
T
u

J

m
t
p
�
a
t
m
b
f
p
T

©

GEOPHYSICS, VOL. 74, NO. 1 �JANUARY-FEBRUARY 2009�; P. T1–T11, 7 FIGS., 1 TABLE.
10.1190/1.3008548
heory and modeling of constant-Q P- and S-waves
sing fractional time derivatives
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ABSTRACT

I have developed and solved the constant-Q model for the
attenuation of P- and S-waves in the time domain using a
new modeling algorithm based on fractional derivatives. The
model requires time derivatives of order m � 2� applied
to the strain components, where m � 0,1,. . . and �
� �1/��tan�1�1/Q�, with Q the P-wave or S-wave quality
factor. The derivatives are computed with the Grünwald-Let-
nikov and central-difference fractional approximations,
which are extensions of the standard finite-difference opera-
tors for derivatives of integer order. The modeling uses the
Fourier method to compute the spatial derivatives, and there-
fore can handle complex geometries and general material-
property variability. I verified the results by comparison with
the 2D analytical solution obtained for wave propagation in
homogeneous Pierre Shale. Moreover, the modeling algo-
rithm was used to compute synthetic seismograms in hetero-
geneous media corresponding to a crosswell seismic experi
ment.

INTRODUCTION

Constant-Q models provide an efficient parameterization of seis-
ic attenuation in rocks. By reducing the number of parameters,

hey allow an improvement of seismic inversion. Moreover, there is
hysical evidence that attenuation is almost linear with frequency
therefore Q is constant� in many frequency bands �e.g., McDonal et
l., 1958�. Bland �1960� and Kjartansson �1979� discuss a linear at-
enuation model with the required characteristics, but the idea is

uch older �Scott-Blair, 1949�. Kjartansson’s constant-Q model is
ased on a creep function of the form t2� , where t is time and � �1
or seismic applications. This model is completely specified by two
arameters, i.e., the phase velocity at a reference frequency and Q.
herefore, it is mathematically much simpler than any model with
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early constant Q, as, for instance, a spectrum of Zener models �e.g.,
arcione, 2007�. Because of its simplicity, Kjartansson’s model is
sed in many seismic applications, mainly in its frequency-domain
orm. Mainardi and Tomirotti �1997� interpret the constant-Q model
n terms of fractional derivatives and obtained its 1D Green’s func-
ion. The wave equation becomes parabolic because the phase veloc-
ty has no upper bound.

Seismic modeling in inhomogeneous media can, in principle, be
erformed in the frequency domain. However, the method is expen-
ive when using differential formulations, because it involves solu-
ion of many Helmholtz equations. The alternative is to compute the
olution through a time-convolution, but the resulting algorithm is
elatively expensive. A purely differential — as opposed to integro-
ifferential — formulation can be obtained by using fractional deriv-
tives �Caputo and Mainardi, 1971; Hanyga, 2002�.

Fractional derivatives appear also in Biot theory, related to memo-
y effects in porous rocks at seismic frequencies with � � 1/4
Gurevich and Lopatnikov, 1995; Lu and Hanyga, 2005� and at low-
nd high-frequency limits �Fellah and Depollier, 2000�. Fractional
erivatives can be computed with the Grünwald-Letnikov �GL� and
entral-difference �CD� approximations, which are extensions of the
tandard finite-difference �FD� approximation for derivatives of in-
eger order �Grünwald, 1867; Letnikov, 1868; Gorenflo, 1997�. Un-
ike the standard operator of differentiation, the fractional operator
ncreases in length as time increases, because it must keep the mem-
ry effects. However, after a given time period the operator can be
runcated �short memory principle�.

The case of P-wave propagation has been solved by Carcione et al.
2002�. Instead of time derivatives of order 2, they use derivatives of
rder 2 � 2� with 0�� �1/2 in the dilatation formulation of the
ave equation, and order 2� in the dilatation-stress formulation.
ere, I extend the theory and the algorithm to model the propagation

nd attenuation of P- and S-waves. In the first part of this work, I re-
iew the constant-Q model and calculate the complex moduli, phase
elocities, and attenuation factors versus frequency. I then recast the
iscoelastic wave equation in the time domain in terms of fractional
erivatives, and obtain the GL and CD approximations. Then, I veri-

y 2008; published online 12 December 2008.
ail: jcarcione@ogs.trieste.it.
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T2 Carcione
y the accuracy of the time discretization by comparing the exact and
he FD phase velocities and attenuation factors. The model is dis-
retized on a mesh, and the spatial derivatives are calculated with the
ourier method by using the fast Fourier transform. This approxima-

ion is infinitely accurate for band-limited periodic functions with
utoff spatial wavenumbers smaller than the cutoff wavenumbers of
he mesh. Finally, I test the modeling algorithms with an analytical
olution for a 2D homogeneous medium, and illustrate the method
ith seismic modeling in inhomogeneous media.

