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The problem posed by domain decomposition methods is to find the correct 
modeling of physical phenomena across the interfaces separating the sub- 
domains. The technique described here for wave propagation problems is based 
on physical grounds since it relies on the fact that the wave equation can be 
decomposed into incoming and outgoing wave modes at the boundaries of the 
subdomains. The inward propagating waves depend on the solution exterior to 
the subdomains and therefore are computed from the appropriate boundary 
conditions, while the behavior of the outward propagating waves is determined 
by the solution inside the subdomains. The technique is applied to the 
anisotropic-viscoelastic wave equation, which practically includes all the 
possible rheologies of one-phase media. 

KEY WORDS: Domain decomposition; boundary conditions; viscoelastic 
waves; characteristic modes. 

1. I N T R O D U C T I O N  

There are several advantages in the use of  domain  decomposi t ion tech- 
niques. In the first place, they are particularly useful for solving problems 
in irregular domains  and on parallel computers.  F r o m  the point  of  view of 
physics, the correct description of waves through interfaces separating dis- 
similar rheologies needs an appropr ia te  t reatment  of the boundary  condi- 
tions. This is the case for a fluid-solid (acoustic-elastic) interface where 
the parallel componen t  of  the particle velocity need not  be cont inuous 
(slip wall boundary  condition).  D o m a i n  decomposi t ion is also the basis of  
hybrid methods,  i.e., different resolution algori thms are used in different 
subdomains.  Another  useful application is the possibility of using different 
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grid sizes in different subdomains, for instance in the presence of localized 
inhomogeneities or regions having dissimilar material properties. 

In this article, the technique is applied to the linear anisotropic- 
viscoelastic wave equation, which includes all possible types of theologies, 
as shown in Fig. 1. Combining these rheologies gives 21 different types of 
interface, which practically cover all the possibilities in one-phase media. 
The method was recently developed by Thompson (1990), and applied to 
the wave equation by Carcione (1990b), where he implemented different 
types of time-dependent boundary conditions including free surface, rigid, 
and nonreflecting conditions. The boundary treatment is based on charac- 
teristic variables representing one-way waves propagating with the phase 
velocity of the medium. The wave equation is decomposed into wave 
modes describing outgoing and incoming wave modes perpendicular to the 
boundary of the subdomain. The outgoing waves are determined by the 
solution inside the subdomain, while the incoming waves are calculated 
from the conditions at the interface, i.e., continuity of displacements 
and normal stresses in a solid-solid boundary, and continuity of normal 
displacements and stresses if one of the media is acoustic or viscoacoustic. 
The result of this approach is a wave equation for the boundaries that 
automatically includes the boundary conditions. As pointed out by 
Carcione (1990b), the present method is equivalent to the characteristic 

Fig. 1. Set of rheologies modeled by the linear anisotropic-viscoelastic wave equation. 
Combining these rheologies gives 21 different types of interface. 
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approach of Gottlieb et al. (1982), and to the upwind interface condition 
proposed in Canuto et. al. (1988). 

The following section introduces the anisotropic-viscoelastic wave 
equation in the velocity-stress formulation. Section 3 briefly outlines the 
method and identifies the uncoupled outgoing and incoming waves. Next, 
Sec. 4 calculates the boundary equations for isotropic media as a function 
of the uncoupled modes. In Sec. 5, the boundary equations are explicitely 
calculated for interfaces separating similar and dissimilar rheologies when 
the boundary is horizontal. Finally, Sec. 6 extends the approach to inclined 
boundaries. 

