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SUMMARY

The anisotropic linear viscoelastic rheological relation constitutes a suitable model for
describing the variety of phenomena which occur in seismic wavefields. This
rheology, known also as Boltzmann’s superposition principle, expresses the stress as
a time convolution of a fourth rank tensorial relaxation function with the strain
tensor.

The first problem is to establish the time dependence of the relaxation tensor in a
general and consistent way. Two kernels based on the general standard linear solid
are identified with the mean stress and with the deviatoric components of the stress
tensor in a-given coordinate system, respectively. Additional conditions are that in
the elastic limit the relaxation matrix must give the elasticity matrix, and in the
isotropic limit the relaxation matrix must approach the isotropic-viscoelastic matrix.
The resulting rheological relation provides the framework for incorporating anelas-
ticity in time-marching methods for computing synthetic seismograms. Through a
plane wave analysis of the anisotropic—viscoelastic medium, the phase, group and
energy velocities are calculated in function of the complex velocity, showing that
those velocities are in general different from each other. For instance, the energy
velocity which represents the wave surface, is different from the group velocity
unlike in the anisotropic—elastic case. The group velocity loses its physical meaning
at the cusps where singularities appear. Each frequency component of the wavefield
has a different non-spherical wavefront. Moreover, the quality factors for the
different propagating modes are not isotropic. Examples of these physical quantities
are shown for transversely isotropic—viscoelastic clayshale and sandstone.

As in the isotropic—viscoelastic case, Boltzmann’s superposition principle is
implemented in the equation of motion by defining memory variables which
circumvent the convolutional relation between stress and strain. The numerical
problem is solved by using a new time integration technique specially designed to
deal with wave propagation in linear viscoelastic media. As a first application
snapshots and synthetic seismograms are computed for 2-D transversely isotropic—
viscoelastic clayshale and sandstone which show substantial differences in amplitude,
waveform and arrival time with the results given by the isotropic and elastic
rheologies.
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With the improvement in data quality and the use of new

INTRODUCTION

The following abbreviations are used for simplicity: IE:
isotropic—elastic, 1V: isotropic-viscoelastic, TIE: trans-
versely isotropic—elastic, AE: anisotropic—elastic, TIV:
transversely isotropic—viscoelastic, and AV: anisotropic—
viscoelastic.

exploration techniques, the correct description of the
seismic wavefield has become more important. This task has
become feasible with the development of new algorithms for
solving the governing equation of motion, and the
availability of better computational facilities. An appropriate
theory for describing wave propagation in the Earth should
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include all the phenomena which can be detected and
measured in real seismic data. Of importance to earthquake
seismologists and exploration geophysicists is the following
approximate chronological order for the introduction of the
different rheologies in seismic modelling.

(a) A first approximation to model the compressional
wavefield or P-wave by assuming the acoustic rheology. In
general, the commercial processing software for petroleum
geophysics is based on this approximation.

(b) The IE rheology to replace the acoustic assumption
(see for instance Alekseev & Mikhailenko, 1980; Kosloff,
Reshef & Loewenthal 1984; Virieux 1986; Kummer, Behle
& Dorau 1987), which gives the distinction between the
compressional and the shear wavefields, and the conversion
from one mode to the other.

(c) The incorporation of attenuation into the acoustic
rheology, giving the viscoacoustic stress—strain relation
(Krebes & Hron 1980; Day & Minster 1984; Emmerich &
Korn 1987; Carcione, Kosloff & Kosloff 1988a, b). This
rheology explains the attenuation and dispersion of the
dilatational wavefield.

(d) The IV rheology (see for instance Mikhailenko 1985;
Carcione et al. 1988c), which in many aspects describes new
effects compared to the purely elastic case (Buchen 1971;
Borcherdt & Wennerberg 1985); for instance, the existence
of inhomogeneous waves (not the interface waves of elastic
media) makes it necessary to satisfy the boundary conditions
on anelastic interfaces. For these waves the propagation
direction does not coincide with the attenuation direction,
particle motions are elliptical, and critical angles do not exist
in general but only under particular circumstances. In
general, a wave travelling through a layered media has an
angular dependence of attenuation and dispersion, where
the more oblique direction has more energy dissipation and
lower velocity.

(e) The AE rheology (see for instance White 1982; Booth
& Crampin 1983; Martynov & Mikhailenko 1984; Fryer &
Frazer 1987; Gajewski & PSencik 1988; Carcione et al.
1988d), which introduces new phenomena, for instance
shear wave splitting (Crampin 1985). The most important
consequences of this rheology are that in general, the
wavefield is not pure longitudinal or pure transverse, and
therefore there is no simple relation between the
propagation direction and the direction of particle
displacement; wavefronts are not spherical; the direction of
energy flux (rays) does not coincide with the wavenumber
direction. A secondary effect, not detected yet in seismic
data, are the cusps present in one of the shear modes.

A further and natural step for obtaining a realistic
description, i.e., the inclusion in wave propagation of all the
phenomena mentioned before, is the implementation of the
linear AV constitutive relation in the equation of motion.
The linear assumption for the dissipation mechanisms is
justified by experimental results found for seismic strains and
upper crustal conditions (Jones 1986). Anelasticity is due to
a rather large number of physical mechanisms depending on
the frequency band (Biot 1962; O’Connell & Budiansky
1977; Murphy, Winkler & Kleinberg 1986; etc.). A general
way to account for all these mechanisms is to use a
phenomenological model which can fit any particular theory
and also real data. On the other hand, anisotropy is well

described by the generalized Hooke’s law, i.e., by 21
independent elastic constants in a 3-D medium, and six
elastic constants in a 2-D medium.

The most general rheology under these circumstances is
the isothermal AV constitutive relation (Christensen 1982),
in which the stress and the strain tensors are related by a
time-dependent relaxation tensor through a convolution
integral. The first problem is to establish the time
dependence of the relaxation tensor in a general and
consistent way. The kernel represented by the general
standard linear solid is the basis for constructing this time
dependence. A general viscoelastic solid can be obtained by
considering several standard linear elements in parailel or in
series. It is important, particularly in exploration seismol-
ogy, that the material rheology gives causal behaviour and
approximately a constant Q factor in the exploration seismic
band, although the kernel can fit any general Q function no
matter what the frequency range. The process of wave
propagation in porous media can be approximated by a
linear viscoelastic solid when wave propagating modes are
considered. It was showed by Geertsma & Smit (1961) that
to describe P-wave propagation in a Biot medium one
standard linear element is sufficient.

Two kernels or relaxation functions are identified, one of
them with the mean stress which is invariant under
transformations of the coordinate system, and the other with
the deviatoric components of the stress tensor in a given
coordinate system. In this way it is possible to establish the
anelastic characteristics of the three propagating modes, the
quasi-longitudinal and the two shear modes. Two additional
conditions are imposed: (i) in the AE limit the relaxation
matrix must approach the elasticity matrix, and (ii) in the IV
limit the relaxation matrix must give the isotropic—
viscoelastic matrix defined in Carcione et al. (1988c). The
resulting constitutive relation, although not unique,
represents a general and consistent way to introduce
anelasticity into the generalized Hooke’s law. The preceding
conditions establish the time dependence of the relaxation
matrix components on physical grounds, and maintain the
simplicity of the isotropic case where only two kernels are
necessary to define the anelastic properties. As in the IV
wave propagation problem, Boltzmann’s superposition
principle is implemented in the equation of motion by
defining memory variables which circumvent the convolu-
tional relation between stress and strain. For instance, the
solution of the 2-D problem implies the introduction of
three memory variables, one for each dilatational relaxation
mechanism and two for each shear relaxation mechanism.

This work concentrates on the issue of wave propagation
in the Earth. However, the subject of wave propagation in
AV media has practical a value in many other fields, for
instance applied mechanics and physics of materials (see for
instance Lamb & Richter 1966; Szilard 1982). The first
section establishes the constitutive relation. Then, the
equation of motion for a general inhomogeneous AV
medium is derived. Finally, examples of wave propagation
in 2-D homogeneous and inhomogeneous TIV real earth
materials are considered, with comparisons to the more
simple rheologies. The microfiche contains the following
material: first a detailed derivation of the constitutive
relation; then a plane wave analysis establishes the energy
balance equation and the phase, group and energy velocities



of the AV medium, with 3-D examples for TIV earth media;
finally, the derivation of the equation of motion for 2-D TIV
media with simulated wavefields in sandstone.

CONSTITUTIVE RELATION

The stress-strain relation is simplified by introducing a
shortened matrix notation where pairs of subscripts are
replaced by a single number according to the following
correspondences: (11)—1, (22)—2, (33)—3, ()=
(32)—4, (13)=(31)—5, (12) =(21)—> 6. The convention
will be to denote abbreviated subscripts by upper case
letters and full subscripts by lower case letters.

