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[1] I present a plane‐wave analysis of anisotropic electromagnetic media at the low‐
frequency range, where the displacement currents can be neglected and the field is diffusive.
Anisotropy is due to the conductivity tensor and the magnetic permeability is a scalar
quantity. The analysis includes the energy balance (Umov‐Poynting theorem) and provides
expressions of measurable quantities such as the phase and energy velocities, the attenuation
factor, and the skin depth as a function of frequency and propagation direction. The
balance of energy allows the identification of the stored and dissipated energy densities,
which are related to the magnetic energy and the conductive part of the electric energy. For
a real conductivity tensor, the stored energy equals the dissipated energy. I also establish
fundamental relations, e.g., the scalar product between the slowness vector and the
power‐flow vector is equal to the energy density. For uniform plane waves, the phase
velocity is the projection of the energy velocity vector onto the propagation direction and a
similar relation is obtained by replacing the energy velocity with a velocity related to the
dissipated energy. I have also obtained the Green function for an azimuthally isotropic
medium (transverse isotropy), which is used to calculate transient fields.

Citation: Carcione, J. M. (2011), Electromagnetic diffusion in anisotropic media, Radio Sci., 46, RS1010,
doi:10.1029/2010RS004402.

1. Introduction
[2] Electromagnetic (EM) propagation at low frequen-

cies (EM diffusion) is used in a number of applications,
such as geothermal exploration [Pellerin et al., 1996],
evaluation of hydrocarbon resources by mapping the
subseafloor resistivity [Eidesmo et al., 2002], EM induc-
tion in boreholes and logging while drilling [Wang and
Signorelli, 2004], magnetotelluric problems [Mackie
et al., 1993; Yin and Maurer, 2001], and geoelectrical
surveys for groundwater andmineral exploration [Oristaglio
and Hohmann, 1984].
[3] The theory of EM diffusion in isotropic media is

well established [see, e.g., Ward and Hohmann, 1988].
Anisotropy has been taken into account to model mag-
netotelluric fields, using a propagation matrix algo-
rithm in 1‐D layered models, where the conductivity is
homogeneous both laterally and vertically within each
layer [Mann, 1965; Loewenthal and Landisman, 1973;
Abramovici, 1974; Kováčiková and Pek, 2002]. In all

these works no analysis of the physics in 3‐D space is
performed. At most, the wave numbers along the vertical
direction are obtained. This is because they only consider
the z direction and then there is no dependence with the
propagation angle in their equations. In fact, the study of
anisotropic diffusion in three dimensions and from the
point of view of the energy balance has not given much
attention in the geophysical literature. An analysis has
been performed by Carcione and Schoenberg [2000] and
Carcione [2007], who considered the high‐frequency
range (waves), where the dielectric permittivity plays
an important role. Analogies can be performed with the
theory of elasticity to establish mathematical and physical
formulations [Carcione and Cavallini, 1995; Carcione
and Helbig, 2008].
[4] There are many material configurations in the sub-

surface that might lead to anisotropy [Negi and Saraf,
1989]. The geophysical motivation behind the use of
an electrically anisotropic description of the Earth are
given by Mann [1965], Carcione [1996], Weidelt [1998],
Anderson et al. [2001], Carcione and Schoenberg [2000],
Wang and Fang [2001], and Weiss and Newman [2002].
It might be that there are some preferred directions in the
subsurface rocks, or some preferred orientation of grains
in the sediments. Compaction, fine layering or a pro-
nounced strike direction might lead to effective anisotropy.
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Alternations of sandstone and shales may give reservoir
anisotropy [Carcione and Seriani, 2000; Davydycheva
et al., 2003].
[5] The paper is organized as follows. First, Maxwell’s

equations are given, in the inhomogeneous and homo-
geneous cases. Then, I perform a plane‐wave analysis
and obtain the Kelvin‐Christoffel eigensystem, whose
eigenvalues yield the phase velocities and skin depth as
a function of the conductivity components, frequency
and propagation direction. The energy balance (Umov‐
Poynting theorem) is then established to obtain expres-
sions of the energy densities and energy velocity. Finally,
I obtain the Green function for a uniaxial medium.

