
Geophys. J .  Int. (1990) 101, 739-750 and microfiche GJI 101/1 

Wave propagation in anisotropic linear viscoelastic media: theory and 
simulated wave fields 

J. M. Carcione 
Geophysical Institute, Hamburg University, Bundesstrawe 55,  2000 Hamburg 13, FRG, and Osservatorio Geojisico Sperimentale, PO Box 
2011, 34016 Trieste, Italy 

Accepted 1990 January 11. Received 1990 January 11; in original form 1988 October 10 

SUMMARY 
The anisotropic linear viscoelastic rheological relation constitutes a suitable model for 
describing the variety of phenomena which occur in seismic wavefields. This 
rheology, known also as Boltzmann’s superposition principle, expresses the stress as 
a time convolution of a fourth rank tensorial relaxation function with the strain 
tensor. 

The first problem is to establish the time dependence of the relaxation tensor in a 
general and consistent way. Two kernels based on the general standard linear solid 
are identified with the mean stress and with the deviatoric components of the stress 
tensor in a .  given coordinate system, respectively. Additional conditions are that in 
the elastic limit the relaxation matrix must give the elasticity matrix, and in the 
isotropic limit the relaxation matrix must approach the isotropic-viscoelastic matrix. 
The resulting rheological relation provides the framework for incorporating anelas- 
ticity in time-marching methods for computing synthetic seismograms. Through a 
plane wave analysis of the anisotropic-viscoelastic medium, the phase, group and 
energy velocities are calculated in function of the complex velocity, showing that 
those velocities are in general different from each other. For instance, the energy 
velocity which represents the wave surface, is different from the group velocity 
unlike in the anisotropic-elastic case. The group velocity loses its physical meaning 
at the cusps where singularities appear. Each frequency component of the wavefield 
has a different non-spherical wavefront. Moreover, the quality factors for the 
different propagating modes are not isotropic. Examples of these physical quantities 
are shown for transversely isotropic-viscoelastic clayshale and sandstone. 

As in the isotropic-viscoelastic case, Boltzmann’s superposition principle is 
implemented in the equation of motion by defining memory variables which 
circumvent the convolutional relation betweeh stress and strain. The numerical 
problem is solved by using a new time integration technique specially designed to 
deal with wave propagation in linear viscoelastic media. As a first application 
snapshots and synthetic seismograms are computed for 2-D transversely isotropic- 
viscoelastic clayshale and sandstone which show substantial differences in amplitude, 
waveform and arrival time with the results given by the isotropic and elastic 
rheologies. 
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With the improvement in data quality and the use of new 
exploration techniques, the correct description of the 

INTRODUCTION 

The following abbreviations are used for simplicity: IE: seismic wavefield has become more important. This task has 
isotropic-elastic, IV: isotropic-viscoelastic, TIE: trans- become feasible with the development of new algorithms for 
versely isotropic-elastic, AE: anisotropic-elastic, TIV: solving the governing equation of motion, and the 
transversely isotropic-viscoelastic, and AV: anisotropic- availability of better computational facilities. An appropriate 
viscoelastic. theory for describing wave propagation in the Earth should 
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include all the phenomena which can be detected and 
measured in real seismic data. Of importance to earthquake 
seismologists and exploration geophysicists is the following 
approximate chronological order for the introduction of the 
different rheologies in seismic modelling. 

(a) A first approximation to model the compressional 
wavefield or P-wave by assuming the acoustic rheology. In 
general, the commercial processing software for petroleum 
geophysics is based on this approximation. 

(b) The IE rheology to replace the acoustic assumption 
(see for instance Alekseev & Mikhailenko, 1980; Kosloff, 
Reshef & Loewenthal 1984; Virieux 1986; Kummer, Behle 
& Dorau 1987), which gives the distinction between the 
compressional and the shear wavefields, and the conversion 
from one mode to the other. 

(c) The incorporation of attenuation into the acoustic 
rheology, giving the viscoacoustic stress-strain relation 
(Krebes & Hron 1980; Day & Minster 1984; Emmerich & 
Korn 1987; Carcione, Kosloff & Kosloff 1988a, b). This 
rheology explains the attenuation and dispersion of the 
dilatational wavefield. 