A response of the earth is described by Boltzmann’s
superposition principle which can be expressed as (see
Appendix A in microfiche):

T(x, t) = W(x, 1) *8(x, t), 1)

with

TT: (TD Tz: TE&: 1:11 T;'n T6) = (axxr Uyyr ozz! ayzl Oyz) axy)
@

the stress vector, where o, i,j=1,...,3 are the stress
components, and

ST: (Sl’ SZ’ S3, S4’ S5, Sﬁ) = (exxr Eyy’ €:2) 2gyz’ 2€xzr 2Exy)
3

the strain vector, where ¢;, i,j=1,...,3 are the strain
components; ¥ is the symmetric relaxation matrix with
components g, I, J=1,...,6; tis the time variable, x is
the position vector, the symbol ‘#’ indicates time
convolution, and a dot above a variable implies time
differentiation. Vectors are written as columns with the
superscript ‘T’ denoting the transpose.
Equation (1) can be written in components as

T=yu*S, LJ=1,...,6 @

where the Einstein convention for repeated indices is used.
In Appendix A, the following stress—strain relation is
established:

T,=vy,* SJ ={[Ay + AP 1 (OIH(1)} * S, &)

where yx,, v=1, 2 are time-dependent functions, and A,,
and A()’ are space-dependent functions. The conditions on
the relaxation components are that the trace of the stress
tensor should depend on the time variable only through the
kernel yx;, and the deviatoric components of the stress
tensor in a given system S should depend on the time
variable only through the kernel y,. The trace of the stress
tensor is invariant under transformation of the coordinate
system. This fact assures that the mean tension (one third of
the trace) is related only to the function yx, in any system.
Hence, this function describes dilatational deformations.
The deviatoric components are not invariants but a cube of
material orientated in the direction of the axes of the system
§ will be subjected to shear deformations exclusively related
to the function x,. In general, experimental values of the
attenuation coefficient and the quality factor are given with
respect to material axes (Lamb & Richter 1966). With this
condition for instance, the value of the shear quality factors
in the symmetry axis of a TIV medium can be established.
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Additional conditions are that in the AE limit the relaxation
matrix must give the elasticity matrix, and that in the IV
limit the relaxation matrix must give the isotropic—
viscoelastic matrix (Carcione et al. 1988c). In Appendix A
an appropiate 3-D AV relaxation matrix is obtained which
has the form

Y1u¥P¥iz € Cis Ci6
Y2oW23  Ca Cas Ca6
W= Y33  Caa Cas C36 H (©6)

CasXz2 CasXz2 CasX2
CssX2 CseX2

CecX2
with
Yu=cu—D+(D-3G)x +3Gx2, (7a)
W2 =Cp— D +2G + (D —2G)y: - 3Gy, (7b)
Yi3=C3— D +2G + (D — 3G)x, — 3Gxa, (70
¥22=C— D + (D - 3G)x, +3Gxa, (7d)
V23=C3~ D +2G + (D - 3G)x, — G, (7e)
and
Y33 =C33— D +(D - 3G)x, + 3Gxa, (70
where H(t) is the Heaviside function,
D =(cqy + €y +C33)/3 (7g)
and
G = (Caq + €55+ Cg6)/3. (7h)

The quantities ¢, I,J=1,6 represent space-dependent
elasticities, and

Ly (v)
4= [1 Y (1 r_,) e—-/rf,r’] ,

&\ ) v=1,2 (8)
are relaxation functions which correspond to states of
quasi-dilatation (v = 1), and quasi-shear (v = 2), respectively.
The quantities 7%;’(x) and 7{;’(x) denote material relaxation
times for /th mechanism, and L, is the number of relaxation
mechanisms. Although the kernels yx, are based on the
standard linear solid any appropriate kernel can also be
used, for instance the generalized Maxwell body given by
Emmerich & Korn (1987).
An example of a 2-D relaxation matrix is

Yu¥iz Cis
V= Y, €35 |H, )
Css5X2
with
Y11= — D +(D —¢s5)xy + Cs5X2s (10a)
Y12 = €13+ 2055 — D + (D —c55) )1~ €s5X2» (10b)
Y22 =C33— D + (D —cs55)x1 + Cs5%2s (10c)
and
D =(c1; +¢33)/2, (10d)
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where the (x, z)-plane has been considered. The elastic limit
is obtained when y,—1, v=1,2, which can be verified
easily in equations (6) and (9).

Uniform plane waves provide a very useful tool for
analysing characteristics of wave propagation. In Appendix
B (microfiche) a plane wave analysis of an AV medium is
performed. First the energy balance equation or complex
Poynting’s theorem is established. Then, the Christoffel
equation and dispersion relation. Finally, the complex and
physical velocities of the three modes are obtained together
with the quality factors for homogeneous waves. Physical
velocities mean the phase velocity or wavefront velocity
along the propagation direction, the group velocity or
velocity of the modulation envelope of the wave, and the
energy velocity which has the direction of the Poynting
vector, and its representation defines the wave surface. As a
consequence, the relations among the different physical
velocities and quality factors for the various rheologies are
summarized. The examples show the wave propagation
characteristics of a TIV clayshale and a TIV sandstone. The
Appendix contains also a verification of the physical
realizability conditions of the relaxation matrix.

EQUATION OF MOTION

The equation of motion for a 3-D anisotropic linear
anelastic medium is

V-T=pi+f, (11)
or in components
VT, = pii; + f;, (12)

where u(x, t) is the displacement vector, f(x, t) is the body
forces vector, p(x) is the density, and ‘V -’ is a divergence
operator defined by

3/ax 0 0 0 38/3z 3/3y
V-—->V,=| 0 3/y 0 3/3z 0 3/ox
0 0 3/0z 3/3y dfox O
(13)

As in the IV wave propagation problem (Carcione et al.
1988c), implementation of the rheological relation (5) is not
straightforward because of the presence of convolutional
kernels. Consequently, in this section the constitutive
equation is reformulated to yield a more convenient
description. Let the relaxation matrix be known in system
S’, and the problem solved in system S. Therefore, the
relaxation components transform as

Y=tV (14)

where ¥ is the relaxation matrix in system S’, and T is a
6 X 6 rotation with components ¢, (see Appendix C in
microfiche). These components can be space dependent.
Combining equations (5) and (14) and using properties of
the convolution gives

d
=tk [ALKSI + A(Lvl)(d—t (x, H)* SJ] (1s)

where the primes in the relaxation components are omitted

for clarity. Equation (15) is equivalent to
T, =ty {[Ark + AL (O)IS; + ALK, * ), (16)

after the integration of the resulting delta function.
Performing the time derivative [see equation (8)], yields

Ly
T =t {(Aux + ASIMAIS + AR S, urS |, (17)

where

1 ) v
P =" <1 - r(i)) e, I=l...,L, (18)
al ol

is called the response function of the Ith relaxation
mechanism, and M, = x,(0) is the unrelaxed modulus. The
function @,, obeys the following differential equation:

Pult) = =@ ()75 19)
Now the following memory variables are defined:

eV =@,*8, v=1,2J=1,...,6,1=1,...,L,. (20)
Replacing these quantities in (17) yields

L,
T =tk {[ALK +ACAM, 1S, + AL eﬁ}")} . (21)

1=1

Time defferentiating equation (20) gives
&P =500 e/, I=1,... L, 22)

where equation (19) has been used. Equation (21) and (22)
together with the equation of motion (12) fully describe the
response of the AV medium, and will be the basis for the
numerical solution algorithm. After substitution of (21) in
(12), and with equations (22) and the strain-displacement
relations, a first-order differential equation in time is
obtained:

U=MU +F, (23)
where U is the unknown variable vector formally given by
UT=(,u,e), (249)
F is the body force vector represented by

FT'=(0,/p,0), (25)

and M is an operator matrix which contains the spatial
derivative operators and all the material parameters defining
the medium. In the next section this operator is given
explicitly for the 2-D case. The number of memory variables
depends on the particular choice of the relaxation matrix,
but in principle they are reduced in virtue of the restrictions
imposed on the relaxation components. The rotation type
also restricts the number of variables. It can be seen that
when T is the identity matrix, the number of variables
reduce to a minimum. An alternative method to equation
(14) is to apply the transformation to the elasticity matrix C
(whose components are ¢, I,J=1,...,6) and then
introduce the anelasticity. Of course these two different
approaches do not give the same results, but the latter case
requires a minimum of variables. In the next section an
example of 2-D wave propagation is considered, where the



problem can be treated with three variables for each
relaxation mechanism.

The differential equation (23) represents the equation of
motion for the AV medium which correctly describes
anisotropic and anelastic effects in wave propagation within
the framework of the linear response theory.

The solution of (23) subject to the initial condition
U(t = 0) = U, is formally given by

U=eMy, + fo e™F(r — 1) dr. (26)

In equation (26), e™ is called the evolution operator of the
system. Most frequently an explicit or implicit finite
difference scheme is used to march the solution in time in
the AE and IV wave propagation problems. This technique
is based on a Taylor expansion of the evolution operator.
This work uses a new time integration method which is
specially designed to deal with wave propagation in linear
AV media. The new approach is based on a polynomial
interpolation of the exponential function in the complex
domain of the eigenvalues of the operator M, in a set of
points which is known to have some maximal properties. In
this way, the interpolating polynomial is ‘almost best’. The
spatial derivative terms are computed by means of the
Fourier method (Kosloff & Baysal 1982). The advantages of
this new algorithm over finite differencing in time can be
found in Tal-Ezer, Carcione & Kosloff (1989).

