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A spectral numerical method for electromagnetic diffusion
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ABSTRACT

I present a pseudospectral explicit scheme that can
simulate low-frequency electromagnetic (EM) propa-
gation in the earth. This scheme solves linear periodic
parabolic equations, having accuracy within machine
precision, both temporally and spatially. The method is
based on a Chebyshev expansion of the evolution oper-
ator, with the spatial derivatives computed via a stag-
gered Fourier pseudospectral technique. The results
match analytical solutions of the initial-value problem
and the Green’s function. An example of the EM field
produced by a set of magnetic sources in a heteroge-
neous model illustrates the algorithm’s performance.

INTRODUCTION

Electromagnetic (EM) modeling and propagation at low
frequencies (EM diffusion) is used in a number of applica-
tions: geothermal exploration (Pellerin et al., 1996), evalua-
tion of hydrocarbon resources by mapping subseafloor resis-
tivity (Everett, 1990; Unsworth et al., 1993; Eidesmo et al.,
2002), EM induction in boreholes and logging while drilling
(Badea et al., 2001; Wang and Signorelli, 2004), magnetotel-
luric problems (Mackie et al., 1993; Zyserman and Santos,
2000; Yin and Maurer, 2001; Mitsuhata and Uchida, 2004), and
geoelectrical surveys for groundwater and mineral exploration
(Oristaglio and Hohmann, 1984).

Most existing modeling schemes are restricted to plane lay-
ers or have finite accuracy because of the low-order approx-
imations of the time and space derivatives, since they are
based mostly on finite-difference and finite-element meth-
ods. A spectral method for hyperbolic equations, based on a
Chebyshev expansion, has been proposed by Tal-Ezer (1986).
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Applications of this method can be found in Tal-Ezer and
Kosloff (1984) (Schrödinger equation), Tal-Ezer et al. (1987)
(acoustic-wave equation), Carcione et al. (1988) and Tal-Ezer
et al. (1990) (viscoelastic equation), Muir et al. (1992) (elas-
tic wave equation), and De Raedt et al. (2003) (Maxwell’s
wave equation). Most of these authors use the standard
Fourier method to compute the spatial derivatives (Kosloff
and Baysal, 1982). To my knowledge, the only spectral al-
gorithm proposed for the Maxwell diffusion equation is that
of Druskin and Knizhnerman (1994). It is based on a global
Krylov subspace (Lanczos) approximation of the solution in
the time and frequency domains.

In this work, I develop a spectral modeling method for
the propagation of low-frequency signals. The algorithm uses
an explicit scheme based on a Chebyshev expansion of the
evolution operator in the domain of the eigenvalues of the
propagation matrix (Tal-Ezer, 1989). The spatial derivates are
computed with the staggered Fourier pseudospectral method
(Fornberg, 1996; Carcione, 1999). The algorithm has solved
the 1D telegraph equation for electric drillstring telemetry
(Carcione and Poletto, 2003). The Chebyshev method, either
for parabolic or hyperbolic problems, has spectral accuracy in
time and space and therefore avoids numerical dispersion, a
characteristic feature of low-order schemes.

THE TRANSVERSE ELECTRIC (TE) AND
TRANSVERSE MAGNETIC (TM)

MAXWELL’S EQUATIONS

In 3D vector notation, Maxwell’s equations, neglecting dis-
placement currents, are

∇ × E = −µ∂t(H + M) (1)

and

∇ × H = σ (E + J) (2)
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(Sanders and Reed, 1986), where E and H are the electric
and magnetic fields, J is the electric source, M is the magnetic
source, µ is the magnetic permeability, σ is the electrical con-
ductivity, and ∂t denotes a partial derivative with respect to
the time variable. In general, these quantities depend on the
Cartesian coordinates (x, y, z) and the time variable t. Equa-
tions 1 and 2 constitute six scalar equations with six scalar un-
knowns, since M and J are known.

Maxwell’s equations can be written in terms of the electric
field E or the magnetic field H as

σ∂tE = −∇ × (µ−1∇ × E) − ∂t(∇ × M) − σ∂tJ (3)

and

µ∂tH = −∇ × (σ−1∇ × H) − µ∂tM + ∇ × J. (4)

Let us assume that the material properties and the source are
invariant in the y-direction. Then, the propagation can be de-
scribed in the (x, z)-plane, and Ex,Ez, and Hy are decoupled
from Ey, Hx , and Hz, corresponding to the so-called transverse
magnetic (TM) and transverse electric (TE) equations, respec-
tively.