2. THE WAVE EQUATION 

The general equation of motion of a two-dimensional linear aniso- 
tropic-viscoelastic medium involves the following equations (Carcione, 
1990a): 

i. The Equations of  Momentum Conservation: 

+ 0z/+ix (2.1a) 

ez=-  -L-x + p  }+f" (2.1b) 

where x = (x, z) are Cartesian coordinates, axx(X, t), axz(x, t), and a=(x, t) 
are the stress components, vx(x, t) and vz(x, t) are the particle velocities, 
p(x) denotes the density, and f(x, t) = (f~, fz) are the body forces. In (2.1a) 
and (2.16) and elsewhere, time differentiation is indicated with the dot 
convention. 

ii. The Constitutive Equations: 
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where 

ex~ = -~x ' ~= = O---z' exz = -2 ~-~z + ~ x  ) (2.3) 

are the time derivative of the stress components. The quantities ~ )  o(v) ~ x x l '  ~ z z l ~  

and o(v) are defined by ~ x z l  

(v) _ ,~ o(v) 
e~xt - O~z xx, = ~b~t*e~, o (~) = ~b~t *~x~, l = 1,..., L~, v = 1, 2 z z l  ~ x z l  

(2.4) 

where 

~ (  "r(v)\ 
~bvl(t ) = 1 -- , , .09! 

~o-I / 

(2.5) 

is the response function of the lth dissipation mechanism, and ~*(v)~z and ~ )  
are material relaxation times. The three component  vectors formed with the 
variables defined in (2.4) are termed the memory vectors. Like the strain 
vector in (2.2), the memory vectors are the components of a tensor whose 
rank is the dimension of the space. The index v = 1 involves variables that 
are related to L1 mechanisms describing the anelastic characteristics of the 
quasidilatational mode, and v = 2 corresponds to variables that are related 
to L2 mechanisms of the quasishear mode. 

The material properties are given by 

e l i  -~- Cll - - D  + (D - c55) M,,1 + c55M,,2, 

C13 = C13 "~- 2C55 --  D + (D - c55) M , .  - c55M,,2 

C33 = C33 - - O  + ( O  - c55 ) M,,1 + c55M,,2, 

c55 = c55Mu2 

(2.6) 

which are high-frequency elasticities, with c11, c13, c15, c33, c35, and c55 the 
low-frequency elasticities, and D = (cH + C33)/2 " Muv, v = 1, 2 are relaxation 
functions evaluated at t = 0. For  a general standard linear solid rheology 
they are given by 

Lv 

M ~  = 1 - ~ .(v).h ~z ~'~z, ~bv/- ~bvz(t = 0) (2.7) 
/=1 
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The number of variables can be reduced to three sets by defining the 
so-called memory variables, 

_,,(1) z- (1) I=  1 ..... L1 (2.8a) e l l  - -  ~ x x l  - e z z l  , 

_ o(2) _ _(2) . _ oo(2) l = 1,..., L 2 (2.8b, c) e 2 1  - -  ~ x x l  ~ z z l  ~ C'3l - -  ~r"xzD 

Then, the stress-strain relations (2.2) becomes 

1 joe c 00] 
d~z LCls c35 755JL2~x:J 0 c55 

m L1 

klx 
l = 1  

k2t 
1 1 

L2 

E d3 t 
- - 1 = 1  

(2.9) 

In the anisotropic-elastic limit, i.e., when ~.(v)~,(~) and the memory 
variables (2.4) vanish, Eq. (2.9) becomes Hooke's law. In the isotropic- 
viscoelastic limit we have 

711, 733 -~ 2 + 2/i = (2 + #) M u l  q- I~Mu2 , 713 --~ )~ = (2 +/~) Mul - #Mu2 

755 -~/~M,2, c15, e35 -~ 0 (2.10) 

where 2 and /~ are the elastic Lame constants. In this limit, Eqs. (2.9) 
become the isotropic-viscoelastic constitutive relation introduced in 
Carcione et al. (1988). 

ii. The Memory Variables Equations: 

/OVx ku l =  1,..., Z 1 (2.1 la) 

/~gvx dVz~ ~:, l= 1 ..... L :  (2.11b) 

f o r  x ~ V z \  031 
e3, = ~2, t -~z  --1- ~x  ) .r(2), l = 1  ..... L 2 (2.11c) 

The equations given in (i), (ii), and (iii) are the basis for the numerical 
solution algorithm. The formulation requires recasting the equation gover- 
ning wave propagation as 

