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Abstract—I present an algorithm to simulate low-frequency electro-
magnetic propagation in an anisotropic earth, described by a general
(non-diagonal) conductivity tensor. I solve the electric formulation by
explicitly imposing an approximate form of the condition ∇ · J = 0,
where J is the current density vector, which includes the source and
the induced current. The numerical algorithm consists of a fully spec-
tral explicit scheme for solving linear, periodic parabolic equations. It
is based on a Chebyshev expansion of the evolution operator and the
Fourier and Chebyshev pseudospectral methods to compute the spatial
derivatives. The latter is used to implement the air/ocean boundary
conditions. The results of the simulations are verified by comparison
to analytical solutions obtained from the Green function. Examples of
the electromagnetic field generated by a source located at the bottom
of the ocean illustrate the practical uses of the algorithm.

1. INTRODUCTION

Electromagnetic modeling and propagation at low frequencies
(electromagnetic diffusion) is used in a number of applications,
such as geothermal exploration [26], evaluation of hydrocarbon
resources by mapping the sub-seafloor resistivity [14], electromagnetic
induction in boreholes and logging while drilling [33], magnetotelluric
problems [21, 37], and geoelectrical surveys for groundwater and
mineral exploration [25].

Most of the numerical algorithms are based on low-order finite-
differences (FD) to compute the spatial derivatives. Many authors
use the classical FD methods, with different approaches to recast the
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electromagnetic equations, in the time or frequency domains. For
instance, Lee et al. [18] propose to transform the 3-D diffusion equation
into a wave equation by introducing a new variable proportional
to the square root of time. Leppin [19] solved the 2.5-D transient
electromagnetic scattering problem, where the governing diffusion
equation has been formulated in terms of the magnetic field, and
through the introduction of an exact boundary condition at the air-
earth interface.

Wang and Hohmann [32] generalized the 2-D algorithm of
Oristaglio and Hohmann [25] to three dimensions. They developed a
magnetic/electric formulation of Maxwell’s equations, using as a solver
a staggered grid and a modified version of the Du Fort-Frankel method.
The use of an artificially high permittivity allows them to reduce the
computer time. A 3-D solution based on a linear-system frequency-
domain formulation of the diffusion equation has been proposed by
Weiss and Newman [35]. Their work on preconditioning closely follows
that of Druskin and Knizhnerman [12] and, particularly, Druskin et
al. [13], which resulted in a factor of 100 speed-up of the spectral
Lanczos decomposition method.

Badea et al. [5] developed a 3-D finite-element method to
solve controlled-source electromagnetic (EM) induction problems in
heterogeneous electrically conducting media. The solution is based on
a weak formulation of the governing Maxwell equations using Coulomb-
gauged electromagnetic potentials. The divergence-free condition
∇ · J = 0 is imposed, corresponding to inductively coupled sources.

Weiss and Constable [34] developed a 3-D Cartesian finite-volume
solution to the time-harmonic (frequency-domain) Maxwell equations.
Maaø [20] performed 3-D simulations with a FD method by using a
mathematical transformation similar to the Kelvin-Voigt viscoelastic
model. This model introduces a high permittivity as in the case of
Wang and Hohmann [32]. Maaø [20] further reduced the computer time
solving the equations in the high-frequency range by using a complex-
frequency Fourier transform to filter high-frequency wave-like signals.

There are many material configurations in the subsurface that
might lead to anisotropy [23]. The geophysical motivation behind
the use of an electrically anisotropic description of the Earth can
be found in many works [4, 6, 9, 31, 35, 38]. It might be that there
are some preferred directions in the subsurface rocks, or some
preferred orientation of grains in the sediments. Compaction, fine
layering or a pronounced strike direction might lead to effective
anisotropy. Alternations of sandstone and shales may give reservoir
anisotropy [8, 11]. Anisotropy can lead to misleading interpretations.
For instance. Everett and Constable [15] note a paradox of electrical



Progress In Electromagnetics Research B, Vol. 26, 2010 427

anisotropy, by which there is higher apparent conductivity across the
strike of anisotropy, which is opposite of what actually exists. Al-Garni
and Everett [3] resolve the paradox by recognizing that the response
is actually controlled by the conductivity in the direction of the local-
induced current flow beneath the receiver loop.

Several algorithms have been developed for electromagnetic
logging in wells assuming material anisotropy, for instance, Wang
and Fang [31] and Weiss and Newman [35] developed classical
FD methods for this purpose, and Davydycheva et al. [11] use
a FD Lebedeva staggered grid. Kong et al. [17] developed a
2.5-D finite-element modeling method for marine controlled-source
electromagnetic (CSEM) applications in stratified anisotropic media
with a diagonal conductivity tensor. Since the implementation of
sources in electromagnetic diffusion generates noise, the total field is
obtained as the sum of the analytical background field calculated with
a 1-D modeling method and the scattered field obtained by using delta
sources with and without target.

Carcione [7, 8] proposed an spectral algorithm to solve for
electromagnetic diffusion in 2-D isotropic media. The algorithm
uses an explicit scheme based on a Chebyshev expansion of the
evolution operator in the domain of the eigenvalues of the propagation
matrix [30]. The spatial derivatives are computed with the Fourier
pseudospectral method, which allows the use of coarser grids compared
to FD methods. The modeling allows general material variability,
a non-diagonal conductivity tensor and provides snapshots and time
histories of the electric and magnetic fields. The use of this spectral
method overcomes two drawbacks: low accuracy and stringent stability
conditions, since the error in time decays exponentially. This algorithm
is generalized to the 3-D case and the air/ocean boundary conditions
is implemented to deal with CSEM applications.

The performance of the algorithm is verified by comparison to
analytical solutions for anisotropic homogeneous media. Finally,
examples in inhomogeneous media illustrates a practical application.

2. MAXWELL’S EQUATIONS FOR GENERAL
ANISOTROPIC MEDIA

In 3-D vector notation, Maxwell’s equations, neglecting the
displacement currents, are [8]:

∇×E = −∂tB,

∇×H = JI + JS ≡ J,
(1)

where the vectors E, H, B, JI and JS are the electric field intensity, the
magnetic field intensity, the magnetic flux density, the induced current
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density, and the electric source current, respectively. In general, they
depend on the Cartesian coordinates (x1, x2, x3) = (x, y, z), and the
time variable t. The compact notation ∂t ≡ ∂/∂t is used.