Writing equation 3 in explicit Cartesian form results in

σ∂t

(
Ex

Ez

)
=

(
∂zµ

−1∂z −∂zµ
−1∂x

−∂xµ
−1∂z ∂xµ

−1∂x

) (
Ex

Ez

)

−∂t

(
−∂zMy

∂xMy

)
− σ∂t

(
Jx

Jz

)
, (5)

where ∂x and ∂z denote the spatial derivatives. Equation 4 is

µ∂tHy = ∂x(σ−1∂xHy) + ∂z(σ−1∂zHy)

−µ∂tMy + (∂zJx − ∂xJz). (6)

The respective TE equations are

σ∂tEy = ∂x(µ−1∂xEy) + ∂z(µ−1∂zEy)

− ∂t(∂zMx − ∂xMz) − σ∂tJy (7)

and

µ∂t

(
Hx

Hz

)
=

(
∂zσ

−1∂z −∂zσ
−1∂x

−∂xσ
−1∂z ∂xσ

−1∂x

) (
Hx

Hz

)

−µ∂t

(
Mx

Mz

)
+

(
−∂zJy

∂xJy

)
. (8)

I consider equations 6 and 7 to obtain the Green’s function
and the solution from an initial condition (see Appendix A).

PHASE VELOCITY, ATTENUATION
FACTOR, AND SKIN DEPTH

The phase velocity vp and attenuation factor α can be ob-
tained from the complex velocity (see equation A-4) as

vp = [Re(v−1)]−1 and α = −ωIm(v−1) (9)

(Carcione, 2001), respectively, where Re and Im denote real
and imaginary parts. The skin depth, the effective distance
of penetration of the signal, is the distance d for which

exp(−αd) = 1/e, where e is Napier’s number. Using equa-
tion A-4 yields

vp = 2πf d and α = 1
d

, (10)

and

d =
√

a

πf
, (11)

where f = ω/2π is the frequency and where

a = 1
µσ

. (12)

NUMERICAL ALGORITHM

Equations 5–8 have the form

∂w
∂t

= Gw + s, (13)

where w is the field vectors (Ex,Ez)�, Hy, Ey , and (Hx, Hz)�,
respectively; s is the source vector (the last two terms in each
equation); and G is the propagation matrix:

G = σ−1

(
∂zµ

−1∂z −∂zµ
−1∂x

−∂xµ
−1∂z ∂xµ

−1∂x

)
, (14)

G = µ−1(∂xσ
−1∂x + ∂zσ

−1∂z), (15)

G = σ−1(∂xµ
−1∂x + ∂zµ

−1∂z), (16)

and

G = µ−1

(
∂zσ

−1∂z −∂zσ
−1∂x

−∂xσ
−1∂z ∂xσ

−1∂x

)
(17)

for equations 5, 6, 7, and 8, respectively.

Spatial differentiation

The algorithm uses the staggered Fourier method, which
consists of a spatial discretization and calculation of spatial
derivatives using the fast Fourier transform (Canuto et al.,
1987; Fornberg, 1996; Carcione, 2001). Staggered operators
evaluate derivatives between gridpoints. For instance, if �x

is the grid (cell) size and kx is the wavenumber compo-
nent, a phase shift exp(±ikx�x/2) is applied when comput-
ing the x-derivative, where i = √−1. Then, ∂xσ

−1∂x is calcu-
lated as D−

x σ−1D+
x , where D±

x is the discrete operator and ±
refers to the sign of the phase shift. The spatial differentia-
tion requires interpolation of the material properties at half-
gridpoints (e.g., Carcione, 1999).