2. Maxwell’s Equations for General
Anisotropic Media
[6] In vector notation, Maxwell’s equations, neglecting

the displacement currents, are [e.g., Carcione, 2007]

r� E ¼ �@tBþM;

r�H ¼ JI þ JS � J;
ð1Þ

where the vectors E, H, B, JI, JS, and M are the electric
field intensity, the magnetic field intensity, the magnetic
flux density, the induced current density, the electric
source current, and the magnetic source density, respec-
tively. In general, they depend on the Cartesian coor-
dinates (x1, x2, x3) = (x, y, z), and the time variable t.
I have used the compact notation ∂t ≡ ∂/∂t.
[7] Additional constitutive equations are needed. These

are JI = s · E and B = mH, where s, the conductivity
tensor, is a real, symmetric and positive definite tensor,
and m, the magnetic permeability, is a scalar quantity, and
the dot denotes ordinary matrix multiplication. Substi-
tuting the constitutive equations into equations (1) gives

r� E ¼ ��@tHþM;

r�H ¼ s � Eþ JS ;
ð2Þ

which are a system of six scalar equations in six scalar
unknowns.

[8] In this work, I am concerned with triclinic media,
where at each point of the space the conductivity tensor is
nondiagonal. However, the tensor can always be rotated
to obtain its expression in its principal coordinate system

s ¼
�1 0 0
0 �2 0
0 0 �3

0
@

1
A: ð3Þ

Although the magnetic permeability is commonly assumed
to be that of free space, some soils have a significantly
higher value [Olhoeft and Capron, 1994], hence, m can
vary arbitrarily in space. In some cases, such as the CSEM
problems m is assumed to be spatially constant [Eidesmo
et al., 2002].
[9] From equation (1) I obtain a vector equation for the

electric field

� @tE ¼ s�1 � r � ��1r� E
� �þ @tJS þr�M

� �
:

ð4Þ
Note that

where I have denoted ∂/∂xi by ∂i for brevity.
[10] Following Badea et al. [2001] and Stalnaker

[2004], I consider the case

r � J ¼ r � s � Eð Þ ¼ 0; ð6Þ
which is valid for r · JS = 0, according to equation (1), i.
e., if the source current density is divergence free [Ward
and Hohmann, 1988, equation 1.7]. This condition is
satisfied by inductively coupled magnetic dipole con-
trolled sources of the form

JS ¼ r� A; ð7Þ
where A is a vector. In 2‐D (x, z) space, an example is
Js = (∂3F, −∂1F)>h, where F(x) is the spatial distribu-
tion and h(t) is the time history.
[11] In homogeneous media with a diagonal conduc-

tivity tensor, equation (4) becomes

�@tE ¼ g � r � r� E; ð8Þ

r � ��1r�ð Þ ¼
� @2�

�1@2 þ @3�
�1@3ð Þ @2�

�1@1 @3�
�1@1

@1�
�1@2 � @1�

�1@1 þ @3�
�1@3ð Þ @3�

�1@2
@1�

�1@3 @2�
�1@3 � @1�

�1@1 þ @2�
�1@2ð Þ

0
@

1
A;

ð5Þ
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where g = (ms)−1. The explicit form of equation (8) is

� @tE1 ¼ �1 � @2
2E1 þ @2

3E1

� �þ @2@1E2 þ @3@1E3

� �
;

� @tE2 ¼ �2 � @2
1E2 þ @2

3E2

� �þ @2@1E1 þ @3@2E3

� �
;

� @tE3 ¼ �3 � @2
1E3 þ @2

2E3

� �þ @1@3E1 þ @2@3E2

� �
:

ð9Þ
[12] Consider the 2D anisotropic case, ignoring the y

dimension. The corresponding equations are

� @tE1 ¼ �1 �@2
3E1 þ @3@1E3

� �
;

� @tE3 ¼ �3 �@2
1E3 þ @1@3E1

� �
:

ð10Þ

From (6) one has s1∂1E1 + s3∂3E3 = 0. Combining this
equation with (10) yields

@tE1 ¼ �1@
2
3E1 þ �3@

2
1E1 ¼ D�E1;

@tE3 ¼ �3@
2
1E3 þ �1@

2
3E3 ¼ D�E3;

ð11Þ

where

D� ¼ �1@
2
3 þ �3@

2
1 ¼ 1

��3
@2
1 þ

1

��1
@2
3 ð12Þ

is a modified Laplacian. Note that the field components
have decoupled.
[13] In 3D space, the E3 component can be decoupled

if one considers a transversely isotropic medium with
s1 = s2. In this case, a similar procedure leads to

@tE3 ¼ D�E3; ð13Þ

where

D� ¼ �1@
2
3 þ �3 @2

1 þ @2
2

� � ð14Þ

and a corresponding analytical solution is given below.