Additional constitutive equations are needed. These are JI = σ ·E
and B = µH, where σ, the conductivity tensor, is a real, symmetric
and positive definite tensor, and µ, the magnetic permeability, is a
scalar quantity, and the dot denotes ordinary matrix multiplication.

Substituting the constitutive equations into Equations (1) gives

∇×E = −µ∂tH,

∇×H = σ ·E + JS ,
(2)

which are a system of six scalar equations in six scalar unknowns.
In this work, I am concerned with triclinic media, where at each

point of the space the conductivity tensor is of the form

σ =

(
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

)
. (3)

For a given homogeneous medium, the tensor can always be rotated to
obtain its expression in its principal coordinate system:

σ =

(
σ1 0 0
0 σ2 0
0 0 σ3

)
. (4)

Without loss in generality, this form can be used to study the physics
of the diffusion process, but the numerical solutions are obtained with
the expression (3).

Although the magnetic permeability is commonly assumed to be
that of free space, some soils have a significantly higher value [24],
hence, µ can vary arbitrarily in space. In some cases, such as the
CSEM problems µ is assumed to be spatially constant.

3. ELECTRIC FORMULATION

From Equation (1) I obtain a vector equation for the electric field:

−∂tE = σ−1 · [∇× (µ−1∇×E) + ∂tJS

]
. (5)

Note that

∇× (µ−1∇×) =(− (
∂2µ

−1∂2 + ∂3µ
−1∂3

)
∂2µ

−1∂1 ∂3µ
−1∂1

∂1µ
−1∂2 − (

∂1µ
−1∂1 + ∂3µ

−1∂3

)
∂3µ

−1∂2

∂1µ
−1∂3 ∂2µ

−1∂3 − (
∂1µ

−1∂1 + ∂2µ
−1∂2

)

)
,(6)
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where I have denoted ∂/∂xi by ∂i for brevity. Equation (5) can be
solved for E = (E1, E2, E3)>.

Following Badea et al. [5] and Stalnaker [29], I consider the case

∇ · J = ∇ · (σ ·E) = 0, (7)

which is valid for ∇ · JS = 0, according to Equation (1), i.e., if the
source current density is divergence-free. This condition is satisfied by
inductively coupled magnetic dipole controlled sources of the form

JS = ∇×A, (8)

where A is a vector. In the 2-D plane-wave case discussed later
(propagation in the (x, z)-space), an example is A = (0, fh, 0)>, and
JS = (−∂3f, ∂1f)>h, where f(x) is the spatial distribution and h(t) is
the time history.

Condition (7) has to be imposed according to the approach
illustrated in the next sections. The numerical algorithm presented
here is not restricted to divergence-free sources. Also, non divergence-
free electric dipole sources can be implemented, but Equation (7) has
to be modified accordingly. However, as illustrated in the examples,
the divergence-free property is not preserved by the partial differential
equations and condition (7) is required when using divergence-free
sources. The general question of the computation of the divergence-free
part of a vector field arises in many problems of physical interest, for
example, in electromagnetism [16] and in the Navier-Stokes equations
for incompressible fluids. Specifically, the divergence-free condition
addressed here has been considered by Smith [28] and Sasaki and
Meju [27].

3.1. Homogeneous Media

I consider in this section a version of the differential equations
for a homogeneous anisotropic medium. The purpose is to test
the Chebyshev algorithm for time integration using the electric
formulation. For simplicity and without loss of generality, the
conductivity tensor is considered in its principal system. The tensor is
diagonal and I denote σi = σi(i). From Equation (7), I have

σ1∂1E1 + σ2∂2E2 + σ3∂3E3 = 0. (9)

Note that in homogeneous anisotropic media ∇ · E 6= 0, while in
homogenous isotropic media ∇ · E = 0. When the medium is
inhomogeneous this condition is not valid in any case.

Equation (5) becomes

−∂tE = γ · ∇ ×∇×E, (10)
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where
γ = (µσ)−1. (11)

I have assumed that the magnetic permeability is a constant, as
is the case in many geophysical applications. The explicit form of
Equation (10) is

−∂tE1 = γ1

[− (
∂2

2E1 + ∂2
3E1

)
+ ∂2∂1E2 + ∂3∂1E3

]
,

−∂tE2 = γ2

[− (
∂2

1E2 + ∂2
3E2

)
+ ∂2∂1E1 + ∂3∂2E3

]
,

−∂tE3 = γ3

[− (
∂2

1E3 + ∂2
2E3

)
+ ∂1∂3E1 + ∂2∂3E2

]
.

(12)

If the medium is isotropic (and homogeneous), I can use the
property ∇×∇×E = ∇(∇ ·E)−∇2E = −∇2E. Then, Equation (5)
becomes

∂tE = γ∇2E, γ =
1

µσ
, (13)

where
∇2E = (∇2E1,∇2E2,∇2E3)>. (14)

Next, I consider the 2-D anisotropic case, by assuming an infinite
plane-wave along the y-direction. The y-derivates vanish and the E2

and (E1, E3) fields decouple. The equations, corresponding to the
coupled components, are

−∂tE1 = γ1

(−∂2
3E1 + ∂3∂1E3

)
,

−∂tE3 = γ3

(−∂2
1E3 + ∂1∂3E1

)
.

(15)

Because div · JI = 0 one has σ1∂1E1 + σ3∂3E3 = 0. Combining this
equation with (15) yields

∂tE1 = γ1∂
2
3E1 + γ3∂

2
1E1 = ∆γE1,

∂tE3 = γ3∂
2
1E3 + γ1∂

2
3E3 = ∆γE3,

(16)

where
∆γ = γ1∂

2
3 + γ3∂

2
1 =

1
µσ3

∂2
1 +

1
µσ1

∂2
3 (17)

is a modified Laplacian. Note that the field components have
decoupled. The 2-D analytical solution is given in Appendix A.