(d) The 1V rheology (see for instance Mikhailenko 1985; 
Carcione ef al. 1988c), which in many aspects describes new 
effects compared to the purely elastic case (Buchen 1971; 
Borcherdt & Wennerberg 1985); for instance, the existence 
of inhomogeneous waves (not the interface waves of elastic 
media) makes it necessary to satisfy the boundary conditions 
on anelastic interfaces. For these waves the propagation 
direction does not coincide with the attenuation direction, 
particle motions are elliptical, and critical angles do not exist 
in general but only under particular circumstances. In 
general, a wave travelling through a layered media has an 
angular dependence of attenuation and dispersion, where 
the more oblique direction has more energy dissipation and 
lower velocity. 

(e) The AE rheology (see for instance White 1982; Booth 
& Crampin 1983; Martynov & Mikhailenko 1984; Fryer & 
Frazer 1987; Gajewski & PSenEik 1988; Carcione et al. 
1988d), which introduces new phenomena, for instance 
shear wave splitting (Crampin 1985). The most important 
consequences of this rheology are that in general, the 
wavefield is not pure longitudinal or pure transverse, and 
therefore there is no simple relation between the 
propagation direction and the direction of particle 
displacement; wavefronts are not spherical; the direction of 
energy flux (rays) does not coincide with the wavenumber 
direction. A secondary effect, not detected yet in seismic 
data, are the cusps present in one of the shear modes. 

A further and natural step for obtaining a realistic 
description, i.e., the inclusion in wave propagation of all the 
phenomena mentioned before, is the implementation of the 
linear AV constitutive relation in the equation of motion. 
The linear assumption for the dissipation mechanisms is 
justified by experimental results found for seismic strains and 
upper crustal conditions (Jones 1986). Anelasticity is due to 
a rather large number of physical mechanisms depending on 
the frequency band (Biot 1962; O’Connell & Budiansky 
1977; Murphy, Winkler & Kleinberg 1986; etc.). A general 
way to account for all these mechanisms is to use a 
phenomenological model which can fit any particular theory 
and also real data. On the other hand, anisotropy is well 

described by the generalized Hooke’s law, i.e., by 21 
independent elastic constants in a 3-D medium, and six 
elastic constants in a 2-D medium. 

The most general rheology under these circumstances is 
the isothermal AV constitutive relation (Christensen 1982), 
in which the stress and the strain tensors are related by a 
time-dependent relaxation tensor through a convolution 
integral. The first problem is to establish the time 
dependence of the relaxation tensor in a general and 
consistent way. The kernel represented by the general 
standard linear solid is the basis for constructing this time 
dependence. A general viscoelastic solid can be obtained by 
considering several standard linear elements in parallel or in 
series. It is important, particularly in exploration seismol- 
ogy, that the material rheology gives causal behaviour and 
approximately a constant Q factor in the exploration seismic 
band, although the kernel can fit any general Q function no 
matter what the frequency range. The process of wave 
propagation in porous media can be approximated by a 
linear viscoelastic solid when wave propagating modes are 
considered. It was showed by Geertsma & Smit (1961) that 
to describe P-wave propagation in a Biot medium one 
standard linear element is sufficient. 

Two kernels or relaxation functions are identified, one of 
them with the mean stress which is invariant under 
transformations of the coordinate system, and the other with 
the deviatoric components of the stress tensor in a given 
coordinate system. In this way it is possible to establish the 
anelastic characteristics of the three propagating modes, the 
quasi-longitudinal and the two shear modes. Two additional 
conditions are imposed: (i) in the AE limit the relaxation 
matrix must approach the elasticity matrix, and (ii) in the IV 
limit the relaxation matrix must give the isotropic- 
viscoelastic matrix defined in Carcione et al. (1988~). The 
resulting constitutive relation, although not unique, 
represents a general and consistent way to introduce 
anelasticity into the generalized Hooke’s law. The preceding 
conditions establish the time dependence of the relaxation 
matrix components on physical grounds, and maintain the 
simplicity of the isotropic case where only two kernels are 
necessary to define the anelastic properties. As in the IV 
wave propagation problem, Boltzmann’s superposition 
principle is implemented in the equation of motion by 
defining memory variables which circumvent the convolu- 
tional relation between stress and strain. For instance, the 
solution of the 2-D problem implies the introduction of 
three memory variables, one for each dilatational relaxation 
mechanism and two for each shear relaxation mechanism. 