2-D WAVE PROPAGATION

For simplicity a 2-D TIV medium with symmetry axis
parallel to the z-axis is considered. Then, the rotation
matrix T is the identity matrix. The rheological relation is
given by equation (9), with c,5=c35=0. Choosing one
relaxation mechanism for each mode (L,=L,=1) the
unknown variable vector is given by (see Appendix D in
microfiche),

UT=(u,, u,, i, i, e, e, e3), 27

where e, =e{) + ¢S}, e, =e{? {2, and e; =2 in terms
of the memory variables (20). The body forces vector is

F'=(0,0,£/p, f./p.,0,0,0), (28)
and the spatial operator
0 0 1 0 0 0 0
0 0 0 1 0 0 0
My, My, 0 0 My M, My, 29)
M=1 M, My 0 0 My Mg, My |
Mg, My, 0 0 Mg 0 0
Mg, Mg, 0 O 0 Mqe 0
M, M, 0 0 0 0 M,
with
pMy, = 8/8x[(c1; — D) + (D — c55)M,,; + c5sM,,5] 3/3x
+ 3/8z(cssM,,,) 8/ 3z, (30a)
PMz, = 8/0x[(cy3+ 2¢55 — D) + (D — c55)M,,1 — c55M,5)
X 9/8z + 8/3z(cssM,,,) 8/ 9x, (30b)

PM3s=3/x(D —cs5), pMs3e=0/0xcss, pMs;=08/0dzcss,
(30¢c)
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PM,, = 8/8z[(cy5+ 2c55 — D) + (D — c55)M,,; — cssM,,)

x 8/3z + 8/3x(cssM, ;) 3/, (30d)
PM,; = 3/3z[(c33— D) + (D — css)M,,, + c5sM,,5] 3/3z
+ 3/3x(cssM,,,) 3/3x, (30e)

PM,s=8/3z(D — css), pMye = —3/dzcss,
pM47 = 3/8x055,

Ms, = ¢,(0) 3/3x,

(30f)

Ms, = @,(0) 8/3z, Mss= -1/t

P 21

(30g)
Mg, = @,(0) 9/ x, Mg, = ¢,(0) 8/8z, Mgs=~1/12,
(30h)
ahd
M; = @,(0) 3/ 3z, M, = @,(0) 3/0x, My, = ‘1/(1'357;:;

where the sub-index / denoting a physical mechanism has
been omitted for simplicity. For a general number of
physical mechanisms the number of memory variables is
given by n, = L, + 2L,. The examples presented in the next
section, for instance, use L, = L, = 2; therefore n, = 6. The
spatial operator for an elastic solid is obtained by taking the
limit M,,—1, ¢,(0)—0, v=1,2.

EXAMPLES

The first example involves wave propagation in 2-D
homogeneous TIV media, a clayshale and a sandstone
whose material properties are given in Table 1. The
relaxation times give almost constant Q in the exploration
seismic band. Similar materials with moderate to large
amounts of absorption were reported by Mc Donal et al.
(1958) for Pierre shale (Qp=10), and ocean bottom
sediments by Hamilton et al. (1970), with Qp ranging from 1
to 5. Isotropic versions are obtained by choosing the
isotropic compressional and shear wave velocities as the
pure longitudinal and pure transverse velocities (vertical
direction) of the anisotropic material. The elasticities for the
isotropic media are given in Table 1.

This section shows results for homogeneous clayshale and
Appendix E (see microfiche) for homogeneous sandstone.

Table 1. Material properties of the TIV media.

Medium Elasticities and density

Qi Ca 3 Gy Css G P,
(GPa) (GPa) (GPa) (GPa) (GFa) (GPa) (Kg/m")

ANI Clayshale 66.6 19.7 39.4 399 109 234 2590.
ANI Sandstone 80.2 252 —50 802 279 275 2690.
ISO Clayshale 39.9 18.1 18.1 399 109 109 2590.
1SO Sandstone 80.2 244 244 802 279 279 2690.

Relaxation times
rooalp ) ) 2

) ) ® &)

Clayshale 3 0.0332577 0.0304655 0.0352443 (.0287482
2 0.0033257 0.0030465 0.0029370 0.0023957

Sandstone 1 0.0325305 0.0311465 0.0332577 0.0304655
2 0.0032530 0.0031146 0.0033257 0.0030465
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Figure 1. 2-D TIV clayshale, (a) phase velocity, (b) energy velocity curves (wavefronts), (c) quality factor curves. Frequency is 20 Hz. At the
low- and high-frequency limits the energy velocities present minimum and maximum values respectively, while the quality factors are infinity.

More details can be found in Appendix B (microfiche).

Fig. 1 displays polar representations of (a) phase velacity,
(b) energy velocity, and (c) quality factors, at a frequency of
f =20Hz. The expressions for these quantities are given in
Appendix B with a complete analysis of the 3-D case for the
same materials. The energy velocity curves present sections
of the wavefront. As can be seen in Figs 1(a) and (c) the
quality factor curves follow approximately the shape of the
phase velocity curves.

The modelling uses a 165% 165 grid mesh with
DX =DZ =20m grid spacing. The motion is initiated by a
vertical impulsive force located in the centre of the
homogeneous region. The time function is given by

h(t) = RS SO {nfo(t — o)}, (31

where t,=0.06s, and f,=50Hz is the cut-off frequency.
This wavelet resembles a vibrator signal after the
autocorrelation.

Figures 2 and 3 display the u, and u, components at
t=0.32s for the different rheologies. The number between
parenthesis denotes the plotting scale. The viscoelastic
amplitudes are taken as references; scale 10 means that the
amplitudes are reduced by a factor 10. All the wavefronts
show the characteristics predicted by the theory. In the
elastic case the shear wave amplitude is much stronger than

the compressional wave amplitude, while in the anelastic
case these amplitudes are comparable (except in the cusps)
due to the higher attenuation acting on the shear mode. As
predicted by the energy velocity curve, the anelastic
wavefronts are greater than the elastic wavefronts, and the
waveform appears broader due to the velocity dispersion.
This dispersion effect is manifested also in the low amplitude
tails following the gP- and gSV-wavefronts. The differences
between the elastic and anelastic wavefronts have to be
considered in relative terms. If the elastic limit is chosen in
the high-frequency limit, the elastic wavefronts appear
bigger than the anelastic wavefronts. A comparison between
the AV and IE snapshots show important differences in
amplitude, waveshape and arrival time. In some directions
the anisotropic and anelastic effects compensate each other
to give approximately the same arrival time in both cases
(for instance at the angle 6 = n/4).

Since there is no analytical solution for the AV wave
propagation problem, it is not possible, as with the other
rheologies, to test the accuracy of the algorithm. As a
reference, the AE u, component in the symmetry axis is
compared to analytical solution (see Carcione et al. 1988d).
As Fig. 4 shows, the comparison is excellent. From Fig. 2
the u, component along the symmetry axis is zero according
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Wave propagation in anisotropic—viscoelastic media
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Figure 4. Time history comparison between the analytical and numerical AE solutions at the symmetry axis. Material is clayshale. The station
is located at a distance of 500 m from the source.
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Figure 5. Time history comparison between the numerical AV rheology at the symmetry axis and: (a) AE rheology, (b) IV rheology, (c) IE
rheology. Material is claysahle. The station is located at a distance of 100 m from the source.
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rheology, (c¢) IE rheology. Material is clayshale. The station is
located at a distance of 200 m from the source.

The problem of implementing Boltzmann’s superposition
principle in the equation of motion is solved by assuming
frequency-domain rational kernels. In this way the
time-domain equation of motion can be written in

AE Clayshale
084 Distance : 400 m
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Figure 7. Time history comparison between two stations located at
a distance of 400 m from the source, in the symmetry axis and at
0 = /4, respectively, (a) AE rheology, (b) AV rheology. Material
is clayshale.

differential form by introducing additional variables in the
formulation. The examples show wave propagation in 2-D
transversely isotropic—viscoelastic clayshale and sandstone
compared with the isotropic and elastic rheologies. The
simulations show the characteristics predicted by the theory,
i.e., anisotropic attenuation and velocity dispersion, and
important differences in waveform, amplitude and arrival
time compared to the more simple rheologies.

The simulation theory presented in this paper could be
the basis for developing realistic forward modelling codes;
for instance, reflection and refraction surveys, vertical
seismic profile, well to well propagation, etc. Another
potential application is in earthquake modelling where
anelastic and anisotropic effects can be expected to play a
significant role if low Q anisotropic layers are present.
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APPENDIX A

ANISOTROPIC LINEAR VISCOELASTIC CONSTITUTIVE RELATION

The most general relation between the components of the stress tensor o, and the components of the strain
tensor &, for an anisotropic linear viscoelastic medium is given by (Christensen, 1982, p. 5),

OX, ) = wyrdx, D% (x, 0, ijll=1,.3 (A1)

where ¢ is the time variable, x is the position vector, v, are the components of a fourth order tensorial
relaxation function, and the symbol “* indicates time convolution. A dot above a variable denoles time
differentiation, and the Finstein convention for repeated indices is used.

The fourth rank tensor ¥ contains all the information about the behavior of the medium under infinitesimal
deformations. In the most general case the number of components are 81, but since the stress and strain tensors
are symmetrical, and from the positive real nature of the strain and loss in energy densities (Auld, 1973, p. 144
and 155 respectively), it follows that the number of independent components reduces to 21. Equation (Al) is
the formulation of the isothermal AV stress-strain constitutive relation. This expression, also called
Boltzmann's superposition principle, will be the basis for describing wave propagation in AV media.

Using the shortened matrix notation, equation (A1) can be written as equation (4). 1t is established now the
time dependence of the relaxation components based on the general standard linear solid, assuming that

v = LAy + APxy + AP0 = [4y + A0 1H() (A42)

where A4,;, and A are space-dependents functions, and y,(x, {) are relaxation functions defined in equation (8),
which under certain conditions that will be imposed later, correspond to states of quasi-dilatation (v = 1), and
quasi-shear (v = 2 ) respectively. It can be proved that these relaxation functions represent L, standard linear
elements of unit relaxed modulus and a spring of constant (1 — L) all connected in parallel (see for instance
Ben-Menahem and Singh, 1981, p. 856, for the equation of a single element and the physical meaning of the
relaxation times). This type of relaxation function was introduced by Liu et al., (1976). Despite the negative
value of the spring constant the model has positive relaxed and unrelaxed moduli. In terms of mechanical
models the relaxation components defined in (A2) represent a spring (A,,/1(1)), plus L, standard linear clements
for quasi-dilatation states, and , standard linear elements for quasi-shear deformation.