In 3-D space, the E3-component can be decoupled if one considers
a transversely isotropic medium with σ1 = σ2. In this case, a similar
procedure leads to

∂tE3 = ∆γE3, (18)

where
∆γ = γ1∂

2
3 + γ3(∂2

1 + ∂2
2), (19)

and a corresponding analytical solution can easily be obtained.
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3.2. Inhomogeneous Media

In the inhomogeneous case, the non-diagonal conductivity tensor has
to be used, since the properties of the medium can vary arbitrarily.
Then, Equation (6) is considered, although for geophysical applications
µ can be assumed constant as stated above. To obtain a 2-D version
of (5), I assume that the properties along the y-direction are constant.
Disregarding the sources for simplicity, I obtain

−∂tE1 =γ11(−∂2
3E1+∂1∂3E3)−γ12(∂2

1 +∂2
3)E2+γ13(−∂2

1E3+∂1∂3E1),

−∂tE2 =γ12(−∂2
3E1+∂1∂3E3)−γ22(∂2

1 +∂2
3)E2+γ23(−∂2

1E3+∂1∂3E1),

−∂tE3 =γ13(−∂2
3E1+∂1∂3E3)−γ23(∂2

1 +∂2
3)E2+γ33(−∂2

1E3+∂1∂3E1),
(20)

where γij are the components of (µσ)−1 given in Equation (11). The
components E2, H1 and H3 are decoupled from H2, E1 and E3 only
if the conductivity tensor is diagonal. In this case, a version of the
isotropic diffusion equation is obtained, where the only conductivity
involved in the equation is σ22 and the field component is E2. This is
the TE equation solved by Oristaglio and Hohmann [25], while E1 and
E3 are coupled and satisfy the TM equation.

Alternatively, one may arbitrarily ignore the y-dimension and
obtain equations for a 2-D world when the conductivity tensor is not
diagonal,

−∂tE1 = γ11(−∂2
3E1 + ∂1∂3E3) + γ13(−∂2

1E3 + ∂1∂3E1),

−∂tE3 = γ13(−∂2
3E1 + ∂1∂3E3) + γ33(−∂2

1E3 + ∂1∂3E1).
(21)

These are the equations to be solved in inhomogeneous media.
Equations (21) reduce to (15) in homogeneous media. However,
condition (7) has to be satisfied, whose implementation is shown in
the following for the 3-D case.

Next, I impose condition (7) to the solution of Equations (5). The
condition has the explicit form:

∂1(σ11E1 + σ12E2 + σ13E3) + ∂2(σ12E1 + σ22E2 + σ23E3)
+∂3(σ13E1 + σ23E2 + σ33E3) = 0. (22)

It is enough to consider the y- and z-derivatives of div E. From (22)
we obtain

Y ≡ ∂2E2 ' −σ−1
22 [∂1(σ11E1) + ∂3(σ33E3) + A],

Z ≡ ∂3E3 ' −σ−1
33 [∂1(σ11E1) + ∂2(σ22E2) + A],

(23)

where

A = ∂1(σ12E2+σ13E3)+∂2(σ12E1+σ23E3)+∂3(σ13E1+σ23E2), (24)
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and I have neglected derivatives of the diagonal conductivity
components, ∂iσii, which yield unstable solutions. These derivatives
involve terms of the form −Ei∂i lnσii (no implicit summation), which
are numerically unstable due to the factor σ−1

ii ∂iσii, where abrupt
changes of the conductivity components occur. Further research is
necessary to verify if the present algorithm can be used with an electric-
magnetic formulation of Maxwell’s equations, where derivatives of the
material properties are avoided [9, 36]. A promising approach can be
to solve a fictitious hyperbolic representation of the electromagnetic
equations [20, 22].

The term ∇×∇×E appearing in Equation (5) is then computed
as

∇×∇×E = −



(
∂2

2 + ∂2
3

)
E1 − ∂1(∂2E2 + Z)(

∂2
1 + ∂2

3

)
E2 − ∂2(∂1E1 + Z)(

∂2
1 + ∂2

2

)
E3 − ∂3(∂1E1 + Y )


 . (25)

In the isotropic and homogeneous case, the three components of
the electric field decouple. Consider the first component of (25):
∂1(∂2E2 +Z) = −∂2

1E1, since A = 0, and the conductivity is constant.
Then, the spatial operator acting on E1 is −∇2.

The algorithm for solving the differential equations is given in
Appendix B, where the analysis for the anisotropic case is presented
in detail. I use the regular Fourier method for computing the
spatial derivates along the horizontal direction and the Chebyshev
differentiation [8] is used in the vertical direction to implement
the air/ocean boundary condition (see Appendix C). The accuracy,
stability and performance of the time-integration method based on
the Chebyshev expansion is extensively analyzed in Tal-Ezer [30] and
Carcione [7].

4. SIMULATIONS

I consider the following source vector

JS = ∇×A, A = h(f1, f2, f3)>. (26)

The spatial distribution is a Gaussian of the form:

fi(x) = exp[−ci(x− x0)2], (27)

where ci is a constant. The time history is a Ricker wavelet:

h(t) =
(

a− 1
2

)
exp(−a), a =

[
π(t− ts)

tp

]2

, (28)
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where tp is the period of the wave (the distance between the side peaks
is
√

6tp/π) and I take ts = 1.4tp. Its frequency spectrum is

H(ω) =
(

tp√
π

)
ā exp(−ā− ıωts), ā =

(
ω

ωp

)2

, ωp =
2π

tp
. (29)

The peak frequency is fp = 1/tp.
All the simulations assume a magnetic permeability µ = µ0.

First, I consider two cases in a 2-D isotropic space: i) σ = 0.5 S/m
(sediments) and fp = 10 Hz, and ii) σ = 3.6 S/m (seawater) and

(a) (b)

Figure 1. 2-D numerical simulation for cases i) (a) and ii) (b) (see
text). Numerical and analytical electric field E1 at 2 km from the
source (symbols and solid line, respectively).

(a) (b)

Figure 2. 2-D numerical simulation for cases i) (a) and ii) (b) (see
text). Numerical and analytical AVO response (symbols and solid line,
respectively). The frequency is 1 Hz.
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(a) (b)

Figure 3. 2-D numerical simulation cases i) (a) and ii) (b) (see
text). Numerical and analytical PVO response (symbols and solid
line, respectively). The frequency is 1 Hz.