3. Plane‐Wave Theory
[14] I assume nonuniform harmonic plane waves with a

phase factor

exp {! t � x � xð Þ½ �; ð15Þ

where x, the complex slowness vector, is equivalent to
k/w, with k and w being the wave number vector and

frequency, respectively. The dot denotes the scalar product
and { =

ffiffiffiffiffiffiffi�1
p

. Note the following correspondences between
time and frequency domain:

r� ! �{!x � and @=@t ! {!; ð16Þ
where × denotes the vector product.
[15] Substituting the plane wave (15) into Maxwell’s

equations (2) in the absence of sources, and using (16)
gives

x � E ¼ �H ð17Þ
and

x �H ¼ {

!
s � E: ð18Þ

For convenience, the medium properties are denoted
by the same symbols, in both the time and frequency
domains.
[16] Taking the vector product of equation (17) with x,

gives

x � ��1x � E
� � ¼ x �H; ð19Þ

which, with equation (18), becomes

!x � ��1x � E
� �� {s � E ¼ 0 ð20Þ

for three equations for the components ofE. Alternatively,
the vector product of equation (18) with x and use of (17)
yields

{!x � s�1 � x �H
� �þ �H ¼ 0; ð21Þ

for three equations for the components of H.
[17] The equivalent of the 3 × 3 viscoelastic Kelvin‐

Christoffel equations, for the electric field vector com-
ponents, are

!eijk�jekpq�p � {��iq

� �
Eq ¼ 0; ð22Þ

where the subindices take the values 1, 2 and 3, and eijk
are the elements of the Levi‐Civita tensor.
[18] Similarly, the equations for the magnetic field

vector components are

{!eijk�j�
�1
kl elpq�p þ �iq�

� �
Hq ¼ 0: ð23Þ

Rotating the conductivity tensor to the principal system
of coordinates, equation (3) is obtained. There is no loss
of generality in this operation. Then, the equivalent of the
viscoelastic Kelvin‐Christoffel equation for the electric
field vector is

G � E ¼ 0; ð24Þ
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where the EM Kelvin‐Christoffel matrix is

After defining

�i ¼ ��i; �i ¼ �j þ �k ; j 6¼ k 6¼ i; ð26Þ

the dispersion relation (i.e., the vanishing of the deter-
minant of the Kelvin‐Christoffel matrix) becomes

!2 �1�
2
1 þ �2�

2
2 þ �3�

2
3

� �
�2

þ {! �1�1�
2
1 þ �2�2�

2
2 þ �3�3�

2
3

� �� �1�2�3 ¼ 0: ð27Þ

There are only quartic and quadratic terms of the slow-
ness components in the dispersion relation.

3.1. Slowness, Kinematic Velocities, Attenuation,
and Skin Depth

[19] The slowness vector can be split into real and
imaginary vectors such that wRe(t − x · x) is the phase
and wIm(x · x) is the attenuation. Assume that propaga-
tion and attenuation directions coincide to produce a
uniform plane wave, which is equivalent to a homoge-
neous plane wave in viscoelasticity. The slowness vector
can be expressed as

x ¼ � l1; l2; l3ð Þ>� �x̂; ð28Þ

where x is the complex slowness and x̂ = (l1, l2, l3)
> is a

real unit vector, with li the direction cosines (
P

ili
2 = 1).

I obtain the real wave number vector and the real atten-
uation vector as

Re xð Þ and a ¼ �!Im xð Þ; ð29Þ
respectively.
[20] Substituting equation (28) into the dispersion

relation (27) yields

!2 �1l
2
1 þ �2l

2
2 þ �3l

2
3

� �
�4

þ {! �1�1l
2
1 þ �2�2l

2
2 þ �3�3l

2
3

� �
�2 � �1�2�3 ¼ 0: ð30Þ

It can be shown that the roots have the form

� ¼ 1� {ð Þs; ð31Þ

where s is a real slowness. Note the property

j�j2 ¼ {�2 ¼ 2s2: ð32Þ

[21] In terms of the complex velocity

v ¼ 1

�
; ð33Þ

the phase velocity and attenuation are

vp ¼ Re v�1
� �� ��1¼ 1

s
and 	 ¼ �!Im v�1

� � ¼ !s;

ð34Þ
respectively.
[22] The skin depth is the distance d for which

exp(−a · d) = 1/e, where e is Napier’s number, i.e., the
effective distance of penetration of the signal, where a =
ax̂. Using equation (29) yields

X3
i¼1

dili ¼ d ¼ 1

	
; ð35Þ

since di = dli.
[23] Assume, for instance, propagation in the (1, 2)

plane. Then, l3 = 0 and the dispersion relation (30) is
factorizable, giving

!�2 �1l
2
1 þ �2l

2
2

� �þ {��1�2

� �
!�2 þ {��3

� � ¼ 0: ð36Þ

These factors give the TM and TE modes with complex
velocities

vTM ¼ 1� {ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!