Chebyshev expansion for time evolution

Considering a discretization with N gridpoints, system 13
becomes a coupled system of L×N ordinary differential equa-
tions at the gridpoints, where L is the dimension of the ma-
trix G. The solution to equation 13 subject to the initial condi-
tion w(0) = w0 is formally given by

wN (t) = exp(tGN )w0
N +

∫ t

0
exp(τGN )sN (t − τ )dτ,

(18)
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where w0
N is the initial-condition field vector, exp(tGN ) is the

evolution operator, and the subscript N indicates that those
quantities are discrete representations of the respective con-
tinuous quantities. I consider a separable source term sN =
aNf (t), where aN is the spatial distribution of the source and
the function f (t) is the source time history. A discrete solution
of equation 18 is achieved by approximating the evolution op-
erator. For instance, in the absence of a source, the solution
can be expressed by

wN (t) = HM(tGN )w0
N, (19)

where HM is a polynomial of degree M that converges to
exp(tGN ) in the domain that includes all eigenvalues of oper-
ator tGN . I use the following Chebyshev expansion of exp(x):

exp(x) =
∞∑

k=0

ak(bt)Tk

( x

bt

)
, (20)

(Abramowitz and Stegun, 1972, p. 71; Tal-Ezer, 1989), where
ak are the expansion coefficients, Tk is the Chebyshev polyno-
mial of order k, and b is the absolute value of the eigenvalue of
matrix GN having the largest negative real part. (As we shall
see later, the eigenvalues are located on the real axis and their
real part is negative.) For convergence, |x| ≤ bt and x lies on
the real axis. The expansion coefficients are given by

ak(u) = ckIk(u), c0 = 1, ck = 2, k ≥ 1; (21)

Ik is the modified Bessel function of order k.
Let us perform the change of variable

y = 1
bt

(x + bt), −1 ≤ y ≤ 1. (22)

From equations 20 and 22,

exp(x) = exp(−bt) exp(bty) =
∞∑

k=0

bkTk(y), (23)

where

bk = ak exp(−bt) = ck exp(−bt)Ik(bt) (24)

for initial conditions without source and

bk = ck

∫ t

0
exp(−bτ )Ik(bτ )f (t − τ )dτ (25)

in the presence of a source (without initial conditions). The
reason for the change of variable x to y is to avoid calculat-
ing Bessel functions when the argument bt is large, since this
may exceed the dynamic range of the computer. Instead, the
quantity exp(−bt)Ik(bt) is computed.

For computations, expansion 23 must be truncated. Thus,
the M degree polynomial approximation of exp(x) is

HM(x) =
M∑

k=0

bkTk(y(x)). (26)

Because x in equation 20 is replaced by tGN , the variable y de-
fined in equation 22 is represented by an operator FN defined
as

FN = 1
b

(GN + bI), (27)

where I is the identity matrix of dimension L. In the absence
of sources, the discrete solution is

wM
N (t) =

M∑
k=0

bk(t)Tk(FN )w0
N . (28)

The value Tk(FN )w0
N is computed by using the recurrence re-

lation of the Chebyshev polynomials,

Tk(u) = 2uTk−1(u) − Tk−2(u), k ≥ 2, (29)

and

T0(u) = 1, T1(u) = u (30)

(Abramowitz and Stegun, 1972). Hence,

Tk(FN )w0
N = 2FNTk−1(FN )w0

N − Tk−2(FN )w0
N, k ≥ 2

(31)
and

T0(FN )w0
N = w0

N, T1(FN )w0
N = FNw0

N . (32)

The algorithm is a three-level scheme since it uses the recur-
rence relation. The first time step should be larger than the
duration of the source. Results at small time steps to compute
time histories at specified points of the grid do not require sig-
nificant additional computational effort. A slight modification
of equation 28 can be used:

wM
N (t ′) =

M∑
k=0

bk(t ′)Tk(FN )w0
N (33)

for t < t ′. This calculation does not require significantly more
computations since the terms involving the spatial derivatives
Tk(FN )w0

N do not depend on the time variable and are calcu-
lated in any case. Only the coefficients bk are time dependent,
such that additional sets of Bessel functions need to be com-
puted.

My presented algorithm has infinite accuracy in time and in
space, and it is highly efficient, since the stability condition re-
quires a time step �t = O(1/N) compared with �t = O(1/N2)
for finite-order explicit schemes. Moreover, the error in time
decays exponentially. Tal-Ezer (1989) carries out an error and
stability analysis for the equation ∂tU − G∂xxU = 0, where
G = 1 and N = 64. If M indicates the minimum number of ap-
plications of the operator tFN wN , he shows that the Cheby-
shev method requires M = 96 to be stable against M = 768
for a modified Euler scheme. Regarding accuracy, he obtains
M = 70 (present method) versus M = 20 000 (Euler method)
for N = 32 and t = 1 and for an L2-error equal to 10−6. Tal-
Ezer’s (1989) last test involves a variable coefficient problem
with G = a(x)∂xx + b(x)∂x + c(x). An L2-error less than 10−8

requires M = 100 (present method) versus M = 480 (Euler
method) for N = 64 and t = 1. Despite the 1D character of the
equations, these verifications are general regarding the dimen-
sionality of the space, since the spatial derivates are performed
by the pseudospectral Fourier method, which has been widely
used and tested for hyperbolic equations (e.g., Tal-Ezer et al.,
1987).
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Eigenvalues of the propagation matrix