Figure 4. 2-D simulation for the anisotropic case. Numerical and
analytical electric-field component E1 at 2 km from the source (symbols
and lines, respectively). The dashed line corresponds to the isotropic
case with σ3 = σ1 = 0.5 S/m. The fields are normalized to 1, with the
isotropic case weaker than the anisotropic case by a factor 5.

fp = 3Hz. From the first component of (13) (E = E1), and redefining
the source term compared to (5), the equation to solve is

∂E

∂t
=

1
µσ

(∂2
1 + ∂2

3)E + JS , (30)

where JS = ∂3fh(t), and f has the form (27). One of the
problems of using low-order finite differences for time stepping is that
implementation of the source has to be performed by imposing initial
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conditions [25], otherwise the source singularity generates noise in the
solution. On the other hand, using the Chebyshev method I can use a
source term as indicated in Appendix B (see, particularly, the section
dealing with the source implementation). The sampling rate has to be
smaller than 1/(4fp) if 2fp is taken as the maximum source frequency.
The number of grid points is nx = nz = 119 and the grid spacing is
dx = dz = 100m. The source is located at the grid point (59, 59) and
the receiver at (79, 59), i.e., 2 km from the source. The algorithm has
b = 879 1/s and M = 117 (case i), and b = 407 1/s and M = 80 (case
ii). The analytical solution is given by Equation (A10), with N = 2.
Figures 1(a) and 1(b) compare the numerical and analytical solutions
for cases i) and ii), respectively, where the symbols correspond to the
simulations. The AVO (amplitude variations with offset) and PVO
(phase variations with offset) responses at 1Hz are given in Figures 2
and 3, respectively. The phase oscillates due to numerical noise at large
offsets in case ii). Note that the amplitude of the field is 15 orders of
magnitude less than the zero-offset field, due to the strong attenuation
after 4 km propagation in seawater. The simulation must be performed
to large enough times for the transients to decay sufficiently. The
anomaly observed in Figure 2(b) beyond an offset of 2.5 km is due to
this problem. In this case, the attenuation is very strong (seawater)
and the decay is slower than in the case of the sediment (Figure 2(a)).

I consider now the 2-D anisotropic case for a homogeneous
medium, described by Equation (16). Matrix G involved in the formal
solution (B8) is an scalar: G = ∆γ . Following the method outlined in
Appendix B, the eigenvalues of G at the Nyquist wavenumber are

κ = − π2

dx2
(γ1 + γ3) = − π2

µdx2

(
1
σ1

+
1
σ3

)
, (31)

where dz = dx has been assumed. The value of b to obtain convergence
is |κ|. As an example I consider σ1 = 0.5 S/m, σ3 = 0.25 S/m,
and fp = 10 Hz. The number of grid points and grid spacings are
the same as the previous example. The source is located at the
grid point (59, 59) and the receiver at (79, 59), i.e., at 2 km from
the source. The algorithm has b = 1055 1/s and M = 128 . The
analytical solution is given by Equation (A15). Figures 4 compares
the numerical and analytical solutions, corresponding to the horizontal
component E1 of the electric field, where the symbols correspond to
the simulations. (The vertical component is zero.) The agreement is
very good. The AVO and PVO responses at 3Hz are given in Figure 5.
The solid lines correspond to the anisotropic solution and the dashed
lines to the isotropic solution. This is given by σ33 = σ11 = 0.5 S/m.
Important differences can be seen at all the offsets. If σ13 6= 0, the
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Figure 5. 2-D simulation for the anisotropic case. AVO and PVO
responses (solid lines) compared to the isotropic case (dashed lines).
The frequency is 3 Hz.

vertical component E3 is not zero, since E1 and E3 are coupled (see
Equation (21)).

The next simulations considers a 3-D unbounded anisotropic
medium, and I first test the algorithm against the analytical solution
for an uniaxial medium (see Appendix A). I take σ1 = σ2 = 3.6 S/m
and σ3 = 1.8 S/m, and solve Equation (5) assuming the representation
(25) for ∇×∇×E. The number of grid points is nx = ny = nz = 119
and the grid spacing is dx = dy = dz = 100m. The source has a
central frequency fp = 3Hz and is located at the grid point (59, 59,
59), while the receiver is placed at (79, 59, 59), i.e., 2 km from the
source. The algorithm has b = 1017 1/s and M = 126. Figure 6
shows the comparison, where the RMS misfit error is 1.2 × 10−3, i.e.,
the method is reasonably accurate due to the spectral nature of the
algorithm.

Next, I consider the conductivity tensor

σ =

( 3.6 1.08 0.72
1.08 3.6 0
0.72 0 1.8

)

in S/m. In this case, the source is defined by A = h(0, 0, f3)>, and the
location of source and receiver is the same of the previous simulation.
Figure 7 shows the three components of the electric field.

In the following, I compute the AVO and PVO curves for the model
shown in Figure 8, where the medium below the seafloor is anisotropic.
The number of grid points is nx = 119, ny = 63 and nz = 67;
the grid spacing in the horizontal direction is dx = dy = 100m,
while the vertical dimension is 4 km. The boundary condition (C3)
is implemented at the air/ocean interface. The source is defined by
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Figure 6. 3-D simulation for
the anisotropic case. Numerical
and analytical electric-field com-
ponent E3 (symbols and solid
line, respectively). The fields are
normalized to 1.

Figure 7. 3-D simulation
for the anisotropic case. The
plots shows the three components
of the electric field, where the
solid, dashed and dotted lines
correspond to E1, E2 and E3,
respectively.

σ
11

 = 0.5 S/m

σ
22

 = 0.5 S/m

σ
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Figure 8. 3-D geological model.
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(a) (b)

Figure 9. 3-D simulation corresponding to the model shown in
Figure 7, where the AVO and PVO responses of the electric component
E1 are shown. The frequency is 1Hz.

A = h(0, f2, 0)>, has a central frequency fp = 10Hz and is located at
the grid point (59, 31, 18). The receiver line is defined by the grid point
(i, 31, 19), i = 1, . . . , nx (the z-points 18 and 19 corresponds to the
sea and the background, respectively). The algorithm computes the
solution in one time step of 2.8 s, with b = 749376 1/s and M = 5193.
The AVO and PVO responses are shown in Figures 9(a) and 9(b),
respectively.