~v ~v av 
- a t - k A ~ x + B ~ z z + d = 0  (2.12) 
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where 
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(2.13a, b) 

(2.14a, b) 

The notat ion ( ) L v  denotes  a vertical succession of  e lements  from 
l = 1,..., Lv, v = 1, 2. The vectors in (2.12) have d imens ion  m = 5 + L1 + 2L2, 
and matrices are of size m x m. 
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The equivalent velocity-stress formulation for a viscoacoustic medium 
is 1@ 

f ~ -  +f~ (2.15a) 
p Ox 

1@ 
~ = . . . .  t-fz (2.15b) 

p dz 

/Ov~ ~vz\ L 
- / ~ = 2 { ~ x  +-~-z)+2 ', / ~ O, (2.15c) 

l=1 

(~/avx t%z'X k, l= 1,.., L (2.15d) tOx+ ) 
where equation (2.15d) is equivalent to (2.11a) since here only the dilata- 
tional field exists. The set of equations (2.15a)-(2.15d) can be written as a 
first-order matricial equation in time of the form (2.12), where 

L@~>~J (-6/~>~_1 

(2.16a, b) 

and 

0 0 "'" 0 0 p - 1  
A =  ~ . B=  

o o .. ' 0 ,~ o 

<~, 0 0 . . .  o > ~ j  <o ~, 0 o>~  

(2.17a, b) 
Implementation of the boundary conditions along a given direction 
requires the characteristic equation corresponding to (2.12) in that 
direction. 

3. THE B O U N D A R Y  TREATMENT 

The method is based on characteristics, and was applied to the 
wave equation by Carcione (1990b). Let the boundary be normal to the 
z direction; then the characteristic equation corresponding to (2.12) is 

_ S _  ~ ~v ~v ~-~ + Jg + S-ICz = 0, C ~ = A ~ x + d  (3.1) 
or 

Ov 
- o t + S ~ + C z = 0  (3.2) 
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where 

J~f~-AS-I= -- and A=S-1BS (3.3) 
0 2  

with A the diagonal matrix corresponding to B, and eigenvalues 2i, 
i=  1,..., m; S is formed by the columns of the right eigenvectors of B; 
J f  includes each decoupled characteristic wave mode in the z-direction. 
Since the system of equations is hyperbolic, the eigenvalues of B are real. 
Some of the eigenvalues give the characteristic velocities of outgoing and 
incoming waves at the boundary. 

Equation (3.2) completely defines OV/(St at the boundaries in terms of 
the decoupled outgoing and incoming modes. The boundary conditions are 
implemented in the following way. Assume that a ~< z ~< b. For points (z, a), 
compute ~/t'(Zi < 0 outgoing waves) from Eq. (3.3), and ~ ( 2 i  > 0 incoming 
waves) from the boundary conditions. Similarly, for points (z, b), compute 
~/(2i>0)  from Eq. (3.3), and ~r from the boundary conditions. 
Then, solve Eq. (2.12) for the interior region, and Eq.(3.2) at the 
boundaries. 

For the anisotropic-viscoelastic rheology the eigenvalues are 

Z1 = cp = (2p) -1/2 {655 + c33 + [(633 - ~55) 2 + 4c~5] 1/2 } -1/2, 

23 = Cs = (2p) - m  {css + c33 - -  [-(633 - -  655) 2 "[- 4C2s] m} -m,  

2i=0, i=5,...,m. 

22 = --Cp 

(3.4a) 

)~4 = -Cs 
(3.4b) 

(3.4c) 

( p 2 2 - -  6 5 5 ) ( p ~ 2 - -  C33) - -  C25 = 0 , i =  1,..., 4 (3.5) 

Eigenvalues 21 and 22 are the phase velocities of quasicompressional waves 
moving in the positive and negative z-directions; while 23 and 2 4 a r e  the 
corresponding velocities of the quasishear mode [see Carcione (1990a) for 
the expression of the phase velocities in linear anisotropic-viscoelastic 
media]. 

