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SUMMARY 
In the surface of a linear viscoelastic medium, two types of Rayleigh waves may 
propagate. One of them, which always occurs, has wave characteristics which are 
close to those of the corresponding elastic solid. The second surface wave, not 
present in the elastic case, is possible for certain values of the material parameters, 
and for a given range of frequencies. Its properties are different from those of the 
first surface wave, particularly the energy velocity which is closer to the compres- 
sional body wave velocity. In this work, the properties of the two wave modes are 
analysed by using energy considerations. The energy balance for the Rayleigh waves 
is computed, and the quality factors and energy velocities are calculated as a 
function of the frequency, of depth, and per unit surface area. 

The main results indicate that the anelastic properties calculated from energy 
considerations are close, for practical purposes, to  those obtained from the Rayleigh 
secular equation, i.e. phase velocity and attenuation factors give a good approxima- 
tion to  the dispersive and dissipation characteristics of the waves. In relation to the 
elastic case, the energy is more evenly distributed with depth, particularly in the v.e. 
mode. This wave has similar anelastic properties to those of the compressional body 
wave. 
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INTRODUCTION 

Rayleigh waves are