DYNAMICAL EQUATIONS

The conservation of linear momentum for a linear anelastic medi-
m can be written as

� j� ij � f i � �� tt
2ui �1�

Auld, 1990�, where � ij are the components of the stress tensor �i, j
1, . . . ,3�, ui are the components of the displacement vector, � is

he mass density, and f i are the components of the body forces per
nit volume. Summation over repeated indices is assumed in equa-
ion 1.

The initial conditions are

i�0,x� � � tui�0,x� � 0, ui�t,x� � 0, for t � 0, �2�

here x is the position vector. Moreover, the source function satis-
es the condition

f i�t,x� � 0, for t � 0. �3�

introduce the constitutive relation

� ij � � ijkl � � t� kl, �4�

here * denotes time convolution, � ijkl are the components of the
elaxation tensor, and � kl are the components of the strain tensor,
hich can be obtained in terms of the displacement components as

� kl �
1

2
�� kul � � luk� . �5�

he most general isotropic representation of the fourth-order relax-
tion tensor is

� ijkl�t� � �E�t� � 2	�t��
 ij
 kl � 	�t��
 ik
 jl � 
 il
 jk�

�6�

Christensen, 1982�, where E and 	 are independent relaxation func-
ions. They correspond to the P-wave modulus E � � � 2	 and the
igidity modulus 	, where � and 	 are the Lamé constants in lossless
edia. For clarity, I keep the same notation for the relaxation func-

ions.
Substituting equation 6 into the constitutive equation 4 gives

� ij � E�t� � � t� kk
 ij � 2	�t� � �� t� ij � � t� kk
 ij� . �7�

onstant-Q model

Let us denote a stress component of the isotropic stress-strain rela-
ion 7 by � and the strain components by � . Each term in equation 7
as the form

� �t� � � �t� � � � �t� , �8�
t
here � is the relaxation function representing E or 	.
Kjartansson’s model of constant Q assumes �Caputo and Main-

rdi, 1971; Kjartansson, 1979; Carcione et al., 2002�

� �t� �
M0

� �1 � 2� �
� t

t0
��2�

H�t� , �9�

here M0 is a bulk modulus, � is Euler’s Gamma function, t0 is a ref-
rence time, � is a dimensionless parameter, and H is the Heaviside
tep function. The parameters M0, t0, and � have precise physical
eanings, which will become clear in the following analysis. Imple-
enting relaxation functions such as equation 9 in seismic modeling

equires that at each step one has to perform a time integration �con-
olution�, which is more computationally expensive than introduc-
ng additional field variables �Carcione et al., 1988�. In addition, in
his case �a constant-Q power-law�, one has to deal with 1/t singu-
arities. Therefore, a purely differential formulation based on frac-
ional derivatives is used to limit the number of computations.

The Fourier transform of equation 8 is

�̃ �
� � F�� t� �t���̃ �
� � M�
��̃ �
� , �10�

here F is the Fourier transform operator, M�
� is the complex
odulus, and the tilde denotes the Fourier transform. For Kjartans-

on’s model,

M�
� � M0� i



0
�2�

, �11�

here i � ��1, and 
0 � 1/t0 is the reference frequency. It is
hown in Kjartansson �1979� and Carcione et al. �2002� that the qual-
ty factor associated with the complex modulus M is

Q �
Re�M�
Im�M�

�
1

tan��� �
. �12�

oreover, the bulk modulus M0 is related to the reference wave ve-
ocity c0 by the formula

M0 � �c0
2 cos2���

2
� . �13�

t follows from equation 12 that Q is independent of frequency, so
hat

� �
1

�
tan�1� 1

Q
� �14�

arameterizes the attenuation level. Hence, Q�0 is equivalent to 0
� �1/2.

onstitutive equation with fractional derivatives

The convolutional constitutive equation 8 can be calculated in
erms of fractional derivatives �Caputo and Mainardi, 1971; Pod-
ubny, 1999�. It is equivalent to

� � CD2�� , �15�

here D2� is the time fractional derivative of order 2� ,

C � M 
�2� . �16�
0 0
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Modeling loss with fractional derivatives T3
n terms of fractional derivatives, the constitutive equation 7 be-
omes