The quantities ~ relevant for the implementation of the boundary 
conditions are given by (Carcione, 1990b): 

cp FOVz 1 Oazz (8Vx 1 0axz~q (3.6a) 
- - - - - + ~  \ ~z -~ z , ,  ~z ]J 

The zero eigenvalues arise from the fact that B has m -  5 zero columns. 
The first four eigenvalues satisfy 
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where 

cp[@_~ 1 8 a =  /SVx 1 & % ~ ]  

=--UL~z z~ az + ~ ~  z~ ~ /J 

l O xz <8,,  1 

cs[Ov_v_~ l &rx~ (Ov_y_~ l &r=~] 

= - M L a z  Zs aW + ~\a~ z~ az / j  

Zp = pep, Z s = pc s 

are the unrelaxed impedances of the medium, and 

1 2 
~ = ! ( p c ~ - 6 ~ ) ,  v = - - ( p c ~ - ~ . )  

C35 C35 

The normalization factors are given by 

N 2 = 2 ( 1  ' pC2p-C33~ 
* pc 2 - a,--~5)' 

( oc -!,q 
M 2 = 2 1 + pC2"-'~__ 833,] 

The product S Jet ~ that is required in Eq. (3.2) is 

- ,~_ ( 4  + ~ )  + 1  ( ~  + ~4) 
N 

1 ( ~ + ~ )  ~' ( ~ + ~ 4 )  + ~  

C13 "31- 6]C15 r + ~C13 ( 4  - ~ )  + - -  ( ~  - ~ )  
Nee Mcs  

_• ( •  _ ~ )  + y z ~  
( ~  - ~4)  

,~_ z___~ ( 4 - ~ ) + Zo~ ( ~ _ ~4 ) 
N M 

{ ~1, ( 4  - ~ )  + ( ~ -  ~4)) 7~bl/ \ 

Nee ~ / L~ 

( ~2, ( ~ _ 4 ) +  ~(,2, ( ~ 4 - ~ ) )  
Nce ~ L2 

/ '%~ ( 4  - ~ )  + ~:~ ( ~  - ~4 ) )  
�9 \ N e e  ~ L: - 

(3.6b) 

(3.6c) 

(3.6d) 

(3.7) 

(3.8a, b) 

(3.9a, b) 

(3.10) 
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For each subdomain an equation of the form (3.2) has to be solved at the 
boundaries. For simplicity, the formulation is applied in the next section to 
the isotropic problem, which can be easily solved analytically. 

4. THE ISOTROPIC PROBLEM 

4.1. Boundary Equations for a Viscoelastic Medium 

In the isotropic limit, it can be verified that 6 ~ 0, 7 -~ 0, N ~ x/~, and 
M ~ ~/2. Then, Eqs. (3.6a)-(3.6d) become 

= - ~  ~'&z 4 Ze az J (4.1a) 
v 

Jr2 = ~ \ t?z Ze Oz J (4.1b) 

Jg3 = -~2 \ O z + Zs O z J (4.1c1 

Cs (& x l &r=~ 
N (4.1d) ,/~ \ az ~s 57 / 

where ce= [(2+2ft)/p] m and cs=(fi/p) m are the unrelaxed compres- 
sional and shear wave velocities. Substitution of (3.10) into Eq. (3.2) gives 
the wave propagation equations in terms of the decoupled outgoing and 
incoming modes: 

10axx 
~x -- + (oVg3 + ~ )  + f ~  (4.2a) 

p Ox 

1 Oe~ 1 
9z = ( ~  + ~2) +f~ (4.2b) 

p t ? x + 7  

aVx L1 L2 
1 2 ( ~ - ~ 2 ) + ( 2 + # )  ~ 01 ,+#  ~ 02, (4.2c) 6xx=(i + 2fi) Ox +x/~ c------~e ,=, ,=, 

~22 LI L2 ~zz = I "1- (~1 -- ~2)  "4- (~ "4- #) E ell--  # E e21 (4.2d) 
l=1 1=1 

OVg Z S L2 
6 = = / i ~ x  + - - ~  ( ~ 3 - ~ 4 ) + #  ~ eat (4.2e) 

x/z  1=1 

FOvx 1 ] ell l = 1 ..... L 1 (4.2f) 
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FOvX~2ce ] e2l l =  1,..., L2 (4.2g) 

FSv~ 1 ] e31 I= 1 ..... L2 (4.2h) 

These equations are used at the boundaries normal to the z-direction, 
where the quantities ~,., representing incoming variables, are calculated 
from the boundary conditions. 