5. CONCLUSIONS

I have developed a direct numerical method for modeling electromag-
netic diffusion in an anisotropic earth, where the electric formulation is
solved with a spectral Chebyshev expansion of the evolution operator.
Pseudospectral methods are used to compute the spatial derivatives.
An approximate version of the divergence of the current-density vec-
tor equal to zero is imposed to obtain the solution, which holds for
inductively coupled sources.

The Chebyshev expansion, either for parabolic or hyperbolic
problems, has spectral accuracy in time, and therefore avoids numerical
dispersion, which is a characteristic feature of low-order schemes. The
spatial derivatives computed with the Fourier pseudospectral method,
which also has spectral accuracy and allows the use of coarser grids
compared to FD methods. The modeling allows general material
variability, a non-diagonal conductivity tensor and provides snapshots
and time histories of the electric and magnetic fields. The use of this
spectral method overcomes two drawbacks: low accuracy and stringent
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stability conditions, since the error in time decays exponentially. Tests
with Green’s function solutions are successfully performed, showing
that the RMS error is reasonably small.

The simulations focus on offshore applications, where it is
necessary to model the air/ocean boundary condition and the diffusion
at the ocean/sediment interface. The solution is given in the time
domain and as amplitude and phase variations as a function of the
source-receiver offset in the frequency domain.

This work offers and alternative algorithm to compute diffusion
fields for practical applications. Further research is need to avoid
the approximation when implementing the divergence condition. This
implies the use of the Chebyshev expansion with an electric-magnetic
formulation of Maxwell’s equations, where derivatives of the material
properties can be avoided.

APPENDIX A. ANALYTICAL SOLUTIONS

A.1. 3-D Homogeneous Isotropic Medium

I derive a closed-form frequency-domain analytical solution for
electromagnetic waves propagating in a 3-D unbounded homogeneous
isotropic medium. If the source is divergence-free, it is ∇ ·E = 0 from
div · J = 0. Then, Maxwell’s Equation (13) for a time-harmonic field
is

∇2E− ıωµσE = ıωµJS , (A1)

where ω is the angular frequency and ı =
√−1. Each component of

the electric field satisfies

∇2Ei +
(ω

v

)2
Ei = ıωµJSi, i = 1, . . . , 3, (A2)

where

v = (1 + ı)
√

ω

2µσ
(A3)

are complex velocities. As can be seen, each electric-field component
is associated only with the conductivity component along the same
direction. This is the TE mode on the Cartesian planes.

Consider the Green’s function solution for each Equation (A2) and
denote each field component by E. It is

∇2g +
(ω

v

)2
g = −δ(x)δ(y)δ(z). (A4)

where [8]

g(r) =
1

4πr
exp(−ıkr), k =

ω

v
, (A5)
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with
r =

√
x2 + y2 + z2. (A6)

If I assume a source of the form:
JS = −J0µ

−1δ(x)δ(y)δ(z)H(ω), (A7)
where H is the Fourier transform of the time history h, the solution
for the electric components is

E(r, ω) = ıωJ0H(ω)g(r, ω), (A8)
or

E(r, t) = J0∂th ∗ g. (A9)
where “*” denotes time convolution. To ensure a real time-domain
solution, I consider an Hermitian frequency-domain solution, and the
time-domain solution is obtained from (A8) by an inverse transform.

Actually, Equation (A9) and (A10) holds for a complex
conductivity, i.e., including induced polarization effects [39]. If the
conductivity is real and h(t) is the Heaviside function, Equation (A10)
has the following solution solution

E(r, t) =
J0

(4πt)N/2
exp[−µσr2/(4t)], (A10)

where N is the dimension of the space [10].

A.2. 2-D Homogeneous Anisotropic Medium

Consider one of the Equations (16), denoting E1 or E3 by E.
Redefining the source term, I have

∆γE − ∂tE = JS , ∆γ = γ1∂
2
3 + γ3∂

2
1 =

1
µσ3

∂2
1 +

1
µσ1

∂2
3 . (A11)

Defining x′ = x/
√

γ3 and z′ = z/
√

γ1, I obtain

∆′E − ∂tE = JS , ∆′ =
∂2

∂x′2
+

∂2

∂z′2
. (A12)

The solution for the Green function is obtained for JS = −δ(x′, z′)δ(t).
I get [10]

g(x, z, t) =
1

4πt
exp[−r′2/(4t)], (A13)

where

r′ =
√

x′2 + z′2 =

√
x2

γ1
+

z2

γ3
=
√

µ
√

σ3x2 + σ1z2 (A14)

If JS = −δ(x, z)h(t), the solution is given by
E = g ∗ h. (A15)
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A.3. 3-D Homogeneous Transversely Isotropic (Uniaxial)
Medium

A 3-D analytical solution for the E3-component, based on equation
(18), can be obtained by using the same coordinate transformation of
the previous section. In this case,

∆γE3 − ∂tE3 = JS , ∆γ =
1

µσ3
(∂2

1 + ∂2
2) +

1
µσ1

∂2
3 . (A16)

Defining x′ = x/
√

γ3, y′ = y/
√

γ3 and z′ = z/
√

γ1, I obtain

∆′E3 − ∂tE3 = JS , ∆′ =
∂2

∂x′2
+

∂2

∂y′2
+

∂2

∂z′2
. (A17)

The solution for the Green function is obtained for JS =
−δ(x′, y′, z′)δ(t). I get [10]

g(x, y, z, t) =
1

(4πt)3/2
exp[−r′2/(4t)] (A18)

where
r′ =

√
µ
√

σ3(x2 + y2) + σ1z2 (A19)

If JS = −δ(x, y, z)h(t), the solution is given by

E3 = g ∗ h. (A20)

APPENDIX B. TIME INTEGRATION

The electric formulation is solved with the spectral Chebyshev
method [7]. First, I illustrate the simplest FD time-domain algorithm
to solve Equation (13) (homogeneous case). Assume for simplicity the
following representation for each component:

∂tE =
1

µσ
∆E + JS (B1)

where ∆ is the Laplacian. The problem can be solved with the forward
Euler technique:

En+1 = En +
dt

µσ
∆En + dtJn

S , (B2)

or the staggered scheme

En+1/2 = En−1/2 +
dt

µσ
∆En + dtJn

S . (B3)
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Assume a plane-wave solution En = exp(ıωndt − ıkx). The last
equation without sources can be written as