� ij � CED2� P� kk
 ij � 2C	D2� S�� ij � � kk
 ij� , �17�

here

CE � E0
0
�2� P, C	 � 	0
0

�2� S, �18�

ith E0 and 	0 the reference moduli, defined at the same reference
requency 
0, and

� P �
1

�
tan�1� 1

QP
�, � S �

1

�
tan�1� 1

QS
� , �19�

here QP and QS are the P-wave and S-wave quality factors, respec-
ively. The moduli E0 and 	0 can be expressed in terms of the P-wave
nd S-wave velocities cP and cS as

0 � �cP
2 cos2��� P

2
� and 	0 � �cS

2 cos2��� S

2
� �20�

see equation 13�.

hase velocities and attenuation factors

The complex wave velocities can be obtained in terms of the com-
lex moduli as

VP ��E�
�
�

and VS ��	�
�
�

. �21�

he dynamic moduli E and 	 are given by equation 11, viz.,

E�
� � E0� i



0
�2� P

, and 	�
� � 	0� i



0
�2� S

. �22�

The phase velocity is the frequency 
 divided by the real part of
he complex wavenumber �
 /VP and 
 /VS, respectively�. Then,

phase
P � 	Re� 1

VP
�
�1

and cphase
S � 	Re� 1

VS
�
�1

. �23�

hey simply become

cphase
P � cP� 



0
�� P

and cphase
S � cS� 



0
�� S

. �24�

he attenuation factors are given by

�P � � 
 Im� 1

VP
� � tan��� P

2
�sgn�
�




cphase
P

�S � � 
 Im� 1

VS
� � tan��� S

2
�sgn�
�




cphase
S .

�25�

quations of motion in 2D space

Following is the wave equation in explicit form in the 2D case,
onsidering the �x,z�-plane. From equations 1 and 17, I have
� tt
2u1 � ��1�� 1� 11 � � 3� 13 � f1�

� tt
2u3 � ��1�� 1� 13 � � 3� 33 � f3� �26�

nd

� 11 � CED2� P�� 11 � � 33� � 2C	D2� S� 33 � f11,

� 33 � CED2� P�� 11 � � 33� � 2C	D2� S� 11 � f33,

� 13 � 2C	D2� S� 13 � f13, �27�

ith

� 11 � � 1u1,

� 33 � � 3u3,

� 13 �
1

2
�� 1u3 � � 3u1� , �28�

nd I have introduced the moment-tensor components f11, f33, and
f13.

NUMERICAL ALGORITHM

I consider two explicit time-integration schemes to solve equa-
ions 26 and 27. They are based on the backward GL and CD frac-
ional derivatives, which have first-order and second-order accura-
y, respectively.

The GL fractional derivative of a function f is

h� � � f�t�
� t� � 


j�0

J

��1� j��

j
� f�t � jh� , �29�

here h is the time step, and J � t/h � 1. The derivation of this ex-
ression can be found, for instance, in Carcione et al. �2002�.

On the other hand, the CD fractional derivative is given by

h� � � f�t�
� t� � 


j�0

J

�� 1� j��

j
� f	t � � j �

�

2
�h
 , �30�

f � is a quasi-even number, and

2h� � � f�t�
� t� � 


j�0

J

�� 1� j��

j
��� � 2j � 1

� � j � 1
�

� f	t � jh �
h�� � 1�

2

 , �31�

f � is a quasi-odd number, as are the cases in the problem treated
ere. Equation 30 is a generalization of the usual CD formula, and
quation 31 is derived in Appendix A. I assume these expressions in
he fractional case, when � is very close to odd and even numbers,
.e., � � 1,3,5,. . . and � � 2,4,6,. . ., respectively. If � is a natural
umber, I have the classical derivatives. In this case J � � in equa-
ions 29 and 30, and J � � � 1 in equation 31. The GL and CD ap-
roximations are of order O�h� and O�h2�, respectively �Tuan and
orenflo, 1995�.
The fractional derivative of f at time t depends on all the previous

alues of f . This is the memory property of the fractional derivative,
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T4 Carcione
elated to field attenuation. The binomial coefficients are negligible
or j exceeding an integer J. This allows truncation of the sum at j

