increases with increasing inhomogeneity an-
gle (Borcherdt et al. 1986). Quality factor (Q) measurements
for marine sediments have been given by Hamilton (1972),
with compressional-wave values as low as 5. S-wave Q-factors
are not reported, but for unconsolidated materials they should
be lower than P-wave Q-factors.

The question then arises of the degree of ellipticity of the
particle motion and the deviation of the major axis of the
ellipse with respect to the propagation direction. The ellip-
ticity and the deviation are evaluated here for typical marine
sediments and under-consolidated reservoir rocks (transition
between rocks and sediments). Another feature of wave prop-
agation in dissipative media is the fact that the energy flux
(ray) direction does not coincide with the propagation (phase-
velocity) direction. As in anisotropic media, the projection of
the energy-velocity vector on to the propagation direction is
equal to the magnitude of the phase velocity. With anisotropic
media, however, this relationship depends not only on the
properties of the medium but also on the degree of inho-
mogeneity of the wave. The latter is a characteristic that de-
pends on the transmission angle at discontinuities (Borcherdt
et al. 1986; Winterstein 1987). The degree of inhomogeneity is
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significant for large Q contrasts. When investigating the re-
flection and transmission of SH-waves, Krebes (1983b) found
that the transmitted wave is homogeneous when there is no Q

contrast, regardless of the value of Q.
The Rayleigh window is an example of the significant

role played by inhomogeneous viscoelastic waves. This is a
viscoelastic effect, implying that the energy reflected at the
boundary, at angles of incidence within that window, is sub-
stantially attenuated. Borcherdt et al. (1986) presented the-
oretical and experimental results for a water/stainless-steel
interface (e.g. Carcione 2001, p. 214). The phenomenon is
associated with elliptical particle motions and strong inho-
mogeneity angles of the transmitted waves. For P-waves, for
instance, the major axis of the ellipse, the propagation direc-
tion (wavenumber direction) and the energy-flux direction do
not coincide. The amplitude of minimum reflection depends
on the shear-wave loss, while the position of the window de-
pends mainly on the shear-wave velocity. These two effects
are largely independent. Moreover, the effect is important for
hard ocean-bottoms, when the crustal shear-wave velocity is
greater than that of the incident P-wave. Fortunately, the win-
dow occurs beyond the critical angles, so it is not a problem
for pre-critical AVO analyses.

The anelastic model may be relevant for ocean-bottom mul-
ticomponent surveys, since the presence of high ellipticities
and deviations can make it difficult to identify the P- and
S-wave events for polarization/wavefield separation or vector
fidelity analysis. In addition, the presence of loss affects the re-
flection and transmission coefficients of the ocean-bottom and
underlying interfaces. Therefore, the present analysis shows
how to quantify these effects in order to obtain a better inter-
pretation of multicomponent seismic data.

V E C T O R P L A N E WAV E S , P O L A R I Z AT I O N
A N D R AY PAT H S

The stress-strain relationship for an isotropic viscoelastic
medium is given by

σi j = E(t) ∗ ∂tεkkδi j + 2μ(t) ∗ (∂tεi j − ∂tεkkδi j ) (1)

(Christensen 1982), where σ ij and ε ij are the components of
the stress and strain tensors, E and μ are independent relax-
ation functions, and ∗ denotes time convolution. The relax-
ation functions correspond to the P-wave modulus E = λ + 2μ

and the rigidity modulus μ, where λ and μ are the Lamé pa-
rameters. For notational convenience, we use the same nota-
tion in the time and frequency domains.

In general, plane waves in anelastic media have a compo-
nent of attenuation along the lines of constant phase, which
means that their properties are described by two vectors, the
attenuation and propagation vectors, which do not point in
the same direction. In this section, we summarize the results
obtained by Buchen (1971) regarding particle motion associ-
ated with these vector plane waves (see also Borcherdt and
Wennerberg 1985; Carcione 2001, p. 86).