This work concentrates on the issue of wave propagation 
in the Earth. However, the subject of wave propagation in 
AV media has practical a value in many other fields, for 
instance applied mechanics and physics of materials (see for 
instance Lamb & Richter 1966; Szilard 1982). The first 
section establishes the constitutive relation. Then, the 
equation of motion for a general inhomogeneous AV 
medium is derived. Finally, examples of wave propagation 
in 2-D homogeneous and inhomogeneous TIV real earth 
materials are considered, with comparisons to the more 
simple rheologies. The microfiche contains the following 
material: first a detailed derivation of the constitutive 
relation; then a plane wave analysis establishes the energy 
balance equation and the phase, group and energy velocities 
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of the AV medium, with 3-D examples for TIV earth media; 
finally, the derivation of the equation of motion for 2-D TIV 
media with simulated wavefields in sandstone. 

CONSTITUTIVE RELATION 

The stress-strain relation is simplified by introducing a 
shortened matrix notation where pairs of subscripts are 
replaced by a single number according to the following 
correspondences: (l l)+ 1, (22)+2, (33)+3, (23) = 
(32)-,4, (13) = (31)-*5, (12) = (21)+6. The convention 
will be to denote abbreviated subscripts by upper case 
letters and full subscripts by lower case letters. 

A response of the earth is described by Boltzmann’s 
superposition principle which can be expressed as (see 
Appendix A in microfiche): 

T(x, t )  = W(x, t )  * S(x, t ) ,  (1) 
with 

TT’ (TI, T2, T3, T4, q, T6) = (uxxy uYy. u,,, uyz5 u,,, uxy) 

(2) 
the stress vector, where ui,, i, j = 1, . . . , 3 are the stress 
components, and 

ST= (Sl, &, s3, s 4 ,  s5, S,) = ( E x x ,  Eyv, E Z Z ,  2Eyz, 2Ex,, 2EXY) 
(3) 

the strain vector, where E ~ ~ ,  i ,  j = 1, . . . , 3 are the strain 
components; CV is the symmetric relaxation matrix with 
components W f J ,  I ,  J = 1, . . . , 6 ;  t is the time variable, x is 
the position vector, the symbol ‘*’ indicates time 
convolution, and a dot above a variable implies time 
differentiation. Vectors are written as columns with the 
superscript ‘T’ denoting the transpose. 

Equation (1) can be written in components as 

I, J = 1, . . . , 6 TI = W I j  * Sj, (4) 
where the Einstein convention for repeated indices is used. 
In Appendix A, the following stress-strain relation is 
established: 

TI = ~ I J  * .S, = { [ A ,  + Aj,’)~,(t)]H(t)) * 5, ( 5 )  

where x,, v = 1 , 2  are time-dependent functions, and A, 
and AS,’) are space-dependent functions. The conditions on 
the relaxation components are that the trace of the stress 
tensor should depend on the time variable only through the 
kernel xl ,  and the deviatoric components of the stress 
tensor in a given system S should depend on the time 
variable only through the kernel x2. The trace of the stress 
tensor is invariant under transformation of the coordinate 
system. This fact assures that the mean tension (one third of 
the trace) is related only to the function x1 in any system. 
Hence, this function describes dilatational deformations. 
The deviatoric components are not invariants but a cube of 
material orientated in the direction of the axes of the system 
S will be subjected to shear deformations exclusively related 
to the function x2. In general, experimental values of the 
attenuation coefficient and the quality factor are given with 
respect to material axes (Lamb & Richter 1966). With this 
condition for instance, the value of the shear quality factors 
in the symmetry axis of a TIV medium can be established. 

Additional conditions are that in the AE limit the relaxation 
matrix must give the elasticity matrix, and that in the IV 
limit the relaxation matrix must give the isotropic- 
viscoelastic matrix (Carcione et at’. 1988~). In Appendix A 
an appropiate 3-D AV relaxation matrix is obtained which 
has the form 

cv= 

Wllw12W13 ‘14 ‘15 ‘16 

W22W23 ‘24 ‘25 ‘26 

W33 ‘34 c35 ‘36 

‘44x2 ‘45x2 ‘46x2 

‘55x2 ‘56x2 

‘66x2 iH  

and 

G = ( c u  + c55 + c66)/3. 