L, L�J, where L is the effective memory length.
Fractional derivatives of order 2� P�1 and 2� S�1 require large
emory resources and computational time because the decay of the

inomial coefficients in equation 29 is slow �Carcione et al., 2002�
nd the effective memory length L is large. I increase the order of the
erivative by applying a derivative of order m to equations 26 and
7. The exponent laws DmD2� P � Dm�2� P and DmD2� S � Dm�2� S

old in this case because of the initial data 2 and condition 3. The re-
ult is

Dm�2u1 � ��1�� 1q11 � � 3q13 � Dmf1� ,

Dm�2u3 � ��1�� 1q13 � � 3q33 � Dmf3� �32�

nd

q11 � CE�� 1D�u1 � � 3D�u3� � 2C	� 3D�u3 � Dmf11,

q33 � CE�� 1D�u1 � � 3D�u3� � 2C	� 1D�u1 � Dmf33,

q13 � C	�� 1D�u3 � � 3D�u1� � Dmf13, �33�

here

� � m � 2� P and � � m � 2� S. �34�

t is enough to take m � 1 to have a considerable saving in memory
torage compared to m � 0.

ime stepping based on the GL derivative

I discretize equations 32 and 33 at t � nh with m � 1. For in-
tance,

h3�D3u�n � un�1 � 3un � 3un�1 � un�2 �35�

nd

h��D�u�n � un � 

j�1

J

�� 1� j��

j
�un�j , �36�

here I have used a right-shifted FD expression for the third deriva-
ive, which corresponds to replacing t � jh by t � �j � 1�h in
quation 29 �e.g., Gorenflo and Mainardi, 1998; Tadjeran and Meer-
chaert, 2007�.

The time-stepping algorithm is as follows:

Compute �D�u1�n, �D�u3�n, �D�u1�n, and �D�u3�n using 36.
Compute �q11�n, �q33�n, and �q13�n from 33.
Compute the RHS of equation 32.
Update the field variables �n � 1→n,n→n � 1, . . . �.
Obtain u1

n�1 and u3
n�1 using equation 35 and repeat the algorithm.

ime-stepping based on the CD derivative

I discretize equation 32 at t � nh, with m � 1, using A-4 in Ap-
endix A. For instance,
2h3�D3u�n � un�2 � 2un�1 � 2un�1 � un�2. �37�

he discretization of equation 33 makes use of A-4. For instance,

2h��D�u�n � un�1 � 

j�1

J

�� 1� j��

j
�

��� � 2j � 1

� � j � 1
�un�j�1, �38�

here I have assumed that un��2j���1�/2 � un�j�1 because � � 1.
In this case, un�2 is computed at each time step. The time-stepping

lgorithm is as follows:

Compute �D�u1�n, �D�u3�n, �D�u1�n, and �D�u3�n using 38.
Compute �q11�n, �q33�n, and �q13�n from 33.
Compute the RHS of equation 32.
Obtain u1

n�2 and u3
n�2 using equation 37.

Update the field variables �n � 1→n,n→n � 1, . . . � and repeat
the algorithm.

The spatial derivatives are calculated with the Fourier method by
sing the fast Fourier transform �FFT� �Kosloff and Baysal, 1982;
arcione, 2007�. The Fourier pseudospectral method has spectral
ccuracy for band-limited signals �the approximation tends expo-
entially to the exact value�. Then, the results are not affected by spa-
ial numerical dispersion. In the case of inhomogeneous media, the
lgorithm employs the staggered Fourier method �Fornberg, 1996�.
taggered operators evaluate derivatives between grid points. For

nstance, if �x is the grid �cell� size and k1 is the wavenumber com-
onent, a phase shift exp��ik1�x/2� is applied when computing the
-derivative. Then, � 1� �1� 1 is calculated as D1

�� �1D1
�, where D1

�

s the discrete operator and � refers to the sign of the phase shift. The
patial differentiation requires the interpolation of the material prop-
rties at half grid points. The method is given in detail in Appendix
.

SIMULATIONS

Attenuation measurements in a relatively homogeneous medium
Pierre Shale� were made by McDonal et al. �1958� near Limon,
olorado. They report a constant-Q behavior with attenuation

P � 0.12f and �S � 1.0f where � is given in dB per 1000 ft and
he frequency f in Hz. I use SI units, such that 1 Np �neper�

20/ln�10� dB and 1ft � 0.3048 m. Conversion of units implies
�dB/1000 ft� � �ln�10�/�20 � 0.3048�� � �Np/km� � 0.3778 �

Np/km�. For low-loss solids, the quality factor is

Q �
� f

�c
,

ith � given in nepers per unit length �Toksöz and Johnston, 1981�.
ecause cP and cS are approximately 7100 ft/s �2164 m/s� and
630 ft/s �802 m/s�, the quality factors are QP � 32 and QS � 10.
hen, � P � 0.01 and � S � 0.03. I consider a reference frequency

f0 � 
0/�2�� � 100 Hz, corresponding to the dominant frequency
f the seismic source used in the experiments.
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Modeling loss with fractional derivatives T5
I evaluate the accuracy of the fractional derivatives by computing
he FD phase velocity and attenuation factor in Appendix C. The
- and S-wave phase velocities and attenuation factors versus fre-
uency f � 
 /2� are shown in Figures 1 and 2, respectively, where
he black squares represent the experimental data, the solid line is the
xact value, and the dashed and dotted lines correspond to m � 0
nd m � 1, using the CD fractional derivative. In both cases, the
emory length is 70 and the time step is h � 0.2 ms.As can be seen,

he m � 1 case is more accurate for the same memory length. In this
ase, the decay of the binomial coefficients in the series expansion is
aster. This is illustrated in Figure 3, which shows the logarithm of
he absolute value of the binomial coefficients versus the summation
ndex. The GLderivative is the most used in fractional calculus. I use
he CD derivative because of its better accuracy. The advantage
f the first one is the fact that it can be used for any order of

)

)

igure 1. P-wave phase velocity �a� �equation 24� and attenuation
actor �b� �equation 25� versus frequency in Pierre Shale �solid line�
QP � 30 and QS � 10�. The dashed and dotted lines correspond to
he CD fractional derivative with m � 0 and m � 1, respectively
calculated using equations C-3 and C-4�. The memory length is 70.
he squares represent the experimental data reported by McDonal et
l. �1958�.
)

)

igure 2. S-wave phase velocity �a� �equation 24� and attenuation
actor �b� �equation 25� versus frequency in Pierre Shale �solid line�.
he dashed and dotted lines correspond to the CD fractional deriva-

ive with m � 0 and m � 1, respectively �calculated using equa-
ions C-3 and C-4�. The memory length is 70. The squares represent
he experimental data reported by McDonal et al. �1958�.
igure 3. Decimal logarithm of the absolute value of the binomial
oefficients versus the summation index for the CD approximation
ith m � 0 and m � 1 �solid and dashed lines�. The order of the de-

ivative is m � 2� , with � � 0.01.
P P
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T6 Carcione
he derivative, while the second one requires the order to be a quasi-
dd or a quasi-even number. For the examples considered in this
ork, � and � are approximately equal to 1 �see equation 34�.
The Pierre-Shale medium is discretized on a numerical mesh,

ith uniform vertical and horizontal grid spacings of 2 m, and 273
273 grid points. The source, applied at the center of the mesh, is a

icker-type wavelet, whose amplitude spectrum is a Gaussian func-
ion centered at 100 Hz and an approximate cutoff frequency of
00 Hz. I use the CD fractional derivative, m � 1, a memory length
f 40, and a time step h � 0.2 ms. I have found instabilities when us-
ng m�1, i.e., fourth and higher time derivatives in equation 32.
his problem also exists in the lossless case. However, the saving in
omputer memory is significant. As can be seen in Figure 3, I trun-
ate the expansion at a value of nearly 10�5 for the absolute value of
he binomial coefficients when using m � 1, whereas achieving the
ame precision with m � 0 gives a memory length of one more order

a)

b)

igure 4. Snapshots at 125 ms of the vertical displacement in a loss-
ess medium equivalent to Pierre Shale �a� and Pierre Shale �QP �32
nd QS �10� �b�. The plot in �b� has been rescaled with a gain factor
f 12.
f magnitude. Figure 4 represents snapshots of the vertical displace-
ent in a lossless medium equivalent to Pierre Shale �4�, and in the

eal �dissipative� model of Pierre Shale �4�. The amplitudes in Figure
b are 12 times weaker than in Figure 4a. The comparison shows
hat, as expected, the shear wave �inner wave� has been attenuated

ore than the compressional wave. A 2D analytical solution in a ho-
ogeneous medium is obtained in Appendix D. Figure 5 compares

he analytical and numerical solutions of the horizontal �Figure 5a�
nd vertical �Figure 5b� displacements corresponding to Pierre
hale �QP �32 and QS �10�.
Finally, I consider an example of seismic wave propagation in in-

omogeneous media, in particular, a crosswell experiment. The geo-
ogical model is shown in Figure 6, and the material properties are
ndicated in Table 1, where I have used the same reference frequency
f0 � 45 Hz for all the media. The low velocities and low quality fac-
ors of medium 4 simulate a highly porous, partially saturated sand-
tone. The medium is discretized with uniform vertical and horizon-
al grid spacings of 9 m, and 280�280 grid points. The constant-Q
ttenuation model is used to implement absorbing strips of width 50
rid points at the four boundaries of the mesh to avoid wraparound.