4.2. Boundary Equations for a Viscoacoustic Medium 

For a viscoacoustic medium the quantities ~ ,  are 

= cp {Sv~ t 8p) (4.3a) 
~' ,,/~\~ Z.Vz 

cp (Sv~ 1 c3p) (4.3b) 

The term SNg in Eq. (3.2) becomes 

S Jr 1 / z ' ( ~  _ ~ )  (4.4) 

Substitution of (4.4) into (3.2) yields the equations for the boundaries, 

1@ 
~x = . . . .  §  p 8x (4.5a) 

1 
~ = ~ ( ~  +~)+f~ 

L 

-b=~~ z" (~1-~)+ a E ~, 
3x ~ t= 1 

+ - -  (~((~ - ~2) / = 1  ..... L 

(4.5b) 

(4.5c) 

(4.5d) 
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5. DOMAIN DECOMPOSITION FOR A HORIZONTAL 
BOUNDARY 

5.1. Viscoelastic-Viscoelastic boundary 

Let the upper and lower media be indicated by medium A and 
medium B, respectively, with z increasing toward the upper medium. Then, 
the incoming characteristics in medium A are represented by ~I(A) and 
~3(A), while in medium B they are ~ ( B )  and ~4(B). These quantities are 
computed from the boundary conditions at the interface as indicated in 
Fig. 2. Actually, each ~ represents a one-way wave motion which is 
assumed to be continuous across the interface. In a solid-solid boundary, 
continuity of Vx, Vz, azz, and axz is required. From Eqs. (4.2a)-(4.2g) these 
conditions imply that 

10aXX(A)+ 1 
~-~ [~,"~3(A) + ~4(A)] +fx(A) 

p(A) Ox 
v 

__ 1 Oaxx 
p(B) Ox (B)+ [~(B)+~4(B)]+fx(B ) (5.1a) 

1 #trxz (A)+ 1__ 
p(A) ~x ~/2 [ ~ ( A ) +  ~ t A ) ] + L ( A )  

_ 1 & r x ~ ( B ) +  1 
[~I(B) + ~ ( B ) ]  + f~(B) (5.1b) 

p(B) Ox 

from boundary conditions 

medium A 

medium B 

from boundary conditions 

Fig. 2. The incoming characteristics variables ~ and ~ in medium A, and ~ and ~4 in 
medium B, are calculated from the boundary conditions. The diagram represents continuity 
of one-way motion across the interface. 
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av x Zp(A) 
i(A) ~ (A)+ - - - - ~  [ ~ ( A ) -  ~2(A 1] 

LI(A) L2(A) 
+[2(A)+#(A)]  ~, 011(A)--#(A) ~ k,l(A ) 

l = 1  l = 1  

av x Zp(B) 
= ,,t.(B) Tx  (B) + 7 [,X(I(B) - ,YF2(B)] 

LI(B) L2(B) 
+ [2 (B )+p (B ) ]  ~ #.u(B)-I~(B) ~ O2,(B) 

l = 1  l = 1  

( 5 . 1 c )  

avz Zs(A) L2(A) 
/2 (A)~  x ( A ) - ) - - -  [~3(A)-gff4(A)] +p(A) ~ k3t(A ) 

/ = 1  

~x Zs(B) L2(B) =/2(B) (B) + ~ [,YF3(B) - -Yf4(B)] + #(B) ~ O3,(B) (5.1d) 
, , / L  l = 1  