The quantities cfJ,  I, J = 1, 6 represent space-dependent 
elasticities, and 

are relaxation functions which correspond to states of 
quasi-dilatation (v  = l), and quasi-shear ( v  = 2), respectively. 
The quantities rz)(x)  and r$)(x) denote material relaxation 
times for Ith mechanism, and L, is the number of relaxation 
mechanisms. Although the kernels xv are based on the 
standard linear solid any appropriate kernel can also be 
used, for instance the generalized Maxwell body given by 
Emmerich & Korn (1987). 

An example of a 2-D relaxation matrix is 

(9) 
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where the ( x ,  z)-plane has been considered. The elastic limit 
is obtained when xv-, 1, v = 1,2, which can be verified 
easily in equations (6) and (9). 

Uniform plane waves provide a very useful tool for 
analysing characteristics of wave propagation. In Appendix 
B (microfiche) a plane wave analysis of an AV medium is 
performed. First the energy balance equation or complex 
Poynting's theorem is established. Then, the Christoffel 
equation and dispersion relation. Finally, the complex and 
physical velocities of the three modes are obtained together 
with the quality factors for homogeneous waves. Physical 
velocities mean the phase velocity or wavefront velocity 
along the propagation direction, the group velocity or 
velocity of the modulation envelope of the wave, and the 
energy velocity which has the direction of the Poynting 
vector, and its representation defines the wave surface. As a 
consequence, the relations among the different physical 
velocities and quality factors for the various rheologies are 
summarized. "he examples show the wave propagation 
characteristics of a TIV clayshale and a TIV sandstone. The 
Appendix contains also a verification of the physical 
realizability conditions of the relaxation matrix. 

EQUATION OF MOTION 

The equation of motion for a 3-D anisotropic linear 
anelastic medium is 
I- T = pii + f, (11) 
or in components 

vuT, = piii +A ,  (12) 
where u(x, t )  is the displacement vector, f(x, t )  is the body 
forces vector, p(x )  is the density, and 'I.' is a divergence 
operator defined by 

(13) 
1 a m  o o o a i a z  aiay 

P - V , =  o aiay o aiaz o aiax . i o o a m  aiay a/ax o 

As in the IV wave propagation problem (Carcione et al. 
1988c), implementation of the rheological relation (5) is not 
straightforward because of the presence of convolutional 
kernels. Consequently, in this section the constitutive 
equation is reformulated to yield a more convenient 
description. Let the relaxation matrix be known in system 
S' ,  and the problem solved in system S. Therefore, the 
relaxation components transform as 

where W is the relaxation matrix in system S', and T is a 
6X 6 rotation with components tIJ (see Appendix c in 
microfiche). These components can be space dependent. 
Combining equations ( 5 )  and (14) and using properties of 
the convolution gives 

where the primes in the relaxation components are omitted 

for clarity. Equation (15) is equivalent to 

q=t IL tJK{ [AL.K  + A ( L h v ( o ) l S J  * s J ) ~  (16) 
after the integration of the resulting delta function. 
Performing the time derivative [see equation (8)], yields 

where 

is called the response function of the lth relaxation 
mechanism, and Mu, = ~ ~ ( 0 )  is the unrelaxed modulus. The 
function qvI obeys the following differential equation: 

@v&) = -cpvI(t)/rY . (19) 

Now the following memory variables are defined: 

e$) = qvI * S,, v = 1,2, J = 1, . . . , 6, 1 = 1, . . . , L,. (20) 

Replacing these quantities in (17) yields 

Time defferentiating equation (20) gives 

ej;) = s,~,,(o) - ej;)/t$), I = I, . . . , L,, (22) 
where equation (19) has been used. Equation (21) and (22) 
together with the equation of motion (12) fully describe the 
response of the AV medium, and will be the basis for the 
numerical solution algorithm. After substitution of (21) in 
(12), and with equations (22) and the strain-displacement 
relations, a first-order differential equation in time is 
obtained: 

u= MU+ F, (23) 

uT = (u, i, e$)), .. (24) 

FT = (0, f lp ,  01, (25) 

where U is the unknown variable vector formally given by 

F is the body force vector represented by 

and M is an operator matrix which contains the spatial 
derivative operators and all the material parameters defining 
the medium. In the next section this operator is given 
explicitly for the 2-D case. The number of memory variables 
depends on the particular choice of the relaxation matrix, 
but in principle they are reduced in virtue of the restrictions 
imposed on the relaxation components. The rotation type 
also restricts the number of variables. It can be seen that 
when T is the identity matrix, the number of variables 
reduce to a minimum. An alternative method to equation 
(14) is to apply the transformation to the elasticity matrix C 
(whose components are cIJ, Z , J =  1, .  . . ,6)  and then 
introduce the anelasticity. Of course these two different 
approaches do not give the same results, but the latter case 
requires a minimum of variables. In the next section an 
example of 2-D wave propagation is considered, where the 
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problem can be treated with three variables for each 
relaxation mechanism. 