2�

l21
�2

þ l22
�1

� �s
;

vTE ¼ 1� {ð Þ
ffiffiffiffiffiffiffiffiffiffi
!

2��3

r
:

ð37Þ

In the TM (TE) case the magnetic (electric) field vector is
perpendicular to the propagation plane. For obtaining the

G ¼
{��1 þ ! �22 þ �23

� � �!�1�2 �!�1�3
�!�1�2 {��2 þ ! �21 þ �23

� � �!�2�3
�!�1�3 �!�2�3 {��3 þ ! �21 þ �22

� �
0
@

1
A: ð25Þ
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slowness and complex velocities for the other planes,
simply make the following subindex substitutions:

f rom the 1; 2ð Þplane to the 1; 3ð Þplane 1; 2; 3ð Þ ! 3;1;2ð Þ;
f rom the 1; 2ð Þplane to the 2; 3ð Þplane 1; 2; 3ð Þ ! 2;3;1ð Þ:

ð38Þ

The analysis of all three planes of symmetry gives the
curves represented in Figure 1b. There exists a single
conical point given by the intersection of the TE and TM
modes, as can be seen in the (1,2) plane of symmetry.
The location of the conical point depends on the values
of the material properties. The slowness curves of the TE

Figure 1. (a) Phase velocity, (b) energy velocity, and (c) skin depth at the Cartesian planes. The
frequency is f = 1 Hz. The modes are indicated in Figure 1b, together with the conductivity com-
ponents associated with the TE mode; ve

TE = vp
TE / 1/

ffiffiffiffi
�i

p
(see equations (39) and (58)).
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modes intersecting the three orthogonal planes are circles
(isotropy).
[24] Consider the TE mode. Then, the phase velocity is

vTEp ¼ 2

ffiffiffiffiffiffiffiffi

f

��3

s
; ð39Þ

where f = w/(2p) is the frequency. On the other hand, the
skin depth and attenuation factor are given by

dTE ¼ 1

	TE
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1


 f��3

s
: ð40Þ

The velocity increases and the skin depth decreases with
frequency. In the anisotropic case, these quantities depend
on the propagation angle.

3.2. Umov‐Poynting’s Theorem and Energy Velocity

[25] The scalar product of the complex conjugate of
equation (18) with E, use of the relation 2{Im(x) · (E ×
H*) = (x × E) · H* + E · (x × H)* and substitution of
equation (17), gives Umov‐Poynting’s theorem for plane
waves

Im xð Þ � P ¼ � {um þ ueð Þ; ð41Þ
where

P ¼ 1

2
E�H* ð42Þ

is the complex Umov‐Poynting vector, and

ue ¼ 1

4
E � s*

!
� E* and um ¼ 1

4
�jHj2 ð43Þ

are the electric (dissipated) and magnetic (stored) energy
densities, respectively. The superscript “*” denotes com-
plex conjugate. The imaginary part of equation (41) gives
the balance of stored energy and the real part gives the
balance of dissipated energy. This equation hold for a
complex conductivity tensor, i.e., including induced
polarization effects [Zhdanov, 2008]. In this work, s is
real and um and ue are therefore real quantities. Because
of this fact, there is no electric stored energy in the dif-
fusion process. Furthermore, it is shown in the appendix
that

ue ¼ um � u: ð44Þ
Therefore, the energy balance (41) is

Im xð Þ � P ¼ � 1þ {ð Þu: ð45Þ

The energy velocity vector, ve, is given by the energy
power flow Re(P) divided by the total stored energy
density, um. Thus,

ve ¼ Re Pð Þ
u

: ð46Þ

3.3. Fundamental Relations

[26] The scalar product of equation (17) withH* and the
scalar product of the complex conjugate of equation (18)
with E yield

H* � x � Eð Þ ¼ �H �H* ¼ 4um;

E � x �Hð Þ* ¼ E � {

!
s � E

	 

* ¼ �4{ue:

ð47Þ

Using the property A · B × C = C × A · B, we obtain

P � x ¼ 2um;

