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A generalization of the Fourier pseudospectral method

José M. Carcione’

ABSTRACT

The Fourier pseudospectral (PS) method is generalized to
the case of derivatives of nonnatural order (fractional deriva-
tives) and irrational powers of the differential operators. The
generalization is straightforward because the calculation of
the spatial derivatives with the fast Fourier transform is per-
formed in the wavenumber domain, where the operator is an
irrational power of the wavenumber. Modeling constant-Q
propagation with this approach is highly efficient because it
does not require memory variables or additional spatial de-
rivatives. The classical acoustic wave equation is modified by
including those with a space fractional Laplacian, which de-
scribes wave propagation with attenuation and velocity dis-
persion. In particular, the example considers three versions of
the uniform-density wave equation, based on fractional pow-
ers of the Laplacian and fractional spatial derivatives.

INTRODUCTION

The concept of fractional time derivative has been used to simu-
late constant-Q wave propagation in the time domain using the clas-
sical power-law stress-strain relation. An example is Kjartansson’s
constant-Q model (Kjartansson, 1979). Because of its simplicity,
this model is used in many seismic applications, mainly in its fre-
quency-domain form. The wave equation becomes parabolic be-
cause the phase velocity has no upper bound. The case of compres-
sional-wave (P-wave) propagation in heterogeneous media has been
solved by Carcione et al. (2002), whereas the case of P and shear (S)
waves has been developed and solved numerically by Carcione
(2009). Caputo and Carcione (2010) use distributed-order fractional
derivatives, i.e., the derivatives are integrated with respect to the or-
der of differentiation. The equations are solved with the Griinwald-
Letnikov approximation for the time discretization and the classical
Fourier method to compute the spatial derivatives. One of the draw-

backs of this approach is that the implementation of the fractional
time derivative requires storing the wavefield from 7 = 0 to present
time. Another way of modeling attenuation without using memory
variables is to use the Kelvin-Voigt rheology, which requires addi-
tional spatial derivatives (Carcione et al., 2004).

Chen and Holm (2004) propose a linear integro-differential equa-
tion wave model for the anomalous attenuation by using the space-
fractional Laplacian, i.e., the fractional derivatives are taken with re-
spect to the space variables. Spatial fractional derivatives are also
used to describe anomalous diffusion processes (Hanyga, 2001;
Gorenflo et al., 2002). The properties of the Fourier transform when
it acts on fractional derivatives are well established and a rigorous
treatment is available in the literature (e.g., Dattoli et al., 1998). On
this basis, I generalize the Fourier method and describe attenuation
by using spatial fractional derivatives.

THE GENERALIZATION OF THE
FOURIER METHOD

The Fourier pseudospectral (PS) method is a collocation tech-
nique in which a continuous function u(x) is approximated by a trun-
cated series
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where i1, are spectral coefficients; N is the number of grid points;
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are the collocation points and wavenumbers, respectively; dx is the
grid spacing; andi = V—1.The spectral (expansion) coefficients are
chosen such that the approximate solution u coincides with the so-
lution u(x) at the collocation points. The Fourier PS method is ap-
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propriate for problems with periodic boundary conditions — for ex-
ample, a wave which exits the grid on one side and reenters it on the
opposite side.

The sequence u(x;) is the inverse discrete Fourier transform of

N—1
1
= > ulx)exp(—2mirj/N), r=0,...N—1. (3)
j=0

The computation of the fractional derivative of order 3 by the Fouri-
er method conveniently reduces to a set of multiplications of the dif-
ferent coefficients i,, with factors (ik,)?, because

N—-1
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The spectral coefficients i, are computed by the fast Fourier trans-
form (FFT). The steps of the calculation of the first-order fractional
partial derivative are as follows:

u(x;) — FFT — it,— (ik,)Pi,—FFT ! —>8§u(xj). (5)

This involves the definition of fractional derivative according to
Ozaktas et al. (2001) and fractional Fourier transform as in Dattoli et
al. (1998). The classical Fourier method is obtained for 8 = 1. See
details in Carcione (2007).

EXAMPLES: ANELASTIC WAVE EQUATIONS

I consider a generalization of the lossless acoustic equation of mo-
tion (e.g., Carcione, 2007, Chapter 9). It is an example of a
constant-Q wave equation whose dispersion equation is similar to
that of Kjartansson (1979) and Carcione et al. (2002) and is widely
used in seismology (see the associated complex velocity in equation
9 below). The uniform-density pressure formulation is

wy PP+ 0N)Pp + s =alp, (6)

where x and z are Cartesian coordinates, p(x,z) is the pressure, ¢(x,z)
is the velocity of the compressional wave, s(x,z,f) is the body force,
and w, is a scaling frequency. The range of B is 1 =B =2, with 8
slightly greater than 1 describing seismic wave propagation and 3
= 2 describing infinite attenuation (Q = 0, see equation 12). One
possible choice of the differential operator is

p(efp~ "ol + b p~'of), (7)

if one desires to solve the more general variable-density wave equa-
tion, where p(x,z) is the mass density. Another choice is

—(—;— )P (8)

(Chen and Holm, 2004). If B = 1, T have the classical wave equation
in all the cases.