Let t, x and ω denote time variable, position vector and
angular frequency, respectively, and let i = √−1. We consider
the viscoelastic plane-wave solution for the complex potential,

� = �0 exp[i(ωt − k · x)], (2)

where

k = κ − iα = κκ̂ − iαα̂, (3)

with κ and α being the real wavenumber and attenuation
vectors, and κ̂ and α̂ being the respective unit vectors. They
express the magnitudes of both the wavenumber κ and the
attenuation factor α, and the directions of the normals to
planes of constant phase and planes of constant amplitude,
respectively.

Figure 1 represents the plane wave (2), with γ indicating the
inhomogeneity angle. If this angle is zero, the wave is called
homogeneous. We note that when κ̂ is parallel to α̂, we have

k = (κ − iα)κ̂ ≡ kκ̂, (4)

Figure 1 Inhomogeneous viscoelastic plane wave, where the wave-
number vector κ, the attenuation vector α and the inhomogeneity
angle γ are indicated. The planes of constant phase (along κ) and
constant amplitude (along α) are also shown. The inhomogeneity an-
gle is less than 90◦ for this type of wave.
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hence γ = 0 for homogeneous waves. In this case, the complex
wavenumber is

k = ω

vc
, (5)

where vc is the complex velocity.
Since the dispersion relationship for inhomogeneous waves

can be written as k · k = k2 (Buchen 1971), and κ · α =
κα cos γ , solving for κ and α yields

2κ2 = Re(k2) +
√

[Re(k2)]2 + [Im(k2)]2sec2γ ,

2α2 = −Re(k2) +
√

[Re(k2)]2 + [Im(k2)]2sec2γ . (6)

We first note that if Im(k2) = 0, then α = 0 and γ = π/2. This
case corresponds to an inhomogeneous elastic wave propa-
gating in a lossless material, generated by refraction (a head
wave), for instance. In a lossy material, γ must satisfy the
condition,

0 ≤ γ < π/2, (7)

because α �= 0 and cos γ = κ̂ · α̂ �= 0.
In the following, we investigate the nature of the P- and

S-wave elliptical polarizations, and obtain expressions for the
angles between the propagation direction and the major axis
of the ellipses.

Particle motion of the P-wave

The P-wave displacement vector can be expressed in terms of
the scalar potential � as

u = grad � = Re{−i�0k exp[i(ωt − k · x)]}. (8)

Using (3) and �0k = |�0k| exp[i arg(�0k)], we obtain

u = −|�0k| exp(−α · x) Re

[
i

(
vc

ω

)
k exp(iς )

]
, (9)

where

ς (t) = ωt − κ · x + arg(�0k), (10)

and (5) has been used (vc represents the P-wave complex ve-
locity.) We introduce the real vectors ξ1 and ξ2, such that(

vc

ω

)
k =

(
vc

ω

)
(κ − iα) = ξ1 + iξ2, (11)

where

ωξ1 = vRκ + vIα, ωξ2 = vIκ − vRα, (12)

and vR and vI denote the real and imaginary parts of vc; they
depend only on the intrinsic quality factor of the medium and
not on the degree of inhomogeneity of the wave.

These vectors are orthogonal, thus

ξ1 · ξ2 = 0, (13)

and they satisfy the condition,

ξ2
1 − ξ2

2 = 1. (14)

Substituting (11) into (9) gives

u = U0(ξ1 sin ς + ξ2 cos ς ), (15)

and eliminating ς yields

U2
1

ξ2
1

+ U2
2

ξ2
2

= 1, (16)

where

U1 = u · ξ1

ξ1U0
, U2 = −u · ξ2

ξ2U0
, (17)

with

U0 = |�0k| exp(−α · x). (18)

Equation (16) indicates that the particle motion is an ellipse,
with major axis ξ1 and minor axis ξ2 (see Fig. 2). The direc-
tion of rotation is from κ to α, with the angle between the

Figure 2 Particle motion of an inhomogeneous P-wave in an isotropic
viscoelastic medium (Buchen 1971). The propagation and attenua-
tion directions and their relationships with vectors ξ1 and ξ2 are also
shown. The ellipse degenerates into a straight line for a homogeneous
plane wave.
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propagation direction and the major axis of the ellipse given
by

cos ψ = κ · ξ1

κξ1
= 1

ωξ1
(vRκ + vIα cos γ ), (19)

where we have used (12).
For a homogeneous plane wave, the ellipse degenerates into

a straight line.