Replacing (A2) in (4) gives equation (5). In order to identify ¥, with the quasi-dilatational field and y, with the
quasi-shear field, the following conditions are imposed:

Condition 1: The mean stress depends on the time variable only through the function ¥,

=
O, = —",,’—,E] 107, (A3)

Condition 2: In a given system of coordinates S the deviatoric components of the stress tensor depend on the
time variable only through the function y,,

Ty = 05 = (T; = Ou)[x(0], 13, (A4a)
Ty = Tilxa(0], 1> 3, (A4b)

The trace of the stress tensor is invariant under transformations of the system of coordinates. This fact ensures
that the mean tension is related only to the function ¥, in any system. The deviatoric components are not
invariant, but Condition 2 implies that a cube of material orientated in the direction of the axes of the system
S will be subjected to shear deformations exclusively related to the function y, With condition 2 the value of
the shear quality factors in the symmetry axis direction of a TIV medium as shown in Appendix B can be
established.

Substituting (5) in (A3) the mean stress is

0 =+ (i_}f:’m‘; ' m%la’f’_}) + xp.lfilffi.?’)ff(r) S ' (1)
Hence, Condition 1 implies

li,lAﬁ) =0 J=1,.6 (A46)
Condition 2 implics

A = _%[Kj;/;;_.’}ll, 13, J=1..6 (A7a)
and -

Al



AV =0, 1>3, J=1,.6 (A7h)

which follow from (Ada) and (A4b) respectively. Two additional conditions are imposed to the relaxation
components: .
Condition 3: In the AL limit the relaxation matrix must give the elasticity matrix,

€11 C12 %13 G4 C15 e
22 €23 €24 €325 26

¥ Q= €33 €34 €35 C36 H, (A8)
=3 €aa €45 Ca6
55 C56
Co6

In this way the clasticities are identificd with the relaxed components of the relaxation matrix, which are
obtained in the limit { —» @ in equation (8), i.c., x, = 1 in (A2), Note that the elastic limit is also equivalent
to =y - 1§), and particularly when tfp - 1) — 0, which is consistent with the elimination of the dashpots if
one thinks in terms of mechanical models. Also, for some microstructural theories (sce Murphy et al., 1986;
O’Connel and Budiansky, 1977) the complex moduli depend on the frequency @ and the fluid viscosity 0 as
wn Therefore, elastic material means here o consider a zero viscosity fluid, which is equivalent to taking the
low-frequency limit. For Biot’s theory for instance, zero viscosity is equivalent to the high-frequency limit,
since the complex moduli depend of wn ! (see Geertsma and Smit, 1961).

Condition 4: In the IV limit the relaxation matrix must give the isotropic-viscoelastic matrix (Carcione et al.,
1988c),

\|.r{;\y;2qf;1 0 0 0
Vg § ¢
I_ v
¥l = i %}M 9 0" (A49)
Vas ()
Waq
where
Wiy = (le R %’“”)xl t ,—2,(” = D', (A10a)
‘1’12 e ()\,e + %ME)XI J -,g;lfx:, (4105)
and
Viaa = W2 (A10¢)

with A7 and p the elastic Lame constants and n the dimension of the space.
An example of a 3-I) relaxation matrix subject to Conditions 1 1o 4 is obtained by taking

A[I = ﬁ]'l s ]-)1 A'Zl — (722 Facy I_), Aaz - ﬁ:m oo, D,
1
Aga = Ass = Agg = Af(m) = ff_l,l) = Aéé’ = (),
AR =4 = 4l = - 3¢,
i J A T
AR = A = 4} = 50,

and

2 2
AR = e, AR = o5 AR = o,
for the diagonal elements, and
A =e3—D+2G, A4= i3 = D+ 26, Ay =y — D+ 26,

AP = Al = 4l =p - %G,

I

A= 4= 4= - 2,

AP = AR = AfD = AR = Af) = 4D = 0,

A2



Ag = egy Ays = €5 A = g,

i 2 i
Y = A = MY D Y~ AP 0
Aya = G Ays = €5, Ayg = Gy

A5 = A = A = 49 = A = 4 = 0,

Il

Ayq = car Azs = G5, Azg = €34,
Ags = Age = Asg = Af) = Afg) = 4§ = o,
and

A'szs) = CGas A'&) e r‘dﬁ! A!.? = ("."lﬁl

for the off-diagonal elements. Substitution of this expressions into (A2) gives the relaxation matrix (6). In a
similar way the relaxation matrix (9) for the 2-ID case is obtained.,
For the 3-D case the mean stress (A3) becomes

| i : N
E")U - T(C_” + Cﬂr2 + CJ,'))‘SJ ‘|' .;(]) b %(’)G:"H*I—-(XI e I)![].‘ (A’.])
where
R (i
Oy == -j-’g!ﬁh (A12)

is the mean strain. As can be seen, equation (All) satisfies Condition 1. The deviatoric components of the
stress lensor are

3 . i
7‘! = @“ = Kgl(ls_”( = "Bl-)CIK‘ISJ e EG(S! - (")B)*[:('x? eny 1)]!], [ = 3, (Al3(-l)
with &, the Kronecker delta, and
3 6 Ry
Ty = JZlCHSJ + J@dﬂz./[(mﬁ)*ﬁ‘.d, F#3 (A13h)

which satisly Condition 2.
In the AE limit, oy — ), (= 1,..., L,, therefore from equation (8) y, = 1, the mean stress (A11) reduces to

O = alen + en + cp)Sy, (A14)
and the deviatoric components,

Ty = @, = K;si l(am - _‘,‘;_)c,(‘,s_,, [<3 (A15a)
and

Ty =cySp 1>3, (A15b)

i.e., the generalized Hooke’s law.
In the 1V limit the elasticities give

ey G Gy = A+ 28
e
Cqar €550 Cgg ™ H

Crpe G 3 = A

and zero the other components. The mean stress (A11) and deviatoric components (A 13a) and (A13b) simplify
to

8, = 3(?&” + %l-lﬂ)[(;)c+(7(1”ﬂn (A15)
and
T; = Bg = (S = @) M), 13, (A15q)

A3



Te = WitaliySy >3, (415b)
i.c., the IV rheological relation defined in Carcione et al., (1988c¢).

It is important to note that the relaxation matrices (6) and (9) are not unique, other choices could also satisfy
the four conditions. As mentioned before, the strain and loss energy densities must be positive definite

quadratic functions. These conditions impose some constraints on the rhelogical relation, which will be verified
for the frequency-domain stiffness components in Appendix B.
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APPENDIX B

PLANE WAVE ANALYSIS OF THE AV MEDIUM

Uniform plane waves provide a very useful tool for analizing the characteristics of wave propagation. Since the
analysis is in the frequency-domain, the complex stiffness matrix from the relaxation matrix is first obtained.
Then, the energy conservation equation for the AV medium; afterwards, the physical velocities, phase, group
and energy velocities in terms of the complex velocities, and finally the quality factors for the three different
propagating modes. As a consequence, the relations among the different physical velocities and quality factors
are summarized for the various rheologies.

Frequency-domain constitutive relation
The stress-strain relation (4) can also be written as
7‘1 = li’fJ*S.f! !,J = I,...,G (B])

Applying the convolutional theorem to equation (B1) the rheological relation takes the form

Ty = NSy = sy (B2)

where the tilde means time Fourier transform. Equation (B2) defines the frequency-domain stiffness matrix as

Pri(@) = iy = rpfo) + g (o), (B3)
with @ the angular frequency. In matrix notation equation (B3) is

P=R+iQ, (B4)
where

R = Re[P] (BSa)
and

Q = Im[P] (B5b)

are real matrices, The operators Re and Im take real and imaginary parts respectively.
Replacing (A2) in (B3) yields

P = Ay + ARM,, (B6)
where
M,=xH v=12 (B7)

are the adimensional complex moduli given by (Carcione et al., 1988¢),

Ly 1+ iw (v)
==L+ T g (B8)

M
=114 darl)

v

F'rom equation (B6) the real and imaginary parts of the stiffness components become

ry = Ay + A’I\;)Rﬁ?[ﬁ‘f\,], (B9a)
and
quy = AP ImIM,], (139h)

respectively.  In virtue of equation (B3) the complex stiffness matrices corresponding to the constitutive
relations (6) and (9) are

PriPiaPiz Cia  €s G

PPz ©a G5 Op

- M3 G4 G5 G5
£ CaaMy easMy ey | Nt

Cssn"fz CS(‘.'A‘iZ

oMy
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wheite

m=ey =D+ (D= %G)ME + -f:_(}‘Ml, (B11a)
i) L ad i 4 ¥ g 2 5

Pa = ﬂlz - D+ 2G + (I..) —!r!)A4| T(?ﬂ’f-z, (.BI ”J)
e = ¥ N 4 ¥ % 2 "y

Ma = ﬂ” = D+ 207 + (I) T(})MI T(IA’I-I, (Bl ](')
= o 4, . e

Py T Oy DA (I) T(I)MI F TGMZ‘ (l}].‘d)
_ oy 7 o .

Py = €3 — D+ 2G+ (D - uj-.o)M, = --i.-r;Mz, (Blle)

and
= - _ 4 T

P33 = o33 = D+ (D = 5G)M, + =-GM), (B11f)

in the 3-ID case, and

PiiPr2 €s
e P as |1, (B12)
Cesiia

where

Py = ey = DA (D = )My + essMy, (B13a)

P2 = ¢3 t 2055 — DA (D = )My — c55My, (B13b)

and

p).rz = ('.‘33 - D 4 (!) - ﬂss)Ml -+ ﬂjst, (]}Ij(.‘)

in the 2-D case.