Equations (5.1a)-(5.1d) are solved for the four unknowns ~I(A), ~ff3(A), 
~2(B), and ~4(B), while the quantities representing outgoing waves ~2(A), 
~4(A), ~(B),  and aff3(B) are given by Eqs. (4.1a)-(4.1d). Substituting the 
results into (4.2a)-(4.2g) yields the equations for the interface: 

1 �9 (new) 
V x 

Zs(A) + Zs(~) 

x [Zs(B) 9(~~ + Zs(A ) f(~ �9 (o,d) -~x~ (A)+ .(old) Gx~ (~)] 
(5.2a) 

1 V. (new) 
z Z~(A) + Z~(B) 

x [Zp(B) 9(~~ + Ze(A) ~ ) ( z ~  - -  d(~~ + d(gd)(B)] 

(5.2b) 

�9 (now>_ Z,.(A) Z~(B) 
O" zz - -  

Z~(A) + Zp(B) 

X [ l ) ( ~  - -  l ) (~  -~- a ( ~  az(~ (5.2c) 
Z~(A~-~ -~ z~(e) J 

d(x~yW)= Zs(A) Zs(B) 
Z~(A) + Z~(B) 

6"(fl~d)(B)l (5.2d) 
- - - ~  z~(B) J 

I �9 (old) 
• 9(f,d)(B)_f(fld)(A)+ax~ (A) 

Zs(A) 

854/'6/4-9 
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~(.) 
o ( n e w ) /  , �9 (old) ) .1.. ~ (  

~x t ~  (" . ) + 2 / i ( . )  

( . ) = A o r B  

~ 1 / (  ~ ) ~ (ncw)(  ~, , .  ) = ~ ' p ) ( .  ) + 
I ( .  ) + 2/i(. ) 

X Eft (new) �9 (old) - ~ =  (.)] ,  

~(Tew)(  ~ ) = ~(~ld) (  �9 ) ~ 2 l (  ~ ) 

i ( . )  + 2 ~ ( . )  

-d-(new) d-(old)( _ ) ' ] ,  

(5.2e) 

l=1  ..... L I ( O ) , ( o ) = A o r B  (5.2f) 

r" �9 (new) �9 (old) xko'= - -a= ( . ) ] ,  l = l , . . . , L z ( . ) , ( . ) = A o r B  (5.2g) 

~ 2 l ! "  ) r - .  (new) �9 (old) F(new), ~ ' ) = ~ ' ~ ) ( ' ) +  #-~.)  L~xz -Ox, ( ' ) ] ,  3l 

l = 1 ..... L2(o ), ( . )  = i or B (5.2h) 

where r is the left-hand side of Eqs. (4.2a)-(4.2g), and r is the right- 
hand side of the equations within the computational volume, i.e., from 
(2.12), 

Ov 8v 
~(otO) = A ~x + B ~zz + d (5.3) 

5.2. Viscoacoustic-Viscoelastic Boundary 

Let medium A be viscoacoustic. Then, the characteristics correspond- 
ing to ~ ( A ) ,  ~2(B), and ~4(B) have to be computed from the boundary 
conditions. These involve continuity of vz and normal stresses, i.e., 
- p  = a=. Moreover, zero shear stress imposes axz = 0, from which the 
quantity ~4(B) can be computed. Continuity implies that 

1 
~f~ [ ~ ( A )  + ~ ( A ) ]  +f2(A)  

1 8ax2 + 1__~ 
- p(B) 8x (B) x/2 [~I(B) + ~z(B)] +f~(B) (5.4a) 

~ L(A) 
I(A) (A)+ Zp(A)[.IV~I(A)--o~2(A)J+2(A) ~', ~t(A) 

l = 1  

aVx + 1 z ~ , ( ~ ) [ ~ ( 8 )  - ~(B)]  
= ,~(8) Wx (8) , / i  

L~(B) L2(B) 
+ [2(B)+#(B)] ~ ~au(B)-#(B) ~ ,kEt(B) (5.4b) 

1=1  l = 1  
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As before, solving these equations and replacing the results into 
(4.2a)-(4.2g) gives the equations for both sides of the interface: 

�9 (new)  �9 (o ld)  v~ (A)=v x (A) (5.5a) 