Particle motion of the type-I S-wave

The particle motion of the type-I S-wave shows similar charac-
teristics to the P-wave particle motion. Its displacement vector
can be expressed in terms of a vector potential,

Θ = �0n̂ exp[i(ωt − k · x)], (20)

as

u = curl Θ = Re{−i�0(n̂ × k) exp[i(ωt − k · x)]}, (21)

which lies in the plane of κ and α. The unit vector n̂ is perpen-
dicular to the (κ, α)-plane. To avoid ambiguities in the case
of homogeneous waves, we may assume that n̂ is defined as
perpendicular to the sagittal plane. For instance, in the case of
surface waves travelling in the half-space z ≥ 0, this plane is
defined by the direction of propagation (say, the x-direction)
and the orthogonal direction z.

For simplicity, we use the same notation as for the P-wave
but, here, the complex velocity vc is equal to the shear-wave
complex velocity. Using (3) and �0k = |�0k| exp[i arg (�0k)],
we obtain

u = −|�0k| exp(−α · x)Re

[
i

(
vc

ω

)
(n̂ × k) exp(iς )

]
, (22)

where

ς (t) = ωt − κ · x + arg(�0k). (23)

As before, vck/ω can be decomposed into real and imaginary
vectors as in (11). Let us define(

vc

ω

)
n̂ × k = ζ1 + iζ2, (24)

Substituting (24) into (22) gives

u = U0(ζ1 sin ς + ζ2 cos ς), (25)

where

U0 = |�0k| exp(−α · x) (26)

and

ζ1 = n̂ × ξ1, ζ2 = n̂ × ξ2, (27)

Figure 3 Particle motion of an inhomogeneous type-I S-wave in an
isotropic viscoelastic medium (Buchen 1971). The propagation and
attenuation directions and their relationships with vectors ξ1, ξ2, ζ1

and ζ2 are also shown. The ellipse degenerates into a straight line for
a homogeneous plane wave.

with ξ1 and ξ2 given by (12), but using the S-wave complex
velocity instead of the P-wave complex velocity. These vectors
have the properties

ζ1 · ζ2 = 0, ζ 2
1 − ζ 2

2 = 1. (28)

The particle motion is an ellipse, whose major and minor axes
are given by ζ1 and ζ2, respectively. The direction of rotation is
from κ to α, with the angle between the propagation direction
and the major axis of the ellipse given by

cos ψ = κ · ζ1

κζ1
= vIα sin γ

ωζ1
. (29)

Figure 3 shows a diagram of the S-wave particle motion. For
a homogeneous plane wave, the ellipse degenerates into a
straight line.

Raypaths

In this section, we obtain the angle between the propaga-
tion and ray directions, where the raypath is defined by the
energy-velocity direction. The phase- and energy-velocity vec-
tors do not point in the same direction in isotropic viscoelas-
tic media (Buchen 1971; Carcione 2001, p. 99). Phase- and
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energy-velocity vectors are equal only for homogeneous waves
(γ = 0). We do not consider the group velocity concept, since
it loses physical meaning in viscoelastic media (Ben-Menahem
and Singh 1981; Carcione 2001, p. 146).

Let vp and ve be the phase- and energy-velocity vectors. For
inhomogeneous waves, we have

κ̂ · ve = vp (30)

(Buchen 1971; Carcione 2001, p. 99), where κ̂ is a unit vector
along the phase-velocity (propagation) direction, and

vp = ω

κ
(31)

is the magnitude of the phase velocity.
The energy-velocity vector is defined as the ratio of the time-

averaged Umov-Poynting vector (energy-flux vector) to the
time average of the total energy density. It is given by

ve =
ω

[
ρω2κ + 4(κ × α) × (μIκ − μRα)

]
ρω2κ2 + 4μR|κ × α|2 (32)

(Buchen 1971; Carcione 2001, p. 98–99), where ρ is the den-
sity and μR and μI are the real and imaginary parts of the
complex shear modulus μ.