P � x* ¼ 2{ue:
ð48Þ

Adding these two equations gives

Re xð Þ � P ¼ {ue þ um: ð49Þ
For a real conductivity tensor, the real and imaginary
parts of this equation yields

Re xð Þ � Re Pð Þ ¼ u;

Re xð Þ � Im Pð Þ ¼ u:
ð50Þ

For homogeneous waves, it is

x̂ � ve ¼ vp;

x̂ � vd ¼ vp;
ð51Þ

where I have used equations (33), (34), and (46), and

vd ¼ Im Pð Þ
u

ð52Þ

is a velocity associated with the dissipated energy.
Similar relations are obtained in viscoelasticity and por-
oviscoelasticity [e.g.,Carcione, 2007]. The first equation (51)
indicates that the slowness and energy velocity surfaces
are reciprocal.

3.4. The TE and TM Modes

[27] As an example, I consider the TE mode propa-
gating in the (1,2) plane. Then,

E ¼ E0 0; 0; 1ð Þ>exp { x � xð Þ½ �; ð53Þ

CARCIONE: ELECTROMAGNETIC DIFFUSION RS1010RS1010
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where E0 is a complex amplitude. By equation (17),

H ¼ ��1x � E ¼ E0�
�1� l2;�l1; 0ð Þ>exp { x � xð Þ½ �;

ð54Þ

where I have assumed uniform plane waves. Substituting
the electric and magnetic fields into the energy density
(43) (see equation (44)) yields

uTE ¼ 1

4�
jE0j2jvTEj�2 exp �2a � xð Þ; ð55Þ

where vTE is given in (37), and the attenuation a is given
by equation (34). Alternatively,

uTE ¼ 1

2�vp2
jE0j2 exp �2a � xð Þ; ð56Þ

where vp is the phase velocity (39). The TE power flow
vector is

Re Pð Þ ¼ 1

2�vp
jE0j2x̂ exp �2a � xð Þ; ð57Þ

where x̂ = ê1l1 + ê2l2 defines the wave number vector
direction. From equations (46), (56), and (57) I obtain the
energy velocity for TE waves propagating in the (1,2)
plane as

vTEe ¼ vp x̂: ð58Þ

As in the viscoelastic case, the energy velocity equals the
phase velocity when there is isotropy [e.g., Carcione,
2007].
[28] Performing similar calculations, the energy den-

sity and energy velocity for TM waves propagating in the
(1,2) plane are

uTM ¼ 1

4
�jH0j2 exp �2a � xð Þ ð59Þ

and

vTMe ¼ � 2!

�
Im

1

vTM

� �
l1
�2

ê1 þ l2
�1

ê2

� �
; ð60Þ

respectively, where vTM is given in (37). The expres-
sions corresponding to the (1,3) and (2,3) planes can be
obtained by making the substitutions (38).

4. Transient Analytical Solution
[29] A transient solution can be obtained to describe

the amplitude of the diffusion field and test simulation

codes. Consider equations (13), denoting E3 by E. Re-
defining the source term, I have

D�E � @tE ¼ JS ;

D� ¼ �1@
2
3 þ �3 @2

1 þ @2
2

� � ¼ 1

��3
@2
1 þ @2

2

� �þ 1

��1
@2
3 :

ð61Þ

Defining x′ = x/
ffiffiffiffiffi
�3

p
, y′ = y/

ffiffiffiffiffi
�3

p
and z′ = z/

ffiffiffiffiffi
�1

p
, I obtain

D′E � @tE ¼ JS ; D′ ¼ @2

@x′2
þ @2

@y′2
þ @2

@z′2
: ð62Þ

The solution for the Green function is obtained for JS =
−d(x′, y′, z′)d(t). I get [Carslaw and Jaeger, 1984]

g x; y; z; tð Þ ¼ 1

4
t
exp �r′2= 4tð Þ� �

; ð63Þ

where

r′ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x′2 þ y′2 þ z′2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

�1
þ z2

�3

s

¼ ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 x2 þ y2ð Þ þ �1z2

p
: ð64Þ

If JS = −d(x, y, z)h(t), the solution is given by

E ¼ g*h; ð65Þ

where “*” denotes time convolution here.
[30] The solution corresponds to transverse isotropy,

for which there are two eigen directions, and only two,
for which all three tensors have equal eigenvalues. This
electromagnetic symmetry includes that of hexagonal,
tetragonal and trigonal crystals. These are said to be opti-
cally uniaxial.