1 (new) __ 
z Z~(A) + Zp(B) 

x [Ze(B)  Y ( ~  + Zp(A) f(~~ + b(~ + 5"~z~ 

(5.5b) 

_p~,ow>_ .(.ow> ZAA) Z~,(B) 
- -  O ' z z  - -  Z~(A) + Z~(B) 

• [~i~ - r 
b~o'<')(A) ,~i~ 
Z,,(A-----7- + Z---57~)"A (5.SO) 

~;~n~w)(A) = ~~ + 'g'~t(A) [p(old)(A ) --/0(new>I, 
,~(A) 

�9 (old)  
* (new) ~x (B) = r + ~ (B) 

Z~(B) 

(•(new)tnx x~ t~)=O 

�9 (new) �9 (old)  
= (rxx (B) ax~ (B) + 

i (B) 
i(B) + 2fi(B) 

[a(2ow>- a(?'~)(B)] 

q)I/(B) ~(new)r R~ - ,z t - , - e ] ~ m (  B ) +  - 
2(B) + 2/2(B) 

- .  (new) �9 (old)  fizz -- fizz (B)], 

e(~W)(B) = 0(2~m(B) ~bz'(B) ,czar 01:'d>(m; 
i (B) + 2g(B) 

z= 1,..., L(A) (5.5d) 

(5.5e) 

(5.50 

(5.5g) 

/ =  1 , . . . )  L I ( B  ) 

(5.5h) 

l = 1 ..... L2(B) 

(5.5i) 

~(.ow)~m _ ~2;(B) . (ore 

When medium A is vacuum [Ze(A)=O], or in many applications air 
[Zp(A)~O], the interface obeys free surface boundary conditions, which 
imply that normal stresses vanish, i.e., axz = 0, and a= = 0, In this case, 
(5.5e)-(5.5j) reduce to the boundary equations for free surface implemented 
in Carcione (1991). 
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5.3. Viseoacoustie-Viseoacoustie Boundary 

Continuity of normal displacements 
following equations at the interface: 

and pressures leads to the 

• ( n e w ) (  ~ - -  . ' , ( o l d ) /  _ , ' j - V x  t ' ) ,  ( o ) = A o r B  (5.6a) 

1 ) (new) 
z Z / A )  + Z / B )  

x [Ze(B) 9(~~ + Ze(A ) ~~ + p(~ - p(~ 

(5.6b) 

__p(new)__ Zp(A)Zp(B) 
Z,,(A) + Z,,(B) 

p(~ p(~)(B)] (5.6c) x f~~176 Zp(A) Zp(B) ] 

~,(-  ) o~~ ) = ~o,~( .  ) + ~ [~(,,,~(. ) _ b(~ 

l = 1  ..... L(o), ( ~  (5.6d) 

It can be shown that in the elastic case, i.e., when -(~)~'(v) and the 
memory variables vanish, the boundary equations are equivalent to the 
interface equation found by Tessmer et al. (1990) and Kessler and Kosloff 
(1991). 

The equations obtained for a horizontal interface can be easily 
extended for inclined boundaries. This is done in the next section. 

6. DOMAIN DECOMPOSITION FOR INCLINED BOUNDARIES 

Consider that the boundary is not perpendicular to any of the 
Cartesian coordinate axes, i.e., that say the z' direction normal to the 
boundary makes an angle 0 with the z axis where the problem is solved 
(see Fig. 3). For convenience, these coordinate systems are denoted by S' 
and S, respectively. The constitutive relation (2.2) in S can be written in 
compact form as 

Lv 

T = + S + D ~  E E~ ~' (6.1) 
l = 1  



Domain Decomposition 469 

Fig. 3. 

Z , 

Z 
X' 

medium A / medium B 

f 
X 

Disposition of coordinate systems for an inclined interface. The z' axis is 
perpendicular to the interface. 

where T and S are the stress and strain vectors, W is the unrelaxed matrix 
multiplying the strain vector, Ev, v = 1, 2 are the memory vectors for dila- 
tion and shear, respectively, and Dr, v = 1, 2 are the matrices which multi- 
ply the memory vectors. Implicit summation over the index v is assumed. 