)

)

igure 5. Seismograms in Pierre Shale corresponding to the horizon-
al �a� and vertical �b� displacements. Comparison between analyti-
al and numerical solutions �solid and dotted lines� at �x,z�

�50,50� m from the source.
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Modeling loss with fractional derivatives T7
he source is a horizontal force with Ricker-wavelet time history
nd a central frequency of 45 Hz, and the wavefield is computed by
eans of the CD approximation using a time step of 0.2 ms and a
emory length L � 40. The synthetic seismograms recorded in the

eceiver well, corresponding to the lossless case and lossy case, are
hown in Figure 7a and b, respectively, where the seismogram in
igure 7b has been rescaled with a gain factor of 1.83. The two main
vents are the direct P- and S-waves.

A similar hyperbolic power law that can also be implemented us-
ng fractional derivatives has been introduced by Hanyga and Sere-
yńska �2003�, which has been tested in acoustic imaging �Ribodetti
nd Hanyga, 2004�. Further research should be performed to avoid
he memory storage implied by the numerical solution of the deriva-
ives. For instance, Lu and Hanyga �2005� have used a new method
or calculating the fractional derivative without storing and integrat-
ng the entire field histories.
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igure 6. Geological model corresponding to a crosswell experi-
ent. The properties of the model are given in Table 1.

able 1. Reference wave velocities, density, and quality
actors.

Medium
cP

�km/s�
cS

�km/s�
�

�g/cm3� QP QS

1 3.2 1.85 2.5 100 50

2 3.3 1.91 2.52 110 55

3 3.6 2.08 2.58 120 60

4 2.9 1.67 2.4 30 15

5 3.6 2.08 2.7 140 70

6 3.7 2.14 2.71 150 75

7 3.85 2.22 2.72 165 80
CONCLUSIONS

The concept of fractional derivative has been used to simulate
onstant-Q wave propagation of P- and S-waves in the time domain
sing the classical power-law stress-strain relation widely used in
eismology in the frequency domain. The equations are solved with
he Grünwald-Letnikov and central-difference fractional derivatives
or the time discretization and the Fourier method to compute the
patial derivatives. The validity and accuracy of the algorithm is ver-
fied by comparison with a 2D analytical solution in homogeneous

edia. The modeling in heterogeneous media is illustrated with a
rosswell seismic experiment, where the seismograms show that,
ecause of the lower S-wave Q factor, the direct shear wave has been
ttenuated more than the direct compressional wave. Then, the rela-
ive P/S amplitudes are greatly affected in the lossy �real� case.

Further research involves the extension to the 3D case and the im-
rovement of the method by reducing or avoiding the memory stor-
ge implied by the numerical solution of the fractional derivatives.
he key method is to transform the fractional derivative into an infi-
ite integral over auxiliary internal variables. By approximating the
ntegral using a specific quadrature formula, the derivative can be
valuated by solving ordinary differential equations for a finite set
f quadrature nodes.

)

)

igure 7. Lossless �a� and lossy �b� synthetic seismograms of the ver-
ical displacement, corresponding to the model illustrated in Figure
. The plot in �b� has been rescaled with a gain factor of 1.83.
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APPENDIX A

CENTRAL-DIFFERENCE FRACTIONAL
DERIVATIVE

The central-difference approximation to the derivative of order
�a natural number� is given by

hm� mf�t�
� tm � 


j�0

m

��1� j�m

j
� f	t � � j �

m

2
�h
 ,

�A-1�

here h is the time step. Note that the central difference has, for odd
, h multiplied by nonintegers. This can be solved by taking the av-

rage

2f	t � � j �
m

2
�h
 � f	t � � j �

m � 1

2
�h


� f	t � � j �
m � 1

2
�h
 .

�A-2�

ubstituting this equation into A-1 yields

2hm� mf�t�
� tm � f	t � �m � 1

2
�h
 � 


j�1

m�1

��1� j	�m

j
�

� � m

j � 1
�
 f	t � � j �

m � 1

2
�h
 .