Then, using the preceding equations, the cosine of the angle
between the propagation and ray directions is given by

cos φ = vp

ve
=

κ
(
ρω2 + 4μR|κ̂ × α|2

)
∣∣∣ρω2κ + 4(κ × α) × (μIκ − μRα)

∣∣∣ . (33)

Using the expansion (a × b) × c = b(c · a) − a(b · c), (33)
becomes

cos φ =
κ
(
ρω2 + 4μRα2 sin2

γ
)

√
A2κ2 + B2α2 + 2ABκα cos γ

, (34)

where

A = ρω2 − 4μIκα cos γ + 4μRα2 and

B = 4(μIκ
2 − μRκα cos γ ). (35)

The energy- and phase-velocity directions do not coincide
with the directions defined by the axes of the polarization el-
lipse. Note that in the homogeneous lossless case, the energy-
velocity vector is equal to the phase-velocity vector and
the particle motion is linear, with the polarization parallel
(P-waves) and perpendicular (S-waves) to those vectors.

C O N S TA N T- Q M O D E L

We consider a constant-Q model to describe attenuation.
Kjartansson’s model of constant Q (Caputo and Mainardi

1971; Kjartansson 1979; Carcione 2001, p. 73), extended to
isotropic viscoelastic media, implies the following P- and S-
wave complex velocities:

vP =
√
E(ω)

ρ
and vS =

√
μ(ω)

ρ
. (36)

The dynamic moduli E and μ are given by

E(ω) = E0

(
iω
ω0

)2ηE

and μ(ω) = μ0

(
iω
ω0

)2ημ

, (37)

where

ηE = 1
π

tan−1

(
1

QP

)
, ημ = 1

π
tan−1

(
1
QS

)
, (38)

QP and QS are the P-wave and S-wave quality factors, respec-
tively, and ω0 is a reference frequency. We see that Q > 0 is
equivalent to 0 < η < 1/2. The moduli E0 and μ0 can be ex-
pressed in terms of the P-wave and S-wave velocities, cP and
cS, as

E0 = ρc2
P cos2

(
πηE

2

)
and μ0 = ρc2

S cos2

(
πημ

2

)
, (39)

where cP and cS are the P-wave and S-wave phase velocities at
the reference frequency ω0 (Carcione 2001, p. 74).

The quality factor for homogeneous plane waves (γ = 0) is
given by

Q = −Re(k2)
Im(k2)

=
Re

(
v2

c

)
Im

(
v2

c

) (40)

(Carcione 2001, p. 87), where Q is QP or QS, depending on the
wave type. Equation (40), together with (5) and (36), implies

QP = Re(E)
Im(E)

and QS = Re(μ)
Im(μ)

, (41)

which do not depend on frequency and correspond to the qual-
ity factors of homogeneous waves.

E X A M P L E S

Let us consider the case, cP = 1900 m/s, cS = 900 m/s, ρ =
1300 kg/m3, QS = 0.6QP, and the following values of QP: 5,
10, 15, 20 and 30. Assume a reference frequency ω0 = 2π ×
30 Hz and a frequency ω = ω0. At this frequency, the P-wave
and S-wave phase velocities are equal to cP and cS, respec-
tively. We define the ellipticity as (ξ 1 − ξ 2)/ξ 1 for P-waves, and
(ζ 1 − ζ 2)/ζ 1 for type-I S-waves. Homogeneous waves (γ = 0)
have an ellipticity equal to 1, indicating linear polarization.
Figure 4(a,b) shows the ellipticity and deviation of the major
axis (with respect to the propagation direction) of the P-wave
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Figure 4 Ellipticity and deviation of the major axis of the P-wave
(with respect to the propagation direction) versus the inhomogeneity
angle γ . The ellipse becomes a circle when the inhomogeneity angle
approaches 90◦, and the ellipticity is defined such that it is equal to 1
for linear particle motions and 0 for circular particle motions.