Complex Poynting’s theorem
The complex Poynting’s theorem for a general AV medium is given by (Auld, 1973, p. 154),
[0 endS = i0LEpuate = Eypeat] + (P gy = Py (B14)
with p the complex Poynting vector defined as
p= - %(qu," Op + et oy + 6,0 1), (B15)
where u(x, 1) is the displacement vector, and the superscript “** denotes complex conjugate. The surface integral

in (B14) is the total power flow outward in the direction of e,, through a closed surface S which includes a
volume V. The quantities

SRS
(Epear = J—5—3V; (B16)
and
. P a2
(E)peak = _[,,Tl"l dv, (B17)

are the peak strain energy and peak kinctic energy respectively, where R is given by (BSa), and p is the density.
The double dot product *:* is defined by the summation over a single abbreviated subseript. For instance,

SRS = SryyS),
The quantity (P,), is the time-average power loss due to anelasticity,
$:Q:8"
P = q 2 1V
(P av “’L, 5—dV, (B18)
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with Q given by equation (B5b). Finally, P, is the complex power supplied by the sources. Actually, Auld
(1973; p. 86) considers a Kelvin-Voigt mechanical model for the constitutive relation but the procedure to
obtain equation (B14) is independent of the rheological model,

From equations (B16) and (B17) the peak strain and kinetic energy densitics are

SRS’
Edpeak = —5— (B19)
and
Epoae = 51417, (B20)

respectively. In consequence, the average stored energy density is

(& )peak t (Esdpear N
6y = vipeak 5 s/peak _ ﬁ-[f!lull " S:B:Swl (fﬂ])
From equation (B18) the loss in energy density is
S:Q:8"
Eday = —5— (122)

The quantities which define the energy balance equation (B14) will be used in the following sections to
compute the energy velocities and quality factors,

The positive definiteness of the strain and loss energy densities implies some physical realizability conditions
for the real matrices R and Q. By hypothesis these conditions are satisfied by the elasticity matrix C, and since
for realistic earth materials (Q = = [), R does not differ greatly from C (by equation (A8) C is the AE limit
of R), it is reasonable to assume that R also satisfy the conditions. Iowever, it is not obvious that Q is a
positive definite matrix. The following demonstrates that the physical realizability conditions are verified for
Q in the case of a TIV medium:

Physical realizability conditions: Since the strain and loss energy densities (equations (B19) and (B22)
respectively) are defined as positive definite quadratic functions, the stiffness components given by equation
(B6) must satisfy the following constraints (Korn and Korn, 1961),

d[, = (), [df d{.,

1 4y
where d,; represents 7y, or ¢, The example considers physical realizability conditions for the matrix Q in the
case of a TIV medium. A sufficient set of conditions is given by (Auld, 1973, p. 147), i

]} “, fd dct[d,.;] > O, (323)

an = il (B24a)
qss = 0, (B24b)
and

(11 + 412 > 2475, (B24¢)

The adimensional complex moduli (BR) can be separated into real and imaginary parts where

Ly | 4 o2y
Re[M,J=1-1,+ f: T oty To)

of_ (B25q)
=11+ @’tl)? ,

and

Ly (2D _ (v
Im[M,] =03 “L;ET), (B25b)
=il + o 1:,,2

for v = 1,2. Since tf) > 19, the imaginary part of the complex moduli satisfies

im{M,] > 0. (1326)
Fquation (B24a) implics

qn — 412> 0, (B27a)
and

g+ g5 = 0. (B27h)
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Substracting the imaginary parts of (B11b) and (Blla) gives
i1 — G2 = 2G Im[M,], (H28)

which by (B26) and since ¢ = 0 (see equation (7h)), satisfies equation (B27a). Adding the imaginary parts of
(B1la) and (B11b) gives

qu + @2 = 2(1‘) - %f;) Im[ M, ] + %-(; Im[ M, ]. (B29)

For real materials, in general is 12 — 4G/3 = 0, (see for instance Table | with equations (7g) and (7h)). This
fact and (B26) prove that equation (B29) satisfies (B27b).
The second condition (B24b) implics

!.j'sq - (.'55 !H?[!"fz] - D, (”30)

which is valid by (B26) and since ¢ = 0.
Finally, after substitution of the imaginary parts of equations (B11a), (B11b), (Bllc) and (B11f) in condition
(B24c) pives

6(?(1) = %(;) ImEM, ] Im[My] > 0, (B31)

which is valid in virlue of previous arguments. In consequence, Q for a TIV medium is a positive definite
matrix and satisfies the physical conditions &

Christoffel equation and dispersion relation

Considering zero body forces and Fourier transforming equation (12) with respect to the time gives

ﬂ,’;;, = - pmau;, (B32)

Substituting 7', from equation (B2) yields

VuriSx = — pouy (B32)
or
ViuriVity = — pou, (B33)

where V, is the transpose of the matrix defined by equation (13).
Let a plane wave solution to equation (B33) be of the form

w = Ue ™, (B34)

where k is the complex wavenumber vector defined by
—f =+
k=¥ — i, (B35)

with K and a real vectors indicating the directions and magnitudes of propagation and attenuation respectively.
In general, these directions are different and the wave (B34) is termed inhomogencous, with « - strictly
different from zero, unlike the interface waves in elastic media. When the directions coincide the wave is called
homogeneous. Alternatively, the complex wavenumber can be written as

K = keey + kyey + ko, = k(ley + Lo, + Ley), (B36)
where

_ Ry _ Ky _ k&
b=t b= b= (B37)

are the direction cosines of the complex wavenumber direction. In general, these are complex quantities but
for homogencous waves they are real and correspond also to the direction cosines of the propagation direction
k = k/|k| . For this kind of wave planes of constant phase (planes normal to the propagation vector k) are
parallel to planes of constant amplitude (defined by o+ x = const.).

Substitution of (B34) in the equation of motion (B33) yields the so called Christoffel equation,

(T = pa’HU = 0, (B3R)

where Iis the identity matrix, and the Christofell matrix is defined by the following components:
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Py = Pll‘ﬁ * I’ﬁﬁ‘g?' ¥ f"ss’j + 2psehyl, + 2pyshl + 2I’ln{xﬂn (B39a)
Ty2 = Pesle + Pial) + paalt + 2paabyly + 2paslily + 2pygl,, (B395)
T3z = Pssl + paaly + pialy + 2psabyl, + 2pystile + 2pyshid,, (B39¢)
iy = Prels + Pm{yz + pasle + (pag + Ml + (Pra + ps)ils + (P1y + pee)idy, (B39d)
Iy = pish 4 Paly + pasle + (pys + PrYhls + (P13 + pss)ly + (ra + psg)lidy, (B39)
and

T2 = psele * 1’24’}:} + paaly + (pag + Paalyle + (Pag + Pas)il + (pas + pag)lidy, (B39/)

The dispersion relation for the AV solid is obtained by setting the characteristic determinant of (B38) equal to
7e10,

e, kg, Ky, k) = det[KT — po’l] = 0, (B4
Expansion of the determinant gives the complex dispersion relation

(T‘“k:t - ptrn"z)(l"nk2 = pmz)(l" 33;{2 = pmz) =

KHL(P ) TGy + Toply + Ty = poX(Th + T + Ty, (B41)

Equation (B41) defines a surface in k-space, k = Re[ k] as a function of the direction cosines. This is called
the wavenumber surface. Unlike the AE case, here the Christoffel components are complex and frequency
dependent as can be seen in equations (B39a-f).

Complex and phase velocities

For simplicity, wave propagation in the (x, z)-plane (£, = 0) of a TIV medium is considered, which due to the
existence of a pure shear mode will be useful to clarify some concepts. Thus, only the stiffnesses
Pu = Pa Po, Pa = Pssy P P = P and pg = (py, — pp)/2 , are different from zero. The Christoffel
components (B39a-f) reduce to

Ty = puls + pssi?, (B42a)
[y = Pesls + Psste, (B42b)
T35 = pssh + puls, (B42c)
[y =Ty =0, (B42d)
and

Fia = (213 + pss)ls (B42e)
and the dispersion relation (B41) separates into a linear factor

Qw, ky, k) = kT35 = po® = 0, (B43a)
and a quadratic factor

Qo, ky, k) = (KT, = poX)(k’ T35 — po®) = kT = 0, (B43b)
or

Ty = pVi =0, (B44a)
and

(T = VT3 = pVa) = TH =0, m=12 (Badb)
respectively, where

V= !—m—, m= 1.3 (B45)

m

are the complex velocities of the three modes, ¢P, ¢SV, and SH respectively. The letter ¢ denotes “quasi”,
The last mode is uncoupled from the first two, with particle motion normal to the (x, 2)-plane, and therefore
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is a pure propagating mode. Solving (B44a-b) for the complex velocity and replacing the Christoffel
components (B42a-e) gives

1 1

Vi=2p) T(oss + puk + pagly + EVZ, (Béd)

sl 1
Vo= (2p) Zlpss + piyls + pysl — )7, (B46b)
and

L 2 5. L
V= (2p) 2(psels *+ pssly)?, (B46e)
with

!
E={[(pss — p,l}iﬁ + (pyy — ;;55)13]2 + 4(p; + ,;.55)2/3[3]3,

where /, and [ are given in equation (B37).
The phase velocity is defined as the frequency divided by the real wavenumber,

K= —® = Re '[_J—]{E, B47
m Rel k,,] Vin . i

A >

03]

Cn = %

in virtue of equation (B45), where
k= ed + el (B48)

defines the propagation direction.