�A-3�

he binomial coefficients can be defined in terms of Euler’s gamma
unction as

�m

j
� �

� �m � 1�
� �j � 1�� �m � j � 1�

nd can be calculated by a simple recursion formula

�m

j
� �

m � j � 1

j
� m

j � 1
�, �m

0
� � 1,

hich also holds for a noninteger m. Using these properties, I obtain
he following expression,

2h� � � f�t�
� t� � 


j�0

J

��1� j��

j
��� � 2j � 1

� � j � 1
�

�f	t � jh �
h�� � 1�

2

 , �A-4�

or a noninteger and quasi-odd � . Note that this expression cannot be
sed for � � m �integer� because it is singular for j � m � 1.
There are no restrictions in the right-hand side of equations A-1
nd A-4 that require m to be an integer. Replacing m by any positive
eal number � gives the fractional-derivative approximation, pro-
ided that the two expressions are used for quasi-even and quasi-odd
rders, respectively.

The extension of the upper limit from m � 1 to t/h � 1 has an
mportant consequence. While in equations A-1 and A-4 the series
as vanishing terms beyond j � m, in the fractional equations these
erms are different from zero.

For more details on the theory and applications of fractional cal-
ulus, the reader is referred to Oldham and Spanier �1974�, Gorenflo
nd Mainardi �1997�, and Podlubny �1999�.

APPENDIX B

STAGGERED FOURIER METHOD FOR THE
FRACTIONAL WAVE EQUATION

On a regular grid the field components and material properties
re represented at each grid point, say, represented by the symbol �,
hile on a staggered grid, variables and material properties are de-
ned at half-grid points as indicated in the following mesh:

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

uch that,

��i, j�� 11,� 33,CE,� ,

��i �
1

2
, j�v1, f1,� ,

��i, j �
1

2
�v3, f3,� ,

��i �
1

2
, j �

1

2
�� 13,C	,� . �B-1�

aterial properties at half-grid points �, �, and � are computed by
veraging the values defined at regular points �. The averaging is
hosen in such a way to reduce the error between the numerical solu-
ion corresponding to an interface aligned with the numerical grid
nd the equivalent solution obtained with a regular grid. Minimum
inging amplitudes are obtained when the averages are computed as
ollows. The density at points � and � as

�i�1/2,j �
1

2
��i,j � �i�1,j� �B-2�

nd
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�i,j�1/2 �
1

2
��i,j � �i,j�1� , �B-3�

espectively; C	 at points � as

�C	
i�1/2,j�1/2��1 �

1

4
��C	

i,j��1 � �C	
i�1,j��1 � �C	

i,j�1��1

� �C	
i�1,j�1��1� �B-4�

Carcione, 1999�; and � as a simple arithmetic averaging of the form

� i�1/2,j�1/2 �
1

4
�� i,j � � i�1,j � � i,j�1 � � i�1,j�1� .

�B-5�

he first-order derivative computed with the staggered differential
perator is evaluated between grid points and uses even-based Fou-
ier transforms. The standard first-order differential operator along
he x-direction is

D1� � 

k1�0

k1�N�

ik1�̃�k1�exp�ik1x� , �B-6�

here �̃ is the Fourier transform of � and k1�N� is the Nyquist wave-
umber. Staggered operators, that evaluate the derivatives between
rid points, are given by

D1
�� � 


k1�0

k1�N�

ik1 exp�� ik1�x/2��̃�k1�exp�ik1x� ,

�B-7�

here �x is the grid spacing.
The staggered equations corresponding to 32 and 33 can be writ-

en as

�Dm�2u1 � ��1�D1
�q11 � D3

�q13 � Dmf1� ,

�Dm�2u3 � ��1�D1
�q13 � D3

�q33 � Dmf3� ,

�q11 � CE�D1
�D�u1 � D3

�D�u3�

� 2C	D3
�D�u3 � Dmf11,

�q33 � CE�D1
�D�u1 � D3

�D�u3�

� 2C	D1
�D�u1 � Dmf33,

�q13 � C	�D1
�D�u3 � D3

�D�u1� � Dmf13.

�B-8�

APPENDIX C

FINITE-DIFFERENCE PHASE VELOCITY
AND ATTENUATION FACTOR

I evaluate the accuracy of the time discretizations by computing
he finite-difference phase velocity and attenuation factor and com-
aring them with the corresponding exact quantities �see Simula-
ions section�. Let us assume constant material properties, propaga-
ion along the x-direction and a field kernel exp�i�
nh � kx��, with
� nh and k the complex horizontal wavenumber component �the
omplex velocity is given by 
 /k�. Substituting this kernel into
quations 32 and 33 give the following complex velocities:

V̄P � i� � 0
�� P�E0a�

�
exp�i� /2� , �C-1�

nd

V̄S � i� � 0
�� S�	0a�

�
exp�i� /2� , �C-2�

here � � 
h, � 0 � 
0h. The GL approximation has

a� �



j�0

J

��1� j��

j
�exp��ij� �



j�1

2�m

��1� j�2 � m

j
�exp��ij� �

,

here the D2�m derivative has been right shifted �the term
xp�i� /2��.