The differential equation (23) represents the equation of 
motion for the AV medium which correctly describes 
anisotropic and anelastic effects in wave propagation within 
the framework of the linear response theory. 

The solution of (23) subject to the initial condition 
U(t = 0) = U, is formally given by 

U = efMUO + eTMF(t - t) dt. I 
In equation (26), erM is called the evolution operator of the 
system. Most frequently an explicit or implicit finite 
difference scheme is used to march the solution in time in 
the AE and IV wave propagation problems. This technique 
is based on a Taylor expansion of the evolution operator. 
This work uses a new time integration method which is 
specially designed to deal with wave propagation in linear 
AV media. The new approach is based on a polynomial 
interpolation of the exponential function in the complex 
domain of the eigenvalues of the operator M, in a set of 
points which is known to have some maximal properties. In 
this way, the interpolating polynomial is ‘almost best’. The 
spatial derivative terms are computed by means of the 
Fourier method (Kosloff & Baysal 1982). The advantages of 
this new algorithm over finite differencing in time can be 
found in Tal-Ezer, Carcione & Kosloff (1989). 

2-D WAVE PROPAGATION 

For simplicity a 2-D TIV medium with symmetry axis 
parallel to the z-axis is considered. Then, the rotation 
matrix T is the identity matrix. The rheological relation is 
given by equation (9), with c l 5 = c j 5 = O .  Choosing one 
relaxation mechanism for each mode (L, = L, = 1) the 
unknown variable vector is given by (see Appendix D in 
microfiche), 

UT = (ux,  uz, ux, u,, e l ,  e2,  e3) ,  (27) 
where e l  = el:) + &), e, = el:) - e31 (*) , and e3 = e g )  in terms 
of the memory variables (20). The body forces vector is 

FT = (O,O,f, lp,  f z / p ,  0, O , O ) ,  
and the spatial operator 

0 0 1 0 0  
0 0 0 1  0 

M31 4 2  0 0 M35 
M42 0 0 M45 
M52 M55 

M6, 0 0 0 
M,, 0 0 0 

with 

where the sub-index 1 denoting a physical mechanism has 
been omitted for simplicity. For a general number of 
physical mechanisms the number of memory variables is 
given by nu = L,  + 2L,. The examples presented in the next 
section, for instance, use L, = L, = 2; therefore nu = 6. The 
spatial operator for an elastic solid is obtained by taking the 
limit Mu,-, 1, cp,(O)-,O, v = 1, 2. 

EXAMPLES 

The first example involves wave propagation in 2-D 
homogeneous TIV media, a clayshale and a sandstone 
whose material properties are given in Table 1. The 
relaxation times give almost constant Q in the exploration 
seismic band. Similar materials with moderate to large 
amounts of absorption were reported by Mc Dona1 et al. 
(1958) for Pierre shale (Qp= lo), and ocean bottom 
sediments by Hamilton et al. (1970), with Qp ranging from 1 
to 5. Isotropic versions are obtained by choosing the 
isotropic compressional and shear wave velocities as the 
pure longitudinal and pure transverse velocities (vertical 
direction) of the anisotropic material. The elasticities for the 
isotropic media are given in Table 1. 

This section shows results for homogeneous clayshale and 
Appendix E (see microfiche) for homogeneous sandstone. 

Table 1. Material properties of the TIV media. 
Medium Elasticities and density 

‘II ‘11 ‘13 ‘33 ‘ 55  6 6  P 
(GPU) (GPO) (GPa) ((;Pa) (GPa) (GPU) ( ~ g i r n 3  

A N 1  Clayshale 66.6 19.7 39.4 39.9 10.9 23.4 2590. 
ANISandsrone 80.2 252 -5.0 802 279 27.5 2690. 
ISOCIayshale 39.9 18.1 18.1 39.9 10.9 10.9 2590. 
ISOSandsrone 80.2 24.4 24.4 80.2 27.9 27.9 2690. 