versus the inhomogeneity angle γ . Figure 5(a,b) shows the
curves corresponding to the S-wave. The value of QP is in-
dicated in the figures. The ellipse becomes a circle when the
inhomogeneity angle approaches 90◦. Deviations from linear
polarization are important for low Q-values, particularly for
the S-waves. Figure 6 shows the angle between the propagation
(phase) direction and ray (energy) direction versus the inho-
mogeneity angle γ and various values of the P-wave quality
factor, for a P-wave (a) and a type-I S-wave (b).

Numerical simulation of the Rayleigh-window effect

One of the most striking features of the anelastic model is the
prediction of the phenomenon termed the anelastic Rayleigh
window. Brekhovskikh (1960, p. 34) observed that the ampli-
tude reflection coefficient measured for a water/steel interface
was not consistent with that predicted by the elastic theory.
Beyond the elastic S-wave critical angle, there is a reduction
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Figure 5 Ellipticity and deviation of the major axis of the type-I S-
wave (with respect to the propagation direction) versus the inhomo-
geneity angle γ . The ellipse becomes a circle when the inhomogeneity
angle approaches 90◦.

in amplitude of the reflected P-wave in a narrow window.
Because this occurs for an angle where the apparent phase
velocity of the incident wave is near that of the Rayleigh sur-
face wave, the phenomenon is called the ‘Rayleigh window’
(Carcione 2001, p. 214). The corresponding reflection coeffi-
cient was measured experimentally by Becker and Richardson
(1972), and their ultrasonic experiments were verified with an
anelastic model.

The problem was investigated by Borcherdt et al. (1986),
who found that the Rayleigh window should be observable in
appropriate sets of wide-angle reflection data and that this
can be useful in estimating attenuation for various ocean-
bottom reflectors. Figure 7 shows a homogeneous acoustic
wave, incident on the ocean-bottom interface, and the corre-
sponding reflected and transmitted waves. The wavenumber
and attenuation vectors are indicated. Except at normal inci-
dence, the transmitted waves are inhomogeneous with ellipti-
cal particle motion and the inhomogeneity angle is equal to the
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Figure 6 Angle between the propagation direction and ray direction
versus the inhomogeneity angle γ : (a) for a P-wave; (b) for a type-I
S-wave.

transmission angle. In fact, because of the very weak attenu-
ation of water, the attenuation vectors have negligible mag-
nitude in the ocean, and are approximately perpendicular to
the interface in the ocean crust (viscoelastic Snell’s law; see
e.g. Carcione 2001, p. 100).

The presence of inhomogeneous viscoelastic waves accounts
for the existence of the anelastic Rayleigh window. Let us
consider an example, where the properties of water are cP =
1490 m/s, ρ = 1000 kg/m3 and QP = 10 000 at 20 Hz. The
unrelaxed velocities of the ocean-bottom are cP = 4850 m/s
and cS = 2800 m/s, the density is ρ = 2600 kg/m3, and
the quality factors at 20 Hz are QP = 1000 and QS = 10.
In this case, anelasticity is described by the Zener model
(Ben-Menahem and Singh 1981). The analytical expression
for the reflection and transmission coefficients can be found in
Becker and Richardson (1972) and Carcione (2001, p. 213).
When the angle of incidence approaches the elastic S-wave
critical angle, the inhomogeneity angle of the the transmit-

Figure 7 Homogeneous acoustic wave incident on the ocean-bottom
interface, and reflected and transmitted waves. The wavenumber and
attenuation vectors are indicated. Except at normal incidence, the
transmitted waves are inhomogeneous with elliptical particle motion.

ted S-wave increases asymptotically to a value near but not
equal to 90◦, and the ellipticity decreases substantially. This is
shown in Fig. 8, where the inhomogeneity angle and elliptic-
ity of the transmitted S-wave are plotted versus the angle of
incidence. As can be seen, at the location of the window (an
angle of incidence of nearly 37◦), there is a transition where
the wave becomes highly inhomogeneous. Similarly, for an-
gles of incidence in the window, the transmitted P-wave has
an inhomogeneity angle near to but less than 90◦ and the par-
ticle motion becomes elliptical with very low ellipticity values
(Borcherdt et al. 1986).