2ı sin
(

ωdt

2

)
= −dtk2

µσ
. (B4)

Since the absolute value of the sine function has to be less or equal to
one, I obtain the stability condition:

dt ≤ 2µσdx2

3π2
, (B5)

where dx is the minimum grid size, and I have considered the Nyquist
spatial wavenumber k =

√
3π/dx (the factor 3 holds for the 3-

D space, since k2 = k2
1 + k2

2 + k2
3, where ki are the wavenumber

components). Another way to find this condition is to assume a
solution En = G exp(−ıkx), where G is the growth factor. I obtain
from Equation (B2):

En+1 = GEn, G = 1− dt(µσ)−1k2. (B6)
Stability requires |G| ≤ 1 (this is equivalent to the von Neumann
stability condition, discussed in the previous section). Again, the worst
case is when the wavenumber is the Nyquist one. That condition gives
dt(µσ)−1k2 ≤ 2 and therefore Equation (B5).

The Chebyshev method to solve Equation (5) (inhomogeneous
case) is discussed in the following. I re-write that equation as

∂tE = G E + s, G = −(µσ)−1 · ∇ ×∇×, (B7)
where s is the source term and µ is assumed to be constant.
Considering a discretization with N grid points, the system (13)
becomes a coupled system of L · N ordinary differential equations at
the grid points, where L is the dimension of matrix G. The solution
to Equation (B7) subject to the initial condition E(0) = E0 is formally
given by

EN (t) = exp(tGN )E0
N +

∫ t

0
exp(τGN )sN (t− τ)dτ, (B8)

where E0
N is the initial-condition field vector, exp(tGN ) is called the

evolution operator, and the subscript N indicates that those quantities
are discrete representation of the respective continuous quantities. I
consider a separable source term sN = aNh(t), where aN is the spatial
distribution of the source and the function h(t) is the source time
history. A discrete solution of (B8) is achieved by approximating
the evolution operator. For instance, in the absence of a source, the
solution can be expressed by

EN (t) = HM (tGN )E0
N , (B9)
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where HM is a polynomial of degree M that converges to exp(tGN )
in the domain that includes all the eigenvalues of the operator tGN . I
use the following Chebyshev expansion of exp(u) [1, 30]:

exp(u) =
∞∑

k=0

αk(bt)Tk

( u

bt

)
, (B10)

where αk are the expansion coefficients, Tk is the Chebyshev
polynomial of order k, and b is the absolute value of the eigenvalue
of matrix GN having the largest negative real part (as we shall see
later, the eigenvalues of the electric formulation are located on the real
axis and their real part is negative). For convergence, |u| ≤ bt and u
lies on the real axis. The expansion coefficients are given by

αk = ckIk, c0 = 1, ck = 2, k ≥ 1, (B11)
and Ik is the modified Bessel function of order k.

I perform the change of variable

w =
1
bt

(u + bt), −1 ≤ w ≤ 1. (B12)

From Equations (B10) and (B12),

exp(u) = exp(−bt) exp(btw) =
∞∑

k=0

βkTk(w), (B13)

where
βk = αk exp(−bt) = ck exp(−bt)Ik(bt) (B14)

for initial conditions without source, and

βk = ck

∫ t

0
exp(−bτ)Ik(bτ)h(t− τ)dτ (B15)

in the presence of a source (without initial conditions). The reason
for the change of variable u to w is to avoid the calculation of Bessel
functions when the argument bt is large, since this may exceed the
dynamic range of the computer. Instead, the quantity exp(−bt)Ik(bt)
is computed.

For computations, the expansion (B13) has to be truncated. Thus,
the M degree polynomial approximation of exp(x) is

HM (u) =
M∑

k=0

βkTk(w(u)). (B16)

Because u in (B10) is replaced by tGN , the variable w defined in
Equation (B12) is represented by an operator FN defined as

FN =
1
b
(GN + bI), (B17)
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where I is the identity matrix of dimension L. In the absence of sources,
the discrete solution is

EM
N (t) =

M∑

k=0

βk(t)Tk(FN )E0
N . (B18)

Tk(FN )E0
N is computed by using the recurrence relation of the

Chebyshev polynomials [1],
Tk(w) = 2wTk−1(w)− Tk−2(w), k ≥ 2, (B19)

T0(w) = 1, T1(w) = w (B20)
[1]. Hence,

Tk(FN )E0
N = 2FNTk−1(FN )E0

N − Tk−2(FN )E0
N , k ≥ 2, (B21)

T0(FN )E0
N = E0

N , T1(FN )E0
N = FNE0

N . (B22)
The algorithm is a three-level scheme, since it uses the recurrence
relation. The first time step should be larger than the duration of
the source. Results at small time steps to compute time histories at
specified points of the grid do not require significant computational
effort. A slight modification of Equation (B18) can be used:

EM
N (t′) =

M∑

k=0

βk(t′)Tk(FN )E0
N , (B23)

for t < t′. This calculation does not require significantly more
computations since the terms involving the spatial derivatives
Tk(FN )E0

N do not depend on the time variable and are calculated
in any case. Only the coefficients βk are time dependent, such that
additional sets of Bessel functions need to be computed.

The present algorithm has infinite accuracy in time and in space,
and is highly efficient, since the stability condition requires a time
step dt = O(1/N) compared to dt = O(1/N2) for finite-order explicit
schemes. Moreover, the error in time decays exponentially [30].

B.0.1. Eigenvalues of the Propagation Matrix

In the Fourier domain, the time derivative is replaced by ıω, where ω is
the angular frequency, and the spatial derivatives ∂i are replaced by ıki,
where ki are the components of the wavenumber vector. Replacing the
wavenumber components into Equation (B7) and assuming constant
material properties, I obtain

G =



−(k2

2 + k2
3)a

−1
1 k1k2a

−1
1 k1k3a

−1
1

k1k2a
−1
2 −(k2

1 + k2
3)a

−1
2 k2k3a

−1
2

k1k3a
−1
3 k2k3a

−1
3 −(k2

1 + k2
2)a

−1
3


 , (B24)
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whose eigenvalues are 0, and

g± = −1
2
(A±

√
B), (B25)

where
A =k2

1b1 + k2
2b2 + k2

3b3,

B =− 4k2(a2a3k
2
1 + a1a3k

2
2 + a1a2k

2
3)

+ [a3(k2
1 + k2

2) + a2(k2
1 + k2

3) + a1(k2
2 + k2

3)]
2,

k2 =k2
1 + k2

2 + k2
3,

bi =aj + ak, i 6= j 6= k,

ai =(µσi)−1.