Equation (B47) represents the phase velocity for homogeneous plane waves in the (x, z)-plane. When @ — 0
the phase velocily gives the relaxed or elastic velocities ¢g, since M, —» I, v = 1,2 in equation (B8), and
pu = ¢ by Condition 3. When @ — o0 , the phase velocities approach the unrelaxed velocities ¢,,,, which are
obtained by replacing M, by its high-frequency limit M,, in the complex stiffness components p,,, where

Ly W
M,=1- :E| 1 - fv , v=12 (B49)
= 0

The examples consider two transversely-isotropic real earth materials: Mesaverde clayshale and Mesaverde
calcarcous sandstone. The elasticitics are obtained in terms of the compressional and shear velocitics o, By
respectively, density p , and anisotropies £, & and y from the experimental data published by Thomsen (1986).
They are given in Table | together with the set of relaxation times which define the anelastic properties of the
medium. Relaxation times with superseript v = 1 represent anelastic processes which affect compressional
motion; similarly v = 2 is related to the shear motion. In both cases there are two different mechanisms (i.c.,
L, =I5 = 2). The elasticities are chosen as the relaxed components of the relaxation matrix. The complex
stiffnesses are calculated according to equations (Blla-f). It can be verified that they satisfy the physical
realizability conditions (B24a-c).

Figures Bl and B2 illustrate the phase velocity curves for TIV clayshale and sandstone respectively with (a)
relaxed (@ = 0), (b) /= o/2n = 20Hz , and (c) unrelaxed ( @ = ), There is a greater difference between the
relaxed and unrelaxed phase velocities for the clayshale than for the sandstone. This is due to the fact that the
clayshale relaxation times give more attenuation and velocity dispersion than the sandstone relaxation times.
The inflexion points present in the ¢S mode of the clayshale are less pronounced for high frequencies. This
affects the group and energy velocity curves since the inflexion points give rise to lacunas or cusps in these
curves.

Group velocity

The group velocity is the velocity of the modulation envelope of the wavefield, and as in the elastic case can
be expressed by

o= 00 o O 0w 750
%™ %" G B, T (B50)

where here the partial derivatives are taken with respect to the real wavenumber, Since there is not an explicit
relation of the form @ = Q#(k,, «,, «,) , equation (B50) is not convenient. Alternatively, the group velocity can
be obtained by implicit differentiation of the dispersion relations (43a-b). For instance

o My -1
= 51
K [ den J (B51)

or since K, = Re[ k],
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deo —1| Ory
= Re
n, [ 7o ] (B52)

By implicit differentiation

5 4 K g = -
( B gk, b"*)'ﬂy- 5= 0 (B53)
or

k., _ Q) dw
(77?3‘ ke, Je Q! (B54)

and similar relations hold for the k, and &, components. Replacing the partial derivatives in (B50), the group
velocity can be evaluated as

P 0710 r | ade |~ [ a9/
= = 4 eRe |20 | 4 g Re ™Y 0O |y o Re 1 20000 1 L 5
% {""“ ¢ lanmkx] eRe [asz/aky. @R o, e
For a TTV medium the dispersion relations (43a-b) may be expressed as
Q; = peskl + pssk? = pa® = 0, (BS6a)

for the SH mode, and
Q= (ks + pssk? — poP)pssk? + pyk? = po’) = (pyy + P IE =0, m=12 (B56b)

for the gP and ¢SV modes respectively, where equations (B37) and (B42a-¢) have been used.
For instance, for the S/ mode the partial derivatives are

024
—— = pgshys :
o, e lx (B57a)
a0,
3 = ek 5

ok, sk (B57h)
and

a2
ptiiat AP p’ﬁﬁfci + p'sskf — 2pwm, (B57¢)
e
where the prime denotes derivation with respect to the angular frequency. From equation (B10),
P'oe = Ce6M'ay  P'ss = e55M"y, (B58a)
with

W, =3 gy Tf:"i)
F1(1+ orl)y,

Consequently, the group velocity for the S/ mode is obtained by substitution of equations (B57a-c) in (B55),

. [ D§ Df
€g3 E{Exl'xﬂﬁ [ Vates ; (B60)

: -1
+ e, Re [I—wg
where

D = o(pssly + P'ssl) = V3 = oly — 273,

in terms of the complex velocity (B46¢), Christoffel component (342b) and direction cosines (B37).
Following the same procedure the group velocities for the ¢/ and ¢SV modes are obtained:

(B59)

DS =
Gls = — 2Re ™ {T’”En. Win  Pssvm — (P13 + pss) ;] ‘}, m=12 (B61a)
m
1§ Dy 2291
Condy = = 2L Re = [psswy, + paavi — (P13 + Pss) ] ., om= 1.2 (B61h)
"

where
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DE, = (oI} = 2pV W, + (@133 — 2pV )W, — 20055,

with
2
Vi =T = eV ‘ (162a)
and
W = Ta3 = pVin (B62b)

and in terms of the Christoffel components (B42a-¢) and complex velocities (B46a-b).

Unlike the AE case, the group velocity is not equal to the wave surface velocity since, as shown in the following
section, it is different from the energy velocity. The group velocity direction is normal to the phase velocity
surface. This results from the fact that this surface is the representation of a real dispersion relation
Qfw, Kk, K, 1,) = 0, and that the group velocity can be expressed, by following the same calculations to obtain
equation (B55), as proportional to the gradient of % with respect to

In the IV limit the group velocity direction must be equal to the propagation direction. The SH mode is
chosen for simplicity. For pi; — p and py, — p, equation (B60) reduces to

¢y = KRe '{(.}L})%(n -2 TL)J (B63)

where & is defined in equation (B48), and

p= }.L‘?M "9

Equation (B63) was given in Carcione et al., (1988¢). The same considerations hold for the other propagating
modes, for which ¢, is obtained by replacing p by A + 2ju in equation (B63), and 0=

The group velocity curves for TIV clayshale are shown in Figure B3 with (a) relaxed, (é) S = 20Hz, and (c)
unrelaxed. The ¢SV velocity presents singularities at the turning points of the cusps for finite values of the
frequency. Since the physical realizability conditions are satisfied for any frequency, this would mean that the
concept of group velocity has no physical meaning at the cusps. These singularities are not present in the other
two propagating modes. It is known that for low Q materials the group velocity loses its physical meaning since
the strong velocity dispersion spreads the wave packet significantly. Figure B4 shows the group velocity for
TIV sandstone at /= 201z

Energy velocity

The energy velocity is defined as the ratio of the average power flow density to the mean energy density. The
average power flow density is the real part of the complex Poynting vector, hence

Rel[p]
= e (64)
or substituting equation (B21),
2Re[p.
¢ elp] (B65)

(’-iv)pmk + (“.'r)jmr.rk I

The Poynting vector is calculated in first place, considering a plane wave polarized in the (x, 2)-plane with
particle displacement components

uy = Uyt 8 k), (B66a)
and
g, = [l k) - (B66b)
with
k = ke, + ke, = (K — i)k, (B6T)

i.e., a homogencous plane wave.
The associated strain components are

4] .

S‘I - s H_x — M:_x- L}x‘?{(ﬁ)f ke x), (!jﬁga)
dx
) :

Sy = {(;;2 = — ifcaUzeK"” k ")' (B68b)
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. Ny _ i I Hoot — lex
Sgm kot = = Mgl + KUje ), (B68¢)

For a TIV medium the stress components are

Ty = pSy + P13Ss = — ilpykUy + pyak,U)e” @ %O~ k%) (B69a)

Ty = piaS) + PaaSs = — UpyakeUy + paakUy)e™ ® *elO ¥ %) (B69b)

and

Ts = pssSs = — ipssll,U, + k Uye ™ @ Xell®r= € %) (B69¢)

From (B15) the complex Poynting vector is

p= - —é—[ex(rit_:'f | Ts) + e Ts + T3], (B70)

Replacing (B68a-c) in (B69a-¢) and the results in (B70) yields

Px = %mk'n'? "3 lx[P]llxl U_xlz T PI.?U;Uz!z + pss( UxU:"z + leII‘Jx)]’ (B71a)
I W 2 " Yoo 2

Pz = S kpe L33l | Uyl + p1aU, Ushe + pss(ULUL + | UL *L)], (B715b)

where equation (B37) has been used. In equations (B71a-b) m = 1 identifies the ¢P mode and m = 2 the
qSV mode. The ratio U, to U, is obtained by substitution of (B71a-b) in the Christoffel equation (B38). For
instance, from the first line,

2 2 2
U k' — po 'y — pl
p =_2=_"m1 i | m m=12 B72a
= (J-x fcﬁ,rl 3 r|3 ' ( )
and from the third line,
|
Bp=~—L—, m=12 (B72b)

33— p Vrrr
according to equation (B45). Replacing B, the Poynting vector components (71a-b) become

Qe - ] .
P= F;lz_(“kme i le?[f’ll"x + praBpl; + f"SS(H.:J/z + 'Bmlz‘fx)-]- (B73a)

2

P = "!"mk e =7 Ux|2[l-’ss“z + Bl + pl3ﬂa:r‘{x + J”J.‘i'ljmlz',z]- (B73b)

2 m
The peak kinetic energy density is from (B20) and (B66a-b),
T - 20,
(E)poakc = PO LU %e 21 + | B, 1%, (B74)
The peak potential energy density is from equation (B19),

l - * * . H *
(&) poak = ?{&l('-llsl +ri3Sy) + SyraS) + r3pSy) + rsslSsl . (B75)

After substitution of the strain components (B68a-c) and equation (372a-b) the potential energy density
becomes

_ 1 2 2 - 20, Xp 2 2 *
Epeate = 5 Vom | Uxl Pe ™2 X[y, + Lrss + BuBy(Birss + Eryg) + (ri3 + rs)hd(By + By)l,  (B76)
or using (B5a) and replacing the Christoffel components (B42a-e),
l 2 2, -2, . *
(f"'s)m-mk - ?Ikml IUx' g™ xRe[f 1t Bmﬁmr.'!a + (H,,, + B;rrl.?]: (377}

which in virtue of equations (B72a-1y) reduces to

(r'.f)lmak - %P l km | 2' UJ( | ze e x(l + ] Hm I 2)RE[ Vi]- (B78)
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In consequence, the sum of the peak kinetic and potential energy densities gives

(e pak + Elpeate = 2P0 Ul XL+ 1B De 2%+ 11 [2ReL VD), (B79)
by equation (B45). Using the following properties of complex numbers,

12712 =122 7", Re[z7'] = |2%] " 'Re[2], (B80a)
and

Re’[z] = -'fﬂ—'*z—R‘i[ﬂ. (B80B)
equation (B79) becomes

E)peat + Cslpoate = PO Ugl XL+ | B,1De "2 *Re[ v, IR V;; 1. (B81)
Finally replacing (B73a-b) and (B&1) in equation (B65) gives the energy velocity for the ¢P and ¢SV modes,
Camdx = (DS Re(Viy [piyle + PraBols + pssBd, + 18,1200, m=1,2 (B82a)
Comz = n(Dn) " Re(Vyy 'Tpss(ly + Bb) + pisBb + pyg B’} m = 1,2 (3825)
where

Dg, = p(1 + | By YRe[ V,,],

with the use of equation (B47).