In the Fourier domain, the time derivative is replaced by
iω, where ω is the angular frequency; the spatial derivatives
∂x and ∂z are replaced by ikx and ikz, where kx and kz are the
components of the wavenumber vector. Then the eigenvalue
equation in the complex λ-domain (λ = iω), corresponding to
the eigensystems represented by the propagation matrices 14
and 17, is

λ(λ + ak2) = 0, (34)

where a is defined in equation 12 and k2 = k2
x + k2

z . The eigen-
values are λ = 0 and λ = −ak2 and therefore are real and
negative. On the other hand, the eigenvalue corresponding to
matrices 15 and 16 is

λ = −ak2. (35)

The maximum wavenumber components are the Nyquist
wavenumbers, which for grid spacings �x and �z are kx =
π/�x and kz = π/�z. They are related to the highest harmon-
ics of the spatial Fourier transform. Hence, the value of b is

b = aπ2
(

1
�x2

+ 1
�z2

)
. (36)

As Tal-Ezer (1989, eq. 4.13) shows, the polynomial order
should be O(

√
bt). I find that

M = β
√

bt (37)

is enough to obtain stability and accuracy, where β ranges
from 5 to 6. On the other hand, a safe value of M can be de-
termined by finding the range in which the coefficients bk dif-
fer significantly from zero (for instance, by checking the ratio
b0/bm).

Absorbing boundaries

The boundaries of the mesh may produce wraparounds re-
sulting from the periodic properties of the Fourier method.
By analogy with the wave equation, the algorithm uses
the classical damping approach for hyperbolic problems to
avoid these nonphysical artifacts (Kosloff and Kosloff, 1986;
Carcione, 2001). The method modifies the propagation matrix
as G → G−γ I in the absorbing strips around the mesh, where
γ is the absorbing parameter. The complex velocity satisfies
v2 = iω2a/(ω − iγ ) (see equation A-4), implying damping for
γ > 0.

One could argue that this damping approach cannot be
applied to diffusion fields because there are components of
the signal traveling with almost infinite velocity. In fact, from
equations 10 and 11, the phase velocity is proportional to

√
ω.

The fact that sources are band-limited implies that the sig-
nal travels at finite velocity; in any case, the diffusion time
of the maximum of the signal is finite. Consider the Green’s
function A-5. The maximum in the signal at any distance r
arrives at time t = µσr2/4. The signal that arrives at much
earlier times is exponentially small and can be neglected. Pot-
ter (1973) refers to �t = µσ�x2/4 as the grid diffusion time,
setting the maximum time step for explicit solutions based on
finite differences.

This simple damping method avoids wraparounds and re-
flections from the boundaries quite efficiently (see Figure 7 ex-
ample). However, applying this wave-equation type of damp-
ing may not be strictly correct because the field near the ab-
sorbing strips could differ from the field of an unbounded
(infinite-grid) medium. For the heat equation, it is equivalent
to placing a frame of ice around the model. In this case, the
frame is a metal of high conductivity. Therefore, further work
is required to improve the absorbing boundary, preferably
based on the use of nonperiodic boundary conditions such as
Chebyshev spatial differentiation and decomposition of the
diffusion field into incoming and outgoing components (e.g.,
Kosloff et al., 1990).

Solution approach

I solve equations 6 and 7 for Hy and Ey , respectively, and
then compute E and H by using equations 1 and 2. This gives(

Ex

Ez

)
= 1

σ

(
−∂zHy

∂xHy

)
(38)

and (
Hx

Hz

)
= 1

iωµ

(
∂zEy

−∂xEy

)
. (39)

Equations 5 and 8 have the additional eigenvalue λ = 0, which
generates a static (nonpropagating) mode.