Velocity and attenuation

Let us analyze the propagation characteristics of the medium de-
fined by equation 6. Assume constant properties and the kernel p
= exp(iwt — ikx — ik,z), where o is the angular frequency and k,
and k_ are complex wavenumber components. We obtain the com-
plex velocity

w Y
B [ O N

where k = VkZ + k2. The phase velocity, attenuation factor, and qual-
ity factor are given by (e.g., Carcione, 2007)

o [fi)] <ol (e oo
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and

= cot(my). (12)

This constant-Q model is similar to that proposed in Carcione et al.
(2002) and Carcione (2009), with the difference here being that the
fractional derivative is taken with respect to the spatial variables.

It can be shown that the velocity associated with the Laplacian 8 is
real — v = (w/ w,)?c. Therefore, Q is infinite and there is no attenu-
ation. Chen and Holm (2004) use this operator in the context of a dif-
ferent wave equation where the propagation is lossy.

Computation of the Laplacian

The steps of the calculation of the Laplacian with a fractional ex-
ponent (97 + 82)# in equation 6 are as follows:

p(x2) ~FFT2—5— (- D2 + k)P
—FFT2~ ' — (> + 93P p(x,2), (13)

where FFT?2 denotes the 2D Fourier transform. On the other hand,
the calculation of the Laplacian in equations 7 and 8 requires the
multiplication of p by

(DA + k2P (14)

(if the density is constant), and
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—(k + k2P, (15)

respectively. In equations 13 and 14, the wavenumber-domain ker-
nel is complex, whereas in the last case it is real.

Simulations

I consider equation 6 and the properties ¢ =2 km/s and wy, =
2 /s. Figure 1 shows the phase velocity and attenuation factor ver-
sus frequency. The dispersion is significant, with a velocity of ap-
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proximately 2.4 km/s at 18 Hz. The simulations are based on an 88
X 88 mesh, with square cells of 20-m size and a second-order finite-
difference solver for the time stepping, with a time step of 1 ms. A
Ricker point source with 18 Hz central frequency is used. Figure 2
shows two snapshots at 300-ms propagation time, corresponding to
Q =200 (Figure 2a) and Q = 5 (Figure 2b). As expected, the wave-
front of the quasielastic case travels with a lower velocity (close to
2 km/s) compared to the lossy case (Figure 2b). The opposite situa-

Figure 1. (a) Phase velocity and (b) attenuation factor corresponding to Q = 5.
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Figure 2. Snapshots computed at 300 ms for (a) O = 200 and (b) Q = 5.

b)
25

o 20

<

5 157

Q

8

c

S 1041

®

=}

c

2 i

Z 5

0_
T T T T T T T
0.0 0.5 1.0 15
Log[Frequency (Hz)]

b) Distance (km)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Distance (km)

Downloaded 16 Mar 2011 to 87.7.219.190. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



A56 Carcione

tion can be obtained by taking w, much larger than the source domi-
nant frequency. A comparison of time histories at 300 m from the
source is displayed in Figure 3, where the solid and dashed lines cor-
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Figure 3. Pressure seismograms at 300 m from the source location

for two values of the quality factor. The wave equation involves a
fractional power of the Laplacian.
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Figure 4. Comparison of pressure seismograms at 300 m from the
source location for Q = 5. The solid and dotted lines correspond to a
fractional power of the Laplacian (equations 6 and 8), whereas the
d;lshed line corresponds to fractional spatial derivatives (equation
7).

respond to Q = 5 and Q = 200, respectively. Simulations comparing
the time histories computed with equations 6—8, using the kernels
13-15, are shown in Figure 4, where Q = 5. The comparison reflects
the fact that the first two rheologies model velocity dispersion and at-
tenuation, whereas the last one (dotted line) describes lossless prop-
agation.

CONCLUSIONS

I have simulated wave attenuation by generalizing the Fourier
method. Unlike the temporal fractional derivatives, which require
the use of significant memory storage, the present method can be im-
plemented with a straightforward generalization of the classical
Fourier pseudospectral method to the case of a fractional power of
the Laplacian and a fractional order of differentiation. The method
can also be applied to the solution of the elastic wave equation (Pand
S waves) and to the diffusion equation, such as, for instance, the flu-
id-flow equation if one requires modeling permeability with memo-
ry effects (anomalous diffusion).
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