Firstly, the boundary equations in system S' should be computed. 
They have already been obtained in previous sections [e.g., Eqs. 
(5.2a)-(5.2h)], provided that the matrices ~ and Dv containing the 
material properties are known in S'. This implies a coordinate transforma- 
tion from S to S', which is achieved with the so-called Bond matrices 
(Auld, 1973). The boundary equations are finally obtained by coordinate 
transformations from S' to S. 

A rotation of the coordinate system transforms the particle velocities 
as  

(6.2a, b) 
V'zJ LVzJ Vz Lv'~J 

where 

R 0  F cos0sin0 q 
( ) = L - s i n O c o s O J  

(6.3) 
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The stress, strain, and memory vectors transform as 

T ' = M ( 0 )  T, S' = MT(--0) S, E~r M r ( - 0 )  El ~) (6.4a, b, c) 

where 

M =  

I COS 0 sin 2 0 sin 20 1 
sin 2 0 COS 2 0 - sin 20 

- s i n  20 sin 20 
2 cos 20 

M-l (0)  = M ( - 0 ) ,  [MT(--0)] -~ =Mr(0)  (6.5a, b, c) 

are Bond transformation matrices. Making use of (6.4c), the memory 
variables (2.8a)-(2.8c) transform as 

t [:i',] 
e'u = ell, l = 1,..., L1 

e2'l = R( _ 20) F e'2t] 
e3lJ Le ,J' 

l = 1,..., L 2 

(6.6a) 

(6.6b, c) 

Application of Bond transformations to Eq. (6.1) implies that 

�9 ' = M(0) ~Mr(0),  D'v = M(0) DvMr(0), v = 1, 2 (6.7a, b) 

which are used to determine the boundary equations in system S'. It can 
be shown that D'v = Dr, and if the rheology is isotropic, ~ ' =  T. 

Formally, the procedure for matching medium A and medium B is the 
following: Assume that the boundary equations in system S' can be written 
as [e.g., (5.2a)-(5.2h)] 

~'(new)(A) = P(A) Fv'(~ ~'~"eW)(B) = P ( B ) [  ~'~~ (6.8a, b) 

where P(A) and P(B) are matrices of size 2m x m containing material 
properties. Moreover, applying Bond transformations to the components of 
v results in 

v' =Nv, v = N - i v  ' (6.9a, b) 

with N a transformation matrix of size m x m which depends on the com- 
ponents of R and M. Then, transforming (6.8a) and (6.8b) by using (6.9a) 
and (6.9b) yields the boundary equations in system S, 
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l_N~(O1~l(A)l~ 
~"~ = N - '  e(A) LN~O,~(B)] ~, 

~(n~ = N-' {P(B) LN~O,~(B)A jFN*(~ 
(6.10a, b) 

In general, equations (6.10a) (6.10b) must be solved at the boundaries 
of medium A and B, respectively. Most explicit time integration schemes 
compute the operation Cv, where 

~x B~-~ (6.11) C = A  + ~z 

is the differential operator of the right-hand side of (2.12). In these cases, 
the approach first calculates 

V (~ : C v  (6.12) 

which is enough, inside the computational domain excluding the bound- 
aries. At the boundaries, additional calculations are required such that 

v(~ " ) ~ rotation N - ,  v'(~176 �9 ) - ,  matching P( �9 ) ,  v'(new)( �9 ) 

- '  rotation N -1 - ,  v(new)( �9 ) (6.13) 

for every operation with C. 

7. CONCLUSIONS 

The problem of matching waves at interfaces separating subdomains 
has been solved by decoupling the wave equation and imposing 
appropriate boundary conditions to the incoming waves in each sub- 
domain. Emphasis was given to the treatment of different rheologies, 
although the method is equally valid for use in hybrid modeling, and situa- 
tions where the presence of heterogeneities requires the use of dissimilar 
grid sizes. 
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