(B26)

It can be shown that these eigenvalues are real and negative. In the
isotropic case, B = 0 and the eigenvalues are 0 and −k2(µσ)−1 with
multiplicity two.

The maximum wavenumber components are the Nyquist
wavenumbers, which for grid spacings dxi are ki = π/dxi. They are re-
lated to the highest harmonics of the spatial Fourier transform. Hence,
the value of b is obtained by replacing the Nyquist wavenumbers in
Equation (B25) and taking the eigenvalue with maximum absolute
value, i.e.,

b = max(|g+|, |g−|) = |g+|. (B27)

If dx = dy = dz, I obtain

b =
π2

dx2

(
a1 + a2 + a3 +

√
a2

1 + a2
2 + a2

3 − a1a2 − a1a3 − a2a3

)
.

(B28)
In the isotropic case, I have

b =
3

µσ

( π

dx

)2
. (B29)

Alternatively, the single eigenvalue of matrix G associated with
Equation (13) can easily be obtained as

gi = − 1
µσi

(k2
1 + k2

2 + k2
3), (B30)

and b is given by an equation similar to (B29) for the Nyquist
wavenumbers and cubic cells. Note that dt ≤ 2/b, where dt is the
FD time step (B5).

As Tal-Ezer [30] has shown, the polynomial order should be
O(
√

bt) (his Equation (4.13)). I found that

M = K
√

bt (B31)
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is enough to obtain stability and accuracy, where K ranges from 4 to
6. On the other hand, a safe value of M can be determined by finding
the range in which the coefficients βk are significantly different from
zero (for instance, by checking the ratio β0/βm).

B.1. Source Implementation

The implementation of a single-point source generates a strong high-
frequency image of the initial source time history at earlier propagation
times. This noise is common in pseudospectral methods. This event
is attenuated by using the Gaussian spatial distribution for the source
along the source-receiver direction. Seven grid points are enough, with
the amplitudes defined by exp[−0.5(i − i0)2], where i0 is the relative
source location (in grid points) corresponding to i = 4.

Moreover, the source central frequency has to be as low as possible.
Note that a lower dominant frequency implies a longer source duration
and therefore a longer first time step of the algorithm, which increases
the argument of the Bessel functions bt (see Equation (B15)). This
makes the introduction of the source more expensive. On the other
hand, b decreases with increasing conductivity (see Equation (B29),
thus reducing the computer time.

An alternative approach is to solve for secondary fields, to
avoid the problem of the source singularity. The equations can
be reformulated in terms of the secondary field Es, defined as the
difference between the total field Es and the primary field of a
background model Ep, i.e., E = Ep + Es. The source term then
becomes µ(σ−σ0) ·∂tEp, where σ0 is the background conductivity [2].

APPENDIX C. AIR/WATER BOUNDARY CONDITION

The air, assumed homogeneous, obeys Equation (13). Since the
conductivity vanishes, I obtain the Laplace equation

∇2E = 0. (C1)

In the 2-D case when only one component of the electric field is
computed (the TE mode, perpendicular to the plane of propagation),
I use the approach of Oristaglio and Hohmann [25]. I compute the
vertical spatial derivative using the Chebyshev spectral method [8] and
assume that the grid points of the first row are in the air. Then, the
field here is obtained as

E(k1, z = −d) =
1
2π

∫ ∞

−∞
exp(|k1|d + ık1x)E(k1, z = 0)dk1, (C2)
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where E(k1, z = 0) is the Fourier transform of the electric field at the
air/water interface, and d is the grid spacing between the surface and
the points in the air.

To apply the boundary condition in 3-D, I use the upward-
continuation scheme of Wang and Hohmann [32] to compute E1 and
E2 above the surface using E3 on the surface:

E1(k1, k2, z = −d) = −
ık1 exp

(
−d

√
k2

1 + k2
2

)
√

k2
1 + k2

2

E3(k1, k2, z = 0),

E2(k1, k2, z = −d) =
k2

k1
E1(k1, k2, z = −d),

(C3)

where d is the grid spacing between the surface and the points in the
air. The method consists of transforming E3 to the (k1, k2)-domain,
use of Equations (C3) and inverse Fourier transforms to obtain the
horizontal components in the air.

In the 2-D anisotropic case, Equation (C3) becomes

E1(k1, z = −d) = −ı exp (−dk1) E3(k1, z = 0). (C4)

REFERENCES

1. Abramowitz, M., and I. A. Stegun, Handbook of mathematical
functions, Dover, 1972.

2. Adhidjaja, J. I., G. W. Hohmann, and M. L. Oristaglio, “Two-
dimensional transient electromagnetic responses,” Geophysics,
Vol. 50, 2849–2861, 1985.

3. Al-Garni, M. and M. E. Everett, “The paradox of anisotropy in
electromagnetic loop-loop responses over a uniaxial half-space,”
Geophysics, Vol. 68, 892–899, 2003.

4. Anderson, B., T. Barber, and S. Gianzero, “The effect of crossbed-
ding anisotropy on induction tool response,” Petrophysics, Vol. 42,
137–149, 2001.

5. Badea, E. A., M. E. Everett, G. A. Newman, and O. Biro, “Finite-
element analysis of controlled-source electromagnetic induction
using Coulomb-gauged potentials,” Geophysics, Vol. 66, 786–799,
2001.

6. Carcione, J. M., “Ground penetrating radar: wave theory
and numerical simulation in conducting anisotropic media,”
Geophysics, Vol. 61, 1664–1677, 1996.

7. Carcione, J. M., “A spectral numerical method for electromagnetic
diffusion,” Geophysics, Vol. 71, I1–I9, 2006.



448 Carcione

8. Carcione, J. M., Wave Fields in Real Media. Theory and
Numerical Simulation of Wave Propagation in Anisotropic,
Anelastic, Porous and Electromagnetic Media, 2nd Edition,
Elsevier, 2007.