Discussion

Two basic approaches solve the diffusion equation: explicit
and implicit. By performing spectral analysis of the evolution
matrix G, one can show that an explicit algorithm is related
to a polynomial approximation of the function exp(tG) in the
domain of eigenvalues of G, while the implicit approach is re-
lated to a rational approximation of that function. Since the
domain of the eigenvalues is the negative real axis, the ap-
propriate approach is to use rational basis functions. How-
ever, using rational functions results in the need to solve linear
systems. Unless one has a good preconditioner, solving lin-
ear systems is highly time consuming. This is the main rea-
son that researchers are still exploring the explicit approach
(e.g., Gallopoulos and Saad, 1992; Moret and Novati, 2001).
As Gallopoulos and Saad state, “In recent years there has
been a resurgence of interest in explicit methods for solv-
ing parabolic differential equations. . . . The main attraction
of explicit methods is their simplicity. . . . Both the Krylov
and Chebyshev algorithms (Chebyshev is used in this paper)
are highly efficient explicit algorithms. The advantage of the
Chebyshev method over the Krylov approach is that it does
not use inner products. This feature makes the Chebyshev al-
gorithm highly attractive in parallel computing.

SIMULATIONS

Let us consider a homogeneous medium with σ = 1 mS/m
and µ = µ0 = 4π10−7 H/m (magnetic permeability of a vac-
uum). The phase velocity and skin depth versus frequency are
shown in Figure 1. The velocity increases and the skin depth
decreases with frequency. Moreover, as can be inferred from
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equation 11, the velocity and skin depth decrease for increas-
ing conductivity or magnetic permeability. This means, for in-
stance, that the diffusion process is slower in saltwater than in
freshwater.

I now compare numerical and analytical solutions for the
initial-value problem and the Green’s function by solving
equation 7 with a number of gridpoints nx = nz = 120
and grid spacing �x = �z = 10 m. The initial condition
is given by equation A-14, with k̄ = 0.1/m and �k = k̄/2.
Figures 2a and 3a show snapshots of the electric field (nor-
malized) at 3 and 30 µs, respectively. The computations use
bt = 470, M = 130, and bt = 4700, M = 410, respectively. The
numerical (dots) and analytical solutions (solid line) along
a straight line passing through the maximum of the signal
are compared in Figures 2b and 3b. The amplitude ratio be-
tween the snapshots in Figures 2 and 3 is 1/0.04; the error is
0.0004% and 0.02%, respectively. (The error is computed as
the L2-norm of the difference divided by the number of grid-
points.)

Next, I consider a transient source with an initial central fre-
quency f̄ = ω̄/(2π) = 1 MHz and �ω = ω̄/2. The comparison
is shown in Figure 4 for 4 and 20 µs propagation times. The

Figure 1. (a) Phase velocity and (b) skin depth versus fre-
quency for a medium with µ = µ0 and σ = 1 mS/m.

Figure 2. (a) Snapshot of the electric field (normalized) at 3 µs
as a result of the initial condition A-14. (b) Comparison of the
numerical and analytical solutions (dots and solid line, respec-
tively) along a straight line passing through the maximum of
the signal. The medium has µ = µ0 and σ = 1 mS/m.

Figure 3. (a) Snapshot of the electric field (normalized) at
30 µs as a result of the initial condition A-14. (b) Compari-
son of the numerical and analytical solutions (dots and solid
line, respectively). The medium has µ = µ0 and σ = 1 mS/m.
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first snapshot is computed by using coefficients 25; the snap-
shot at 30 µs is computed by starting with the solution at the
first time step as the initial condition. The coefficients bk are
given by equation 24 in the latter case.
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Figure 4. Snapshots of the electric field (normalized) at (a) 4
and (b) 20 µs from source A-7. The plots show the numerical
and analytical solutions (dots and solid line, respectively). The
medium has µ = µ0 and σ = 1 mS/m.
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Figure 5. Inhomogeneous model with various magnetic
sources denoted by Roman numerals (the sign indicates the
polarity of each source). The dashed lines indicate the limits
of the absorbing strips. Since the Fourier method is periodic,
the strip for the upper boundary is placed at the bottom. The
reference conductivity is σ0 = 1 mS/m.