On the other hand, the CD approximation has the same a� of the
L approximation for even m, and

�

�



j�0

J

��1� j��

j
��� � 2j � 1

� � j � 1
�exp��ij� �

1 � 

j�1

3�m

�� 1� j	�2 � m

j
� � �2 � m

j � 1
�
exp�� ij� �

or odd m.
The finite-difference phase velocities are given by

c̄phase
P � 	Re� 1

V̄P
�
�1

and c̄phase
S � 	Re� 1

V̄S
�
�1

,

�C-3�

hereas the attenuation factors are

�̄P � �
 Im� 1

V̄P
� and �̄S � �
 Im� 1

V̄S
� . �C-4�

APPENDIX D

ANALYTICAL SOLUTION IN A 2-D
HOMOGENEOUS MEDIUM

The solution of the wavefield generated by an impulsive point
orce in a 2-D elastic medium is given by Eason et al. �1956� �see also
ilant �1956��. For a force acting in the positive z-direction, this so-

ution can be expressed as

u1�r,t� � � F0

2��
� xz

r2 �G1�r,t� � G3�r,t�� , �D-1�
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u3�r,t� � � F0

2��
� 1

r2 �z2G1�r,t� � x2G3�r,t�� ,

�D-2�

here F0 is a constant that gives the magnitude of the force, r �
x2 � z2�1/2,

G1�r,t� �
1

cP
2 �t2 � � P

2��1/2H�t � � P�

�
1

r2 �t2 � � P
2�1/2H�t � � P�

�
1

r2 �t2 � � S
2�1/2H�t � � S� �D-3�

nd

G3�r,t� � �
1

cS
2 �t2 � � S

2��1/2H�t � � S�

�
1

r2 �t2 � � P
2�1/2H�t � � P�

�
1

r2 �t2 � � S
2�1/2H�t � � S� , �D-4�

� P �
r

cP
, � S �

r

cS
, �D-5�

nd cP and cS are the compressional- and shear-wave phase veloci-
ies. To apply the correspondence principle and obtain the anelastic
olution, one needs the elastic frequency-domain solution �Bland,
960; Carcione et al., 1988; Carcione, 2007�. Using the transform
airs of the zero- and first-order Hankel functions of the second kind,

�
��

�

1

� 2 �t2 � � 2�1/2H�t � � �exp�i
t�dt �
i�

2
�
H1

�2��
� � .

�D-6�

�
��

�

�t2 � � 2��1/2H�t � � �exp�i
t�dt � �
i�

2
H0

�2��
� � .

�D-7�

obtain

u1�r,
,cP,cS� � � F0

2��
� xz

r2 �G̃1�r,
,cP,cS�

� G̃3�r,
,cP,cS�� , �D-8�

u3�r,
,cP,cS� � � F0

2��
� 1

r2 �z2G̃1�r,
,cP,cS�

� x2G̃3�r,
,cP,cS�� , �D-9�

here
G̃1�r,
,cP,cS� � �
i�

2
	 1

cP
2 H0

�2��
r

cP
� �

1


rcS
H1

�2��
r

cS
�

�
1


rcP
H1

�2��
r

cP
�
 , �D-10�

G̃3�r,
,cP,cS� �
i�

2
	 1

cS
2 H0

�2��
r

cS
� �

1


rcS
H1

�2��
r

cS
�

�
1


rcP
H1

�2��
r

cP
�
 . �D-11�

sing the correspondence principle, I replace the elastic wave veloc-
ties in D-8 and D-9 by the anelastic wave velocities VP and VS de-
ned in equation 21. The 2-D viscoelastic Green’s function can then
e expressed as

u1�r,
� � �u1�r,
,VP,VS� , 
 � 0,

u1
*�r,� 
,VP,VS� , 
 � 0,

� �D-12�

nd

u3�r,
� � �u3�r,
,VP,VS� , 
 � 0,

u3
*�r,� 
,VP,VS� , 
 � 0,

� �D-13�

here the asterisk denotes complex conjugate. This frequency-do-
ain form ensures that the solution is real in the time domain. Multi-

lication with the source time function and a numerical inversion by
he discrete Fourier transform yield the desired time-domain solu-
ion �G̃1 and G̃3 are assumed to be zero at 
 � 0 because the Hankel
unctions are singular�.
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