Relaxation times 

Clayshale I 0.0332577 0 0304655 0.0352443 0.0287482 
2 0.0033257 0.0030455 0.0029370 0.0023957 

Sandstone 1 0.0325305 0.031 1465 0.0332577 0.0304655 
2 0.0032530 0.0031146 0.00332~7 0.0030465 
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Figure 1. 2-D TIV clayshale, (a) phase velocity, (b) energy velocity curves (wavefronts), (c) quality factor curves. Frequency is 20 Hz. At the 
low- and high-frequency limits the energy velocities present minimum and maximum values respectively, while the quality factors are infinity. 
More details can be found in Appendix B (microfiche). 

Fig. 1 displays polar representations of (a) phase velocity, 
(b) energy velocity, and (c) quality factors, at a frequency of 
f = 20 Hz. The expressions for these quantities are given in 
Appendix B with a complete analysis of the 3-D case for the 
same materials. The energy velocity curves present sections 
of the wavefront. As can be seen in Figs l(a) and (c) the 
quality factor curves follow approximately the shape of the 
phase velocity curves. 

The modelling uses a 165x 165 grid mesh with 
DX = DZ = 20 m grid spacing. The motion is initiated by a 
vertical impulsive force located in the centre of the 
homogeneous region. The time function is given by 

cos [Tfo(t - I0)L (31) h(t)  = e l w 8 ( r - r o ) 2  

where I,, = 0.06 s, and fo = 50 Hz is the cut-off frequency. 
This wavelet resembles a vibrator signal after the 
autocorrelation. 

Figures 2 and 3 display the u, and u, components at 
I = 0.32 s for the different rheologies. The number between 
parenthesis denotes the plotting scale. The viscoelastic 
amplitudes are taken as references; scale 10 means that the 
amplitudes are reduced by a factor 10. All the wavefronts 
show the characteristics predicted by the theory. In the 
elastic case the shear wave amplitude is much stronger than 

the compressional wave amplitude, while in the anelastic 
case these amplitudes are comparable (except in the cusps) 
due to the higher attenuation acting on the shear mode. As 
predicted by the energy velocity curve, the anelastic 
wavefronts are greater than the elastic wavefronts, and the 
waveform appears broader due to the velocity dispersion. 
This dispersion effect is manifested also in the low amplitude 
tails following the qP-  and qSV-wavefronts. The differences 
between the elastic and anelastic wavefronts have to be 
considered in relative terms. If the elastic limit is chosen in 
the high-frequency limit, the elastic wavefronts appear 
bigger than the anelastic wavefronts. A comparison between 
the AV and IE snapshots show important differences in 
amplitude, waveshape and arrival time. In some directions 
the anisotropic and anelastic effects compensate each other 
to give approximately the same arrival time in both cases 
(for instance at the angle 8 = n/4). 

Since there is no analytical solution for the AV wave 
propagation problem, it is not possible, as with the other 
rheologies, to test the accuracy of the algorithm. As a 
reference, the AE u, component in the symmetry axis is 
compared to analytical solution (see Carcione er al. 1988d). 
As Fig. 4 shows, the comparison is excellent. From Fig. 2 
the u, component along the symmetry axis is zero according 
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ux (1) AV CLAYSHALE 

IV CLAYSHALE L CLAYSHALE 

(c) (d 1 
2. u, component of the wavefield at I = 0.32 s for TIV clayshale, (a) AV rheology, (b) AE rheology, (c) IV rheology, (d) IE rheology. 

The motion is initiated by a vertical source. The number between parenthesis denotes the plotting scale. The elastic amplitudes are reduced by 
a factor 10 relative to the viscoelastic amplitudes. 

to the analytical solution. The same accuracy in the AV case 
is expected. 