We perform a numerical evaluation of the reflection coeffi-
cient versus incidence angle from synthetic data generated by
a viscoelastic modelling algorithm. We generate synthetic seis-
mograms with a time-domain modelling algorithm, based on
the viscoelastic wave equation and a domain decomposition
technique, where two grids model the fluid and the solid sub-
domains (Carcione 1996). Anelasticity is described in terms of
memory variables (Carcione 2001, p. 110). The solution on
each grid is obtained by using the Runge–Kutta method as a
time-stepping algorithm and the Fourier and Chebyshev differ-
ential operators to compute the spatial derivatives in the hor-
izontal and vertical directions, respectively (Carcione 1996;
Carcione 2001, p. 320). The technique to obtain the reflec-
tion coefficients from synthetic seismograms has been used by
Kindelan, Seriani and Sguazzero (1989) for lossless media.
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Figure 8 Inhomogeneity angle (a) and ellipticity (b) of the transmitted
S-wave at the ocean-bottom interface versus the angle of incidence.

Figure 9 shows the numerical evaluation of the P-wave re-
flection coefficient (a) and phase angle (b), where the dotted
line corresponds to the prediction of the elastic theory. The
mismatch between theory and numerical experiments is due
to the fact that the receivers are located 1.3 m above the in-
terface. There is then a phase shift of nearly 12◦ between the
incident wave and the reflected wave. As can be seen, the elas-
tic theory fails to predict the correct physical behaviour for
angles greater than 30◦.

It is difficult to observe the Rayleigh-window phenomenon
in the space–time domain, since the reflected pulse is masked
by the head wave, because the window is located beyond the
critical angle. The results in Fig. 9 constitute a confirmation
of the correctness of the anelastic model, and the significant
role that inhomogeneity plays in wave propagation.
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Figure 9 The Rayleigh window at the ocean-bottom interface. P-wave
reflection coefficient (a) and phase angle (b) versus angle of incidence.
The symbols, i.e. circles, triangles and asterisks, correspond to a nu-
merical evaluation of the reflection coefficient at 19, 20 and 21 Hz,
respectively. The dotted line corresponds to the prediction of the elas-
tic theory.

C O N C L U S I O N S

As shown by Winterstein (1987), small changes in the inho-
mogeneity angle γ of the incident wave around the angle of
incidence can translate to very large changes in γ of waves in
deeper layers. Reflected and transmitted P- and S-waves may
have magnitudes of γ near 90◦ when reaching the ocean-floor
(or the surface in on-shore exploration). This fact and the
presence of strong attenuation in the upper layers imply sig-
nificant deviations from linear polarization. Inhomogeneous
waves exhibit an anisotropic-like behaviour of the energy-
and phase-velocity vectors, which, in addition, depends on
the degree of inhomogeneity. The latter is a property of the
wave and not of the medium. The raypath direction does not
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coincide with the propagation direction; that is, Snell’s law
does not give the ray direction, which is given by the energy-
velocity vector. Deviations between the propagation and ray
directions can reach angles of 20◦ for unconsolidated sedi-
ments and inhomogeneity angles close to 90◦. These calcu-
lations may be relevant for ocean-bottom multicomponent
surveys, where the presence of high ellipticities can make the
identification of P- and S-wave events difficult when using
methods based on polarization measurements. An illustration
of the significant role that inhomogeneity can play in seismol-
ogy is given by the Rayleigh-window effect, where the trans-
mitted P- and S-waves reach inhomogeneity angles close to 90◦

and the respective particle motions depart significantly from
linearity, implying low ellipticity values.
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