Special care has to be taken for a numerical evaluation of equations (B82a-b) when either /, or £ — 0. For
instance when /[ — 0 and - I, B, - o and B, - 0. Taking these limits give the appropiate formulac as is
shown in a following section.

Similarly, the energy velocity for the S/ mode (m = 3) is caleulated. In this case the wave is polarized normal
to the (x, 2)-plane, and therefore normal to the propagation direction. Only the strains S, and 8¢ are different
from zero. The caleulation is much more simple than before and the energy velocity can be written as

cy = a3p 'Re 'LV 1Re(Vy '[exlpgs + esbpss]). (B83)

An alternative approach to compute the energy velocity is to find the locus of the points (x/t, z/¢) which makes
the phase equal to zero (Postma , 1955):

ot = Ky(xl, + 25) = 0. (B34)
Replacing the phase velocity (B47) and defining

0 =sin 'l (B85)
equation (B384) pives

am = () sin 0 + (£) cos0, (B86)
Taking derivatives with respect to the angle yields

‘:3‘ = (%) cos0 = (Z)sino. (B87)

Squaring equation (B86) and adding the result to (B87) gives

(
e [0(0)] = [(f)z & (%)’]% - [cﬁ,(o) + (‘i;g‘ )7}% | (188)

The energy velocity direction is given by

i S '(;‘T’:) -0 —tan" '( M) (B89)

Equation (B88) is the well known expression of the group velocity in TIE media (Berryman, 1979), not valid
in this sense for TIV media.
Note that equation (B84) express an important relation between the phase and energy velocities:

Coms (£90)

A

K Coypy =

B1o



demonstrated by Auld (1973, p. 222) for AL media. In the case of a TIV medium this relation is casily verified
for SH waves by taking the dot product of the SH energy velocity (B83) and the propagation direction vector
(B48), while for the ¢ and ¢S/ modes it can be obtained by also using equations (B72a-b) and (B42a-¢).
Since the wave surface is the envelope of plane waves with wavenumber vector ¥, this is normal to the
wavefront at point x . This also results from the fact that de/d0 defined by equation (B87) is tangent to the
wavefront at point x . Similarly to the AL case the energy velocity direction (or the position vector direction)
is normal to the phase velocity surface. This is shown in the following demonstration:

Geometrieal relation between the phase velocity surface and energy velocity direetion: To prove that the energy
velocity vector is normal 1o the phase velocity surface the demonstration follows a similar procedure described
by Auld (1973, p 226) for AE media. Consider two plane waves having infinitesimally different directions of
propagation and the same frequency. Then

— ] =k
! K+ 6K -
=LK o, =c, + e, (B91)

Applying (B390) to the wavenumber vector K’ gives

< g |
p ¢ = e b0y = 1, (B92)
or
K+ 0Kk Y., o ._."(""-e N 8K ¢, _ k’-ﬁcn_
( @ ) ot )= rg=t =g g1, (893)

where second order terms have been ignored. Using again (B90), (B93) results in

bk e, K e, B
T e (B94)

But since the wavenumber vector & is normal to the wave surface, and 8¢, always lie on this surface,

—b
K * e,
®

=0, (R95)
which means that

5K ‘¢
S T Y (296)

0]

Since 8K is tangent to the phase velocity surface, ¢, is normal to this surface. A more rigorous demonstration
of obtaining equation (B96) for ALi media is given by Auld (1973, p. 225, eq. (7.71)). The procedure can be
generalized to AV media oblaining

Sk p = 0. b))
For homogeneous waves, ic., the directions of the complex and real wavenumbers coincide, equation (B97)
is equivalent to (B96) considering the definition of energy velocity (B64).

In the 1V limit, equations (B82a-b) and (B83) must give the phase velocity (Borcherdt, 1973). For instance,
for the SH mode in the limit py, — pand pg — p the complex velocity is from (B46c), ¥, = (u/p)"2 Therefore
equation (B83) becomes

A A B 1
€y = Koy = kRe l[(lL:.)T"‘ (ng)

ic., the shear phase velocity in an IV medium (Carcione et al, 1988¢). In the IV limit,
P = pu = A+ 20, py =4, and p = 1, therefore B, in equation (B72a) reduces to
!2'
B = (B99q)
Iy

for I waves, and

/
By=-F (B99b)

zZ

for & waves. Replacing these values in equations (B82a-b) the energy velocity becomes the phase velocity.
In the AE limit, pgs — rg = g5, and pgg = rgg = 6. A short calculation shows that in this limit the group and
energy velocities for the S/ mode (equations (B60) and (B83) respectively) are identical, a condition that is
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also valid for the coupled modes (see Auld, 1973, p. 279). This is equivalent to saying that the relaxed group
and energy velocities coincide. It may be seen that when o — 00 the unrelaxed velocities are also identical.
The energy velocity curves for TIV clayshale and sandstone are given in Figures B5 and B6 respectively with
(a) relaxed, (b) /= 2011z, (¢) unrelaxed. The curves represent sections of the wavefront. The relaxed curves
correspond to the AE wavefronts and are identical to the group velocity curves represented in Figure B3a
(clayshale). Unrelaxed group and energy velocities also coincide (see Figures Bde and Béc respectively).
Actually, when © — o the material behavior is elastic as is shown by the representations of the quality factors
versus frequency (O — o) in the following section. Since the elastic limit was chosen when @ — 0, a wave
travelling in an AV material is faster than a wave in the corresponding AE material. Conversely it is possible
to choose the elastic behavior in the high-frequency limit (see Ben-Menahem and Singh, 1981, p. 873). In this
case a wave travelling in an AV solid has lower velocity than a wave in the corresponding AE medium.

At intermediate frequencies the group velocity is greater than the energy velocity (compare Figures B3b and
B5b for clayshale, and B4b and B6b for sandstone). For pure mode directions, for instance, the symmetry axis
and the direction normal to it, the phase velocity and the energy velocity coincide for all the frequencies.

Quality factors

The quality factor is defined as the ratio of the peak strain energy density (B19) to the loss in energy density
due to anelasticity (B22). Then

: SRS
€ -
” ()peak (B100)

Q .
Edav 808

The loss in energy density is caleulated in a similar way to the strain energy density (B78), replacing r,, by 4;,.
It pives

(&) gy = %plfcmlzl Ugl?e ™2™ %1 + | By | HIm[ V2. (B101)
Then the quality factors for the gP and g8V modes are
Re[ V]
. T ';i m=12 (B102a)
Im[ V]
Similarly for the SH mode,
Re[ V3.
, = Lgl (B102h)
Im[ 73]
Using equation (B45) and basic properties of complex numbers, the quality factors can be expressed as
Rel I}
Q== L;i m= 13 (B103)
Iml k,, ]

This is the well known equation found for homogeneous waves in an IV medium (Borcherdt, 1973), which is
still valid in a ‘T1V medium,
In the IV limit, equations (B102a-b) and (B103) yield
o ‘?\. i 2
0 = Aih ¥ A (B104a)
Im[h + 2]

for P waves, and

Re[ ] |
= = SRl 7104h
0, = ] ( )

for § waves.
Figures B7 and B8 represent the quality factors

O =0, Q.= 0L, (B105)

(for homogeneous waves the attenuation and propagation directions coincide) for TIV clayshale and sandstone
respectively. As can be seen from Figures BI and B2 the quality factor curves follow approximately the shape
of the phase velocity curves (these effect is more pronounced in the ¢S mode). The ¢SV mode in the clayshale
has higher attenuation at 0 = n/4 than in the symmetry axis, while in the sandstone the opposite effect oceurs.
Since the symmetry axis is a pure mode direction, like the direction normal to it, O, coincides with ©,. In
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particular the SI1 quality factor is isotropic, since replacing (B46c) in (B102b) and using (B10) gives
O, = Re[M,1/Im[ M,], i.e., independent of the propagation direction.