The second simulation considers the model shown in Fig-
ure 5, corresponding to an idealized inhomogeneous medium
where various magnetic sources (denoted by Roman numer-
als) are placed (the sign indicates the polarity of each source).
The dashed lines indicate the limits of the absorbing strips.
Since the Fourier method is periodic, the strip for the upper
boundary is placed at the bottom, with the same properties
of the first row. The reference conductivity is σ0 = 1 mS/m.
I solve equation 6 with a number of gridpoints nx = 180 and
nz = 120 and grid spacing �x = �z = 60 m. The first time
step is 80 µs, corresponding to the duration of the source,
which has an initial central frequency of 100 kHz. Then, 20
time steps of 120 µs are used, starting with the solution at
the first time step as initial condition. The computations use
bt = 350, M = 70, and bt = 620, M = 150, respectively.
The number of gridpoints in the absorbing strips is 18, and
the damping parameter is γ = 105/s.

Snapshots of the magnetic field (normalized) at 80 and
2480 µs, are shown in Figure 6. The Roman numerals refer

Figure 6. Snapshot of the magnetic field (normalized) at (a)
80 and (b) 2480 µs, corresponding to the model shown in
Figure 5. The Roman numerals correspond to the magnetic
sources. The maximum amplitude ratio (a)/(b) is 50/1.
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to the magnetic sources. The field resulting from source V
has a wider extension than those of the other sources. This
is on account of the lower phase velocity of the field. For in-
stance, at 50 kHz the velocities at locations IV and V are 7
and 22 km/ms, respectively. The loss of the higher frequen-
cies is evident in Figure 6b, since the media filter the higher
wavenumbers, as can be deduced from the analytical solution

Figure 7. Snapshots of the electric-field component Ez (nor-
malized) at 2480 µs for (a) a grid spacing �x = �z = 30 m and
grid size 360 × 240 and (b) a grid spacing �x = �z = 60 m and
grid size 180 × 120. (c) Error as a function of the grid spacing
for seven simulations of the same model (Figure 5).

A-13. The performance of the absorbing strips can be recog-
nized in the snapshots at 2480 µs. The fields caused by sources
I and II reenter the mesh on the other side but are completely
damped beyond a few gridpoints.

Finally, seven simulations are performed for the model
shown in Figure 5, varying the grid spacing from �x = �z =
30 m to �x = �z = 60 m in 5-m steps. The grid sizes vary from
360 × 240 to 180 × 120, respectively. The wavefield between
gridpoints is obtained by interpolation using the Fourier basis.
Figure 7 shows snapshots of the electric-field component Ez

for grid spacings of �x = �z = 30, and �x = �z = 60 m. Fig-
ure 7c shows the error as a function of the grid spacing. The
error is computed as the L2-norm of the difference between
the reference snapshot (Figure 7a) and the snapshot with
grid spacing Dx(= Dz), divided by the L2-norm of the ref-
erence snapshot. The CPU time ratio between the simulations
shown in Figures 7a and 7b is nearly 10 (on the basis of one
CPU).

CONCLUSIONS

I have developed a numerical method for modeling EM dif-
fusion in the earth, which allows general material variability
and provides snapshots and time histories of the electric and
magnetic fields. Modeling at low frequencies requires an al-
gorithm for parabolic differential equations. The algorithm is
based on a Chebyshev expansion of the evolution operator.
The use of this spectral method overcomes two drawbacks:
low accuracy and stringent stability conditions, since the error
in time decays exponentially.

Better alternatives to Chebyshev methods are basis func-
tions of the form ai/(A + biI), which are more adequate
than polynomials to approximate exp(A), where the domain
of eigenvalues is wide and on the negative real axis. To my
knowledge, nobody has published an algorithm that utilizes
this approach of solving linear systems, which can be very
complicated and time consuming. The rational approach is
very attractive only when one has a good preconditioner for
the linear system. This is the main reason that effort is put on
explicit algorithms like the one presented. The main advan-
tage of the Chebyshev approach is that it does not need inner
products. This is highly beneficial, especially in parallel com-
puting. This type of problem — the number of matrix-vector
multiplications needed to reach a time level using standard
explicit algorithms (e.g., Runge-Kutta) — is proportional to
N−2, where N is the number of gridpoints. Using the Cheby-
shev algorithm, the number of matrix-vector multiplications is
proportional only to N−1. This is why my algorithm is valu-
able and should be used in cases where solving linear systems
is highly time consuming.

Further research involves extension to three spatial dimen-
sions, which should be straightforward with generalization to
the anisotropic case and incorporation of air/ground effects.
In principle, air can be modeled as a very-low-conductivity
medium.

