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generalization of the Fourier pseudospectral method

osé M. Carcione1
b
t
t
v
t

t
f
s
u
G
i
t
t
b

n
c

w

a
g
c
l

ived 30
ieste, Ita
ABSTRACT

The Fourier pseudospectral �PS� method is generalized to
the case of derivatives of nonnatural order �fractional deriva-
tives� and irrational powers of the differential operators. The
generalization is straightforward because the calculation of
the spatial derivatives with the fast Fourier transform is per-
formed in the wavenumber domain, where the operator is an
irrational power of the wavenumber. Modeling constant-Q
propagation with this approach is highly efficient because it
does not require memory variables or additional spatial de-
rivatives. The classical acoustic wave equation is modified by
including those with a space fractional Laplacian, which de-
scribes wave propagation with attenuation and velocity dis-
persion. In particular, the example considers three versions of
the uniform-density wave equation, based on fractional pow-
ers of the Laplacian and fractional spatial derivatives.

INTRODUCTION

The concept of fractional time derivative has been used to simu-
ate constant-Q wave propagation in the time domain using the clas-
ical power-law stress-strain relation. An example is Kjartansson’s
onstant-Q model �Kjartansson, 1979�. Because of its simplicity,
his model is used in many seismic applications, mainly in its fre-
uency-domain form. The wave equation becomes parabolic be-
ause the phase velocity has no upper bound. The case of compres-
ional-wave �P-wave� propagation in heterogeneous media has been
olved by Carcione et al. �2002�, whereas the case of P and shear �S�
aves has been developed and solved numerically by Carcione

2009�. Caputo and Carcione �2010� use distributed-order fractional
erivatives, i.e., the derivatives are integrated with respect to the or-
er of differentiation. The equations are solved with the Grünwald-
etnikov approximation for the time discretization and the classical
ourier method to compute the spatial derivatives. One of the draw-
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acks of this approach is that the implementation of the fractional
ime derivative requires storing the wavefield from t�0 to present
ime. Another way of modeling attenuation without using memory
ariables is to use the Kelvin-Voigt rheology, which requires addi-
ional spatial derivatives �Carcione et al., 2004�.

Chen and Holm �2004� propose a linear integro-differential equa-
ion wave model for the anomalous attenuation by using the space-
ractional Laplacian, i.e., the fractional derivatives are taken with re-
pect to the space variables. Spatial fractional derivatives are also
sed to describe anomalous diffusion processes �Hanyga, 2001;
orenflo et al., 2002�. The properties of the Fourier transform when

t acts on fractional derivatives are well established and a rigorous
reatment is available in the literature �e.g., Dattoli et al., 1998�. On
his basis, I generalize the Fourier method and describe attenuation
y using spatial fractional derivatives.

THE GENERALIZATION OF THE
FOURIER METHOD

The Fourier pseudospectral �PS� method is a collocation tech-
ique in which a continuous function u�x� is approximated by a trun-
ated series

uN�xj�� �
r�0

N�1

ũr exp�ikrxj�� �
r�0

N�1

ũr exp�2� irj /N�, �1�

here ũr are spectral coefficients; N is the number of grid points;

xj� jdx and kr�
2�r

Ndx
, r�0, . . . ,N�1 �2�

re the collocation points and wavenumbers, respectively; dx is the
rid spacing; and i���1. The spectral �expansion� coefficients are
hosen such that the approximate solution uN coincides with the so-
ution u�x� at the collocation points. The Fourier PS method is ap-
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ropriate for problems with periodic boundary conditions — for ex-
mple, a wave which exits the grid on one side and reenters it on the
pposite side.

The sequence u�xj� is the inverse discrete Fourier transform of

ũr�
1

N
�
j�0

N�1

u�xj�exp��2� irj /N�, r�0, . . . ,N�1. �3�

he computation of the fractional derivative of order � by the Fouri-
r method conveniently reduces to a set of multiplications of the dif-
erent coefficients ũr, with factors �ikr�� , because

�x
�uN�xj�� �

r�0

N�1

�ikr�� ũr exp�ikrxj� . �4�

he spectral coefficients ũr are computed by the fast Fourier trans-
orm �FFT�. The steps of the calculation of the first-order fractional
artial derivative are as follows:

u�xj�→FFT→ ũr→ �ikr�� ũr→FFT�1→�x
�u�xj� . �5�

his involves the definition of fractional derivative according to
zaktas et al. �2001� and fractional Fourier transform as in Dattoli et

l. �1998�. The classical Fourier method is obtained for � �1. See
etails in Carcione �2007�.