Analysis in the symmetry axis of a TIV medium

The symmetry axis of a TIV medium represents a pure mode direction in the sense that the displacement vector
is either parallel or normal to the real wavenumber k. In this direction the wave solutions become purely
transverse and purely longitudinal like in an IV medium. In the symmetry axis is L = 0 and / = 1, and the
phase velocities (B347) reduce to

O N IR -
¢ = Re l s )2 ]. (R106a)
and

== rRe [ (- (B106b)
Cy = 03 ° e _i:'?% 2 h. 3

Similarly replacing the complex velocities (B45a-b) in (B60) and (B61a-¢), the group velocities become

(PN _ 0 P33
1 = e { a3 )2 (l 2 P33 )} (E107
- = | - PN, _cn_:{".'i:s_

These results are analogous to the ones found for IV media (see equation (B63) and Carcione et al., 1988c¢).
The energy velocity is obtained from equations (B82a-b) and (B83) with the use of (B72a). When /, - 0 and
L= 1, B, —» o, and B, — 0. In this limit the energy velocity gives the phase velocity. This result is valid for

any direction in IV media (Borcherdt, 1973).
Finally, the quality factors (102a-b) in the symmetry axis reduce to

Rf'[ﬂ:”:—'l_

Iml[py]’

for the ¢P mode, and
Rel pss | Re[ M,]

()2 = Q"] - 55 ay _2

2 (R108b)
Iml pss ] Im[ M, ]

for the shear modes. Figure B9 shows the phase and group velocities versus frequency for TIV clayshale in the
symmetry axis with (a) P wave, and (b) § wave. As can be seen they coincide at the low and high-frequency
limits. Relatively, the shear modes have more velocity dispersion than the longitudinal mode, 20 % and 18
% respectively. This is related to the fact that the shear quality factors are lower than the longitudinal quality
factor as can be appreciated in Figure B10a. Since the kernels M, are analytic functions in the lower o-plane,
the system’s impulse response is real and causal, and therefore the Kramers-Kronig relations are valid (see
Ben-Menahem and Singh, 1981, p. 916 and 1050). This is also a consequence of the causality principle which
is inherent in Boltzmann’s superposition principle.

For comparison, the quality factors in the symmetry axis and 0 = n/4 are represented in Figures (B10a-b) and
(B1la-b) for clayshale and sandstone respectively. At 0 = n/4, the ¢SV quality factor for sandstone is greater
than the ¢ quality factor (see also Figure B8). In particular, the set of relaxation times chosen for the two
materials gives almost constant @ values in the exploration seismic band.

(B108a)

Comparison among the different rheologies

The comparison of the physical velocities and quality factors among the different rheologies can be summarized
in the following;

IE rheology
€ =€ = Gy, (B109a)

O = . (B109h)

Wavefronts are spherical. The energy flux direction coincides with the propagation direction and all the physical
velocities are identical.

IV rheology
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=g (B110a)

€™ Cer ™ Sri G T Gy T G (B1105)
Re[x + 2u] ~ Rel[p]

sy (N = ¥ ey
Imlp]

)
Im[A + 2]
The subscripts R and « denote relaxed and unrelaxed respectively, Wavefronts are spherical and frequency
dependent. The direction of the three physical velocities coincide but the group velocity differs in magnitude
from the phase and energy velocities.

(B110¢)

AL rheology
CEe, =0y, (Bl11a)
O = ®. (B111h)

Wavefronts are not spherical. The energy flux does not coincide with the propagation direction. The energy
velocity is the group velocity, The wavenumber vector is normal to the wave surface, and the energy velocity
vector is normal to the phase velocity surface.

AY rheology

CH#C ¥ CFC, (B112a)
Cr b Cerp = ﬂgR; €y # Con = cgu' (HHZI'J)
Om = Ol {yﬁ L,). (B112¢)

Generalizing the results obtained for TTV media, I conclude that as in the 1V case, each frequency component
has a different wavefront not spherical in this case. The physical velocities differ from each other in magnitude
and direction. Quality factors and velocity dispersion are not isotropic. At least for propagation in the (x, 2)
-plane of a TIV medium (the case considered in this section) the real wavenumber vector is normal to the wave
surface and the velocity vector is normal to the phase velocity surface.

Pure mode directions in an AV rheology

c:cﬁ'_'tcgs (HII:M)

Cp = Cp = "',l;'R; Cp = Ty = Cou (Bl [:”))
Rel pyq ] Rel pss ]

0 = 33 Q=04 = 55 (B113c)

Iml pys] ‘ Iml pss ] :

for instance in the symmetry axis of a T1V medium. The situation is analogous to that of IV media.

When the propagation is in the (x, y)-plane the dispersion relation (B41) is independent of the propagation
direction in the plane. There is one pure longitudinal mode, one pure shear mode polarized parallel to the
z-axis, and another pure shear mode polarized normal to the z-axis, with complex velocities
Vi=(pulp)'? V5= (ps/p)'? , and ¥V, = (p;/p)/? respectively. In this case the shear waves are said to be
birefingent because the velocities are different, and the complete set of modes is called trirefringent.

2-D problem: The same equations obtained for wave propagation in the (x, ) -plane of the 3-D TIV medium

are valid for the 2-D case. In the expressions of phase velocities (B47), group velocities (B60) and (B61a-b),

energy velocities (B82a-b) and quality factors (B102a-b), the complex stiffnesses py, pa, pn and py of

equation (B12) (2-D case), play the role of py;, 3, py and pg respectively, of equation (B10) (3-D case).
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APPENDIX C

ROTATION OF THE RELAXATION MATRIX

Frequently, to solve a wave propagation problem in anisotropic media it is necessary to transform the
realaxtion matrix to another system ol coordinates. For instance, a TTV medium is considered whose symmetry
axis does not coincide with the z’-axis of the carlesian system S’ where the problem must be solved. Since the
experimental elasticities are given in a system § whose z -axis coincides with the symmetry axis, a rotation of
the relaxation matrix \V' from S to §” is necessary in order to obtain ‘1’

As demonstrated by Auld (1973, p. 76) the transformation law is given by

W=t KL= 1,..6 (©1n
or in matrix notation
¥ =T¥1, (€2)

where T is a 6 x 6 transformation matrix with components ¢, . T is given by (Auld, 1973, p. 74),

2 2 2
ey ey tyz Zax_}.a xz 2,0y y zaxxf‘xy
a2 a’ X 2 2a,.a 2a,.a
yx Yy D By yz yzlyx Ay xAyy
2 2 2
= Ay @y tyy 2‘-"2_51“?2 2a,,a,, 2a,,a,, ;
T= ’ (=

Ayellyy iy Oyolyy Aoy | dyotlyy yyly, + Gyt dyydy - ity
Wyyllyy Aoylyy Gyl Ayt Ay Aoy + Qyxy,  Ayylyy + dyyllyy

Ayxy Aplyy Byplyy Ay, + Ay Aty T Gy, Ay, -+ dyytyy

L B

with a, the dircction cosine of the angle between the x'-axis an the x-axis,
I'he example illustrates a clockwise rotation of coordinates through an angle ff about the p-axis coincident with
the y'-axis. Hence, the direction cosine matrix is

I e cos 0 sinfi
A=|apapa.l=l 0 1 0 | (C4)
Ay Gy Oy —sin f0cos i

and from (C3) the corresponding transformation matrix is

1 ‘ |
cos’f 0 sin’f 0 sinff 0

0 l 0 0 0 ]

sin’f 0 cos’f 0 —sin2f 0
T= : (C3)

0 0 0 cosfp 0 —sinf
sin 2f 0 sin 2ff

5 3 0 cos2fl 0
0 0 0 snffi 0 cos fi

Any general rolation can be performed by applying successive rotations of the type (C5) about different
coordinates axis.

An alternative method to equation (C2) is to apply the rotation to the elasticity matrix and then introduce the
anelasticity. Of course these two different approaches do not give the same results,
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APPENDIX D

TWO-DIMENSIONAL EQUATIONS OF MOTION

For a TIV medium the rheological relation is given by equation (9), with ¢¢ = ¢ = 0. For L, = [, = 1, i.e.
one relaxation mechanism for each mode, equation (21) becomes

Ty = [leyy = D) + (D = ess)Myy + essMyn 1S + [(13 + 255 — DY + (D = es5)Myy — c55M,5 1S5 +

(D = css)ey + cssey, (Pla)
Ty = [legs — D) + (D = es)Myy + essMp3Sy + [(eyy + 2e55 — DY + (D — cs)Myyy — cssMyy 1S, +

(D = css)e; — cssey, (D1b)
and

Ts = c5sM, 585 + csqe4, (Dle)
where

e = el + el = 9,45, + 5y, (D2a)
& = ef]) + eff) = 9,08 - ), (D2b)
and

ey = of}) = 9,*S5, (D20)

are combinations of the memory variables (20). In this example particularly there are the same number of
unknown variables as in the 2-D 1V case (Carcione et al., 1988c).
The equivalent expressions to equation (22) are

é = () + S0 (0) — ey/ay, (D3a)
é = (S = Spa(0) — ey/n, (D3h)
and

é = S50,(0) — ey, (D3c)

where the subindex / denoting a physical mechanism has been omitted for simplicity.
Substituting the stress-strain relations (Dla-c) in the equation of motion (12) and making use of the
strain-displacement relations

iy ou du du
= _= o = _Z' S = —L 4 2' D4
ax 350 Y ez Tox L
together with equations (ID3a-c), defines an equation of the type (23) whose unknown variable and body force
vectors, and spatial operator are given by equations (27), (28) and (29) respectively.
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APPENDIX E

SIMULATED WAVEFIELDS IN HOMOGENEOUS SANDSTONE

This appendix present the results of wave propagation in sandstone for the rheologies
indicated in Table 1.
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Figure B1. Phase velocity curves for TIV clayshale, Propagation in the (x,z)-plane, (a)
relaxed, (b) /= 201z, (c) unrclaxed.
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Figure B3, Group velocity curves for TIV clayshale. Propagation in the (x,2)-plane, (a)
relaxed, (b) f = 20z, (c) unrelaxed,
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Figure B5. Energy velocity curves (wavefronts) for TIV clayshale. Propagation in the
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