9. Carcione, J. M. and M. Schoenberg, “3-D ground-penetrating
radar simulation and plane wave theory,” Geophysics, Vol. 65,
1527–1541, 2000.

10. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids,
Clarendom Press, 1984.

11. Davydycheva, S., V. Druskin, and T. Habashy, “An efficient finite-
difference scheme for electromagnetic logging in 3D anisotropic
inhomogeneous media,” Geophysics, Vol. 68, 1525–1536, 2003.

12. Druskin, V. L. and L. A. Knizhnerman, “Spectral approach to
solving three-dimensional Maxwells diffusion equations in the time
and frequency domains, Radio Science, Vol. 29, 937–953, 1994.

13. Druskin, V. L., L. A. Knizhnerman, and P. Lee, “New
spectral Lanczos decomposition method for induction modeling
in arbitrary 3-D geometry,” Geophysics, Vol. 64, 701–706, 1999.

14. Eidesmo, T., S. Ellingsrud, L. M. MacGregor, S. Constable,
M. C. Sinha, S. Johansen, F. N. Kong, and H. Westerdahl,
“Sea bed logging (SBL), a new method for remote and direct
identification of hydrocarbon filled layers in deepwaters areas,”
First Break, Vol. 20, 144–151, 2002.

15. Everett, M. E. and S. Constable, “Electric dipole fields over an
anisotropic seafloor: Theory and application to the structure of
40Ma Pacific Ocean lithosphere,” Geophys. J. Int., Vol. 136, 41–
56, 1999.

16. Jiang, B.-N., J. Wu, and L. A. Povinelli, “The origin of
spurious solutions in computational electromagnetics,” Journal of
Computational Physics, Vol. 125, 104–123, 1996.

17. Kong, F. N., S. E. Johnstad, T. Røsten, and H. Westerdahl, “A
2.5D finite-element-modeling difference method for marine CSEM
modeling in stratified anisotropic media,” Geophysics, Vol. 73, F9–
F19, 2008.

18. Lee, K. H., G. Liu, and H. F. Morrison, “A new approach
to modeling the electromagnetic response of conductive media,”
Geophysics, Vol. 54, 1180–1192, 1989.

19. Leppin, M., “Electromagnetic modeling of 3-D sources over 2-D
inhomogeneities in the time domain,” Geophysics, Vol. 57, 994–
1003, 1992.

20. Maaø, F., “Fast finite-difference time-domain modeling for



Progress In Electromagnetics Research B, Vol. 26, 2010 449

marine-subsurface electromagnetic problems,” Geophysics,
Vol. 72, A19–A23, 2007.

21. Mackie, R. L., T. R. Madden, and P. E. Wannamaker, “Three-
dimensional magnetotelluric modeling using finite difference
equations — Theory and comparisons to integral equation
solutions,” Geophysics, Vol. 58, 215–226, 1993.

22. Mittet, R., “High-order finite-difference simulations of marine
CSEM surveys using a correspondence principle for wave and
diffusion fields,” Geophysics, Vol. 75, F33–F50, 2010.

23. Negi, J. G. and P. D. Saraf, Anisotropy in Geoelectromagnetism,
Elsevier, New York, 1989.

24. Olhoeft, G. R. and D. E. Capron, “Petrophysical causes of
electromagnetic dispersion,” Proceedings of the Fifth Internat.
Conf. on Ground Penetrating Radar, 145–152, University of
Waterloo, 1994.

25. Oristaglio, M. L. and G. W. Hohmann, “Diffusion of electromag-
netic fields into a two-dimensional earth: A finite-difference ap-
proach,” Geophysics, Vol. 49, 870–894, 1984.

26. Pellerin, L., J. M. Johnston, and G. W. Hohmann, “A
numerical evaluation of electromagnetic methods in geothermal
exploration,” Geophysics, Vol. 61, 121–130, 1996.

27. Sasaki, Y. and M. A. Meju, “Useful characteristics of shallow and
deep marine CSEM responses inferred from 3D finite-difference
modeling,” Geophysics, Vol. 74, F67–F76, 2009.

28. Smith, J. T., “Conservative modeling of 3-D electromagnetic
fields: Part 2 — Biconjugate gradient solution and an accelerator,”
Geophysics, Vol. 61, 1319–1324, 1996.

29. Stalnaker, J. L., “A finite element approach to the 3D CSEM
modeling problem and applications to the study of the effect of
target interaction and topography,” PHD Thesis, Texas A&M
University, 2004.

30. Tal-Ezer, H., “Spectral methods in time for parabolic problems,”
SIAM Journal of Numerical Analysis, Vol. 26, 1–11, 1989.

31. Wang, T. and S. Fang, “3D electromagnetic anisotropy modeling
using finite differences,” Geophysics, Vol. 66, 1386–1398, 2001.

32. Wang, T. and G. W. Hohmann, “A finite-difference, time-
domain solution for three-dimensional electromagnetic modeling,”
Geophysics, Vol. 58, 797–809, 1993.

33. Wang, T. and J. Signorelli, “Finite-difference modeling of elec-
tromagnetic tool response for logging while drilling,” Geophysics,
Vol. 69, 152–160, 2004.



450 Carcione

34. Weiss, C. J. and S. Constable, “Mapping thin resistors and
hydrocarbons with marine EM methods, Part II — Modeling and
analysis in 3D,” Geophysics, Vol. 71, G321–G332, 2006.

35. Weiss, C. J. and G. A. Newman, “Electromagnetic induction in a
fully 3D anisotropic earth,” Geophysics, Vol. 67, 1104–1114, 2002.

36. Yee, K. S., “Numerical solution of initial boundary value
problems involving Maxwells equations in isotropic media,” IEEE
Transactions on Antennas and Propagation, Vol. 14, 302–307,
1966.

37. Yin, C. and H. M. Maurer, “Electromagnetic induction in a
layered earth with arbitrary anisotropy,” Geophysics, Vol. 66,
1405–1416, 2001.

38. Yu, L., R. L. Evans, and R. N. Edwards, “Transient
electromagnetic responses in seafloor with triaxial anisotropy,”
Geophys. J. Int., Vol. 129, 292–304, 1997.

39. Zhdanov, M., “Generalized effective-medium theory of induced
polarization,” Geophysics, Vol. 73, F197–F211, 2008.