Synthetic seismogram comparisons in the symmetry axis 
at distances of 100 and 200m from the source are 
displayed in Figs 5 and 6 for the u, component. At 100m 
the anelastic effects produce a destructive interference 
between the q P  and qSV modes, and the AV solution looks 
quite different compared to the other solutions. At 200m 
the two modes start to separate and it is evident that the 
shear mode is relatively faster than the compressional mode. 
Although the symmetry axis is a pure mode direction, the 
differences in amplitude and waveform between the AV 
solution and the other solutions are important. Figs 7(a) and 
(b) display the comparison between the u, component of 
AE and AV clayshale in the symmetry axis and at 8 = n / 4  

respectively. The stations are located at 400111 from the 
source in both cases. As indicated by the quality factor in 
Fig. 1, the qSV mode is more attenuated at 8 = n / 4  than in 
the symmetry axis; while for the qP mode the opposite 
behaviour occurs. These effects can be appreciated in Fig. 7. 

A final example illustrates wave propagation in an 
inhomogeneous medium. An interface separates two 
half-spaces; the upper medium is TIV sandstone with the 
symmetry axis making an angle /?=n/4 with the vertical 
axis, and the lower medium is IE sandstone. The source is 
located on the interface and has the symmetry axis 
direction. To solve the problem the rotation has been 
applied to the elasticity matrix C. As in the previous 
example the formulation requires three memory variables. 
Figs 8(a) and (b) display the u, and u, components at 



746 J .  M. Carcione 

(I. HI AV CLAYSHALE uz Ilob A€ CLAYSHALE 

uz (1) IV CLAYSHALE uz (10) E CLAYSHALE 

(c) Id) 

Figure 3. U, component of the wavefield at t = 0.32 s for TIV clayshale, (a) AV rheology, (b) AE rheology, (c) IV rheology, (d) IE rheology. 
me motion is initiated by a vertical source. The number between parenthesis denotes the plotting scale. The elastic amplitudes are reduced by 
a factor 10 relative to the viscoelastic amplitudes. 

t = 0 . 3 2 s .  The diagonal line indicates the symmetry axis 
direction. The wave characteristics in the upper medium are 
similar to those when B = 0 (no rotation, see Appendix E). 
However, as mentioned before, in order to obtain the same 
solution the rotation should be applied to the relaxation 
matrix. 

CONCLUSIONS 

A general theory for describing wave propagation in 
anisotropic linear viscoelastic media requires the use of 
Boltzmann’s superposition principle. Two kernels are 
sufficient to establish the anelastic characteristics of the 

wavefield; one of them is identified with the quasi-dilata- 
tional mode and the other with the quasi-shear modes. 
The resulting rheological relation provides the framework 
for computing numerical anisotropic-viscoelastic wavefields. 

An analysis of a transversely isotropic-viscoelastic 
medium by considering homogeneous waves reveals the 
wave characteristics. Each frequency component has a 
different non-spherical wavefront. The energy and group 
velocities coincide only at the low- and high-frequency 
limits. Quality factors and velocity dispersion are not 
isotropic. As in the elastic anisotropic case the wavenumber 
vector is normal to the wavefront, and the energy velocity 
vector is normal the phase velocity surface. 
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differential form by introducing additional variables in the 
formulation. The examples show wave propagation in 2-D 
transversely isotropic-viscoelastic clayshale and sandstone 
compared with the isotropic and elastic rheologies. The 
simulations show the characteristics predicted by the theory, 
i.e., anisotropic attenuation and velocity dispersion, and 
important differences in waveform, amplitude and arrival 
time compared to the more simple rheologies. 

The simulation theory presented in this paper could be 
the basis for developing realistic forward modelling codes; 
for instance, reflection and refraction surveys, vertical 
seismic profile, well to well propagation, etc. Another 
potential application is in earthquake modelling where 
anelastic and anisotropic effects can be expected to play a 
significant role if low Q anisotropic layers are present. 

The problem of implementing Boltzmann’s superposition 
principle in the equation of motion is solved by assuming 
frequency-domain rational kernels. In this way the The author wishes to thank the Alexander von Humboldt 
time-domain equation of motion can be written in Foundation which enabled him to carry out this work at 

ACKNOWLEDGMENTS 



Wave propagation in anisotropic-viscoelastic media 749 

(b) 

Flgare 8. Snapshots at f = 0.32 s for an inhomogeneous medium 
composed of TIV sandstone (upper half-space) and IE sandstone 
(lower half-space), (a) u, component, (b) u, component. The 
sandstone symmetry axis and the directional force make an angle 

= n/4 with the vertical axis. The source time history is given by 
equation (31). 
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