5. Examples
[31] I consider s1 = 0.2 S/m, s2 = 0.03 S/m and s3 =

0.05 S/m, and m = m0 = 4 p 10−7 H/m. The phase
velocity, energy velocity and skin depth at the Cartesian
planes are shown in Figure 1. The frequency is f = 1 Hz.
The electric (magnetic) field is perpendicular to the
plane for the TE (TM) mode (see Figure 1b). The first are
isotropic while the TM modes show anisotropy. Both the
velocity and skin depth decrease for increasing conduc-
tivity. This means, for instance, that the diffusion process
is slower in salt water than in fresh water, or slower in
brine‐saturated sediments than in oil‐saturated reservoirs.
On the other hand, the velocity increases and the skin
depth decreases with the frequency.
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[32] Let us consider a transient source, whose time
history is

h tð Þ ¼ a� 1

2

� �
exp �að Þ; a ¼ 
 t � tsð Þ

tp

� �2
; ð66Þ

where tp is the period of the wave (the distance between
the side peaks is

ffiffiffi
6

p
tp/p) and I take ts = 1.4tp. I consider

s1 = s2 = 0.1 S/m and s3 = 0.05 S/m and a central
frequency fp = 3 Hz. Figure 2 shows the time history at
two different distances from the source location, corre-
sponding to the anisotropic and isotropic cases (solid and
dashed lines, respectively). The electric field is normal-

Figure 2. Electric field as a function of propagation time at (a) (x, y, z) = (2, 1, 1) km and (b) (x, y, z) =
(3, 1, 1) km from the source location. The solid and dashed lines correspond to the anisotropic and
isotropic cases, respectively.
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Figure 3. (a) AVO and (b) PVO responses along the x direction (solid lines) compared to the iso-
tropic case (dashed lines). The frequency is 2 Hz and (y, z) = (1, 1) km.
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ized with respect to maximum amplitude. Isotropy cor-
responds to s1 = s3 = 0.1 S/m. The amplitude and phase
variations with offset are shown in Figure 3. As can be
appreciated, the differences can be substantial.

6. Conclusions
[33] The study of electromagnetic propagation in

anisotropic media requires a detailed plane‐wave analysis
and the establishment of the energy balance to obtain the
expression of measurable quantities such as the energy
velocity as a function of frequency and propagation
direction. In the case of uniform plane waves, the stored
and dissipated energies have the same value. Funda-
mental relations are obtained, e.g., the energy density can
be obtained as the scalar product of the slowness and the
power‐flow vectors. For uniform waves, one of the rela-
tions indicates that the energy velocity and slowness sur-
faces are reciprocal.
[34] The theory can be generalized to the case of induced

polarization, i.e., a complex and frequency‐dependent
conductivity tensor. The generalization is straightfor-
ward. In this case, the stored electric energy is not zero
and the magnetic stored energy does not have the same
value of the dissipated energy. In terms of mechanical
models, it can be shown that the conductivity compo-
nents can be represented by Kelvin‐Voigt elements.
[35] A closed form solution is obtained in the time

domain for a uniaxial (transversely isotropic) medium.
The solution is useful to obtain amplitude and phase
variations as a function of the propagation distance (offset)
in the frequency domain.
[36] The examples illustrate the differences between the

anisotropic and isotropic cases, which can be significant.

Appendix A: Equivalence Between the Stored
and Dissipated Energy Densities
[37] I show here that, for uniform plane waves and a

real conductivity tensor, the stored energy equals the
dissipated energy over a cycle. The magnetic energy (43) is

um ¼ 1

4
�jHj2 ¼ 1

4
jxj2jEj2 � jx � E*j2
h i

; ðA1Þ

where I have used equation (17) and the property (A × B) ·
(C ×D) = (A ·C)(B ·D) − (A ·D)(B ·C). On the other hand,
the electric energy (46) is

ue ¼ 1

4
E � s

!
� E* ¼ � {

4
x � Eð Þ x � E*ð Þ � x � xð ÞjEj2

h i
;

ðA2Þ
where I have used equation (20), the fact that s is real and
the property A × (B × C) = (A · C)B − (A · B)C.

[38] From equations (31) and (32), it is x = (1 − {)sx̂
and jxj2 = {x · x. Then, the last equation and jx · E*j2 =
{(x · E)(x · E*) imply

um ¼ ue: ðA3Þ

[39] Acknowledgment. This work was funded by EMGS ASA.
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