EXAMPLES: ANELASTIC WAVE EQUATIONS

I consider a generalization of the lossless acoustic equation of mo-
ion �e.g., Carcione, 2007, Chapter 9�. It is an example of a
onstant-Q wave equation whose dispersion equation is similar to
hat of Kjartansson �1979� and Carcione et al. �2002� and is widely
sed in seismology �see the associated complex velocity in equation
below�. The uniform-density pressure formulation is

�0
2�2�c2���x

2��z
2�� p�s��t

2p, �6�

here x and z are Cartesian coordinates, p�x,z� is the pressure, c�x,z�
s the velocity of the compressional wave, s�x,z,t� is the body force,
nd �0 is a scaling frequency. The range of � is 1�� �2, with �

lightly greater than 1 describing seismic wave propagation and �

2 describing infinite attenuation �Q�0, see equation 12�. One
ossible choice of the differential operator is

���x
���1�x

� ��z
���1�z

��, �7�

f one desires to solve the more general variable-density wave equa-
ion, where ��x,z� is the mass density.Another choice is

����x
2��z

2�� �8�
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Chen and Holm, 2004�. If � �1, I have the classical wave equation
n all the cases.

elocity and attenuation

Let us analyze the propagation characteristics of the medium de-
ned by equation 6. Assume constant properties and the kernel p

exp�i�t� ikxx� ikzz�, where � is the angular frequency and kx

nd kz are complex wavenumber components. We obtain the com-
lex velocity

v�
�

k
�� i�

�0
��

c, � �1�
1

�
, �9�

here k��kx
2�kz

2. The phase velocity, attenuation factor, and qual-
ty factor are given by �e.g., Carcione, 2007�

vp��Re�1

v
���1

��cos���

2
���1� �

�0
��

c, �10�

� �� Im��

v
��

�

c
��0

�
��

sin���

2
� �11�

nd

Q�
Re�v2�
Im�v2�

�cot��� � . �12�

his constant-Q model is similar to that proposed in Carcione et al.
2002� and Carcione �2009�, with the difference here being that the
ractional derivative is taken with respect to the spatial variables.

It can be shown that the velocity associated with the Laplacian 8 is
eal — v� �� /�0��c. Therefore, Q is infinite and there is no attenu-
tion. Chen and Holm �2004� use this operator in the context of a dif-
erent wave equation where the propagation is lossy.

omputation of the Laplacian

The steps of the calculation of the Laplacian with a fractional ex-
onent ��x

2��z
2�� in equation 6 are as follows:

p�x,z�→FFT2→ p̃→ ��1���kx
2�kz

2�� p̃

→FFT2�1→ ��x
2��z

2�� p�x,z�, �13�

here FFT2 denotes the 2D Fourier transform. On the other hand,
he calculation of the Laplacian in equations 7 and 8 requires the

ultiplication of p̃ by

��1���kx
2� �kz

2�� �14�

if the density is constant�, and
EG license or copyright; see Terms of Use at http://segdl.org/



r
n

S

2
s

p
�

d
R
s
Q
f
2

F to Q�

F

Generalization of the Fourier method A55
��kx
2�kz

2�� , �15�

espectively. In equations 13 and 14, the wavenumber-domain ker-
el is complex, whereas in the last case it is real.

imulations

I consider equation 6 and the properties c�2 km /s and �0�
� /s. Figure 1 shows the phase velocity and attenuation factor ver-
us frequency. The dispersion is significant, with a velocity of ap-
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igure 1. �a� Phase velocity and �b� attenuation factor corresponding

Distance (km)
0.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.2 0.6 0.8 1.0 1.2 1.4 1.6

D
is

ta
nc

e
(k

m
)

a)

igure 2. Snapshots computed at 300 ms for �a� Q�200 and �b� Q�
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roximately 2.4 km /s at 18 Hz. The simulations are based on an 88
88 mesh, with square cells of 20-m size and a second-order finite-

ifference solver for the time stepping, with a time step of 1 ms. A
icker point source with 18 Hz central frequency is used. Figure 2

hows two snapshots at 300-ms propagation time, corresponding to
�200 �Figure 2a� and Q�5 �Figure 2b�. As expected, the wave-

ront of the quasielastic case travels with a lower velocity �close to
km /s� compared to the lossy case �Figure 2b�. The opposite situa-
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ion can be obtained by taking �0 much larger than the source domi-
ant frequency. A comparison of time histories at 300 m from the
ource is displayed in Figure 3, where the solid and dashed lines cor-
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igure 3. Pressure seismograms at 300 m from the source location
or two values of the quality factor. The wave equation involves a
ractional power of the Laplacian.
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igure 4. Comparison of pressure seismograms at 300 m from the
ource location for Q�5. The solid and dotted lines correspond to a
ractional power of the Laplacian �equations 6 and 8�, whereas the
ashed line corresponds to fractional spatial derivatives �equation
�.
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espond to Q�5 and Q�200, respectively. Simulations comparing
he time histories computed with equations 6–8, using the kernels
3–15, are shown in Figure 4, where Q�5. The comparison reflects
he fact that the first two rheologies model velocity dispersion and at-
enuation, whereas the last one �dotted line� describes lossless prop-
gation.

CONCLUSIONS

I have simulated wave attenuation by generalizing the Fourier
ethod. Unlike the temporal fractional derivatives, which require

he use of significant memory storage, the present method can be im-
lemented with a straightforward generalization of the classical
ourier pseudospectral method to the case of a fractional power of

he Laplacian and a fractional order of differentiation. The method
an also be applied to the solution of the elastic wave equation �Pand
waves� and to the diffusion equation, such as, for instance, the flu-

d-flow equation if one requires modeling permeability with memo-
y effects �anomalous diffusion�.
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