The presented algorithm can also be used to solve the dif-
fusion equation related to other physical phenomena, such as
fluid flow for reservoir simulation, slow (Biot)-wave energy
diffusion, NMR resonance in porous media, and heat conduc-
tion.
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APPENDIX A

ANALYTICAL SOLUTIONS

The modeling can be initiated either by a source or by an
initial condition. Following are the respective analytical solu-
tions.

Green’s function

The Green’s function corresponding to equation 7 and a
source current

Jy(x, z, t) = Iδ(x)δ(z)[1 − H (t)] (A-1)

is the solution of

∂tEy = a�Ey + Iδ(x)δ(z)δ(t), (A-2)

where δ denotes the Dirac function, H (t) is the Heaviside
function, � is the Laplacian, and a is given by equation 12.
I assume there are no magnetic sources and a homogeneous
medium. Equation A-1 corresponds to shutting off a steady
current I at t = 0.

A Fourier transform to the frequency domain implies the
substitution ∂t → iω. The diffusion equation can then be writ-
ten as a Helmoltz equation:

�Ey +
(

ω2

v2

)
Ey = −(I/a)δ(x)δ(z), (A-3)

where

v =
√

aω

2
(1 + i) (A-4)

is the complex velocity.
Equation A-2 has the following solution (Green’s function):

Ey(r, t) =
(

I

4πat

)
exp

[−r2

4at

]
, (A-5)

where

r =
√

x2 + z2 (A-6)

(Carslaw and Jaeger, 1984; Polyanin, 2003).
The time-domain solution for a source f (t) is obtained with

a numerical time convolution between expression A-5 and
f (t). I use

f (t) = exp
[
−�ω2(t − t0)2

4

]
cos[ω̄(t − t0)], (A-7)

where t0 is a delay time, ω̄ is the central frequency, and 2�ω

is the characteristic width of the spectrum. In this case, the

coefficients bk defined in equation 25 must be computed nu-
merically; the spatial distribution is a(x) = δ(x − x0), where x0

is the source location. For f (t) = δ(t), equation 24 is obtained.

Solution to initial condition

Equation 7 corresponding to the initial-value problem is

∂tEy = a�Ey. (A-8)

First, I assume the initial condition E0 = Ey(x, z, 0) =
δ(x)δ(z). A triple transform of equation A-8 to the Laplace
and wavenumber domains yields

Ey(kx, kz, p) = 1
p + a

(
k2
x + k2

z

) , (A-9)

where I use the property ∂tEy → pEy − E0(kx, kz), E0(kx,

kz) = 1.
To obtain Ey(kx, kz, t), I compute the inverse Laplace trans-

form of equation A-9,

Ey(kx, ky, t) = 1
2πi

∫ c+i∞

c−i∞

exp(pt)dp
p + a

(
k2
x + k2

z

) , (A-10)

where c > 0. There is one pole:

p0 = −a
(
k2
x + k2

z

)
. (A-11)

Use of the residue theorem gives the solution

Ey(kx, kz, t) = exp
[−a(k2

x + k2
z )t

]
H (t). (A-12)

The solution for a general initial condition E0(kx, kz, 0) is
given by

Ey(kx, kz, t) = E0(kx, kz, 0) exp[−a(k2
x + k2

z )t]H (t),

(A-13)

where I use equation A-12. (In the space domain the solution
is the spatial convolution between expression A-12 and the ini-
tial condition.) The effect of the exponential on the right-hand
side of equation A-13 is to filter the higher wavenumbers. The
solution in the space domain is obtained by a discrete inverse
Fourier transform using the fast Fourier transform.

Here, I consider the initial condition,

E0(x, z, 0) = exp
{

−�k2

4
[(x − x0)2 + (z − z0)2]

}
× cos[k̄(x − x0)] cos[k̄(z − z0)], (A-14)

which has a Gaussian shape in the wavenumber domain,

E0(kx, kz, 0) = π

�k2
F (kx)F (kz) exp[−i(kxx0 + kzz0)],

(A-15)
where

F (k) = exp

[
−

(
k + k̄

�k

)2
]

+ exp

[
−

(
k − k̄

�k

)2
]

,

(A-16)

(x0, z0) is the location of the peak, k̄ is the central wavenum-
ber, and 2�k is the width of the spectrum, such that F (k̄ ±
�k) = F (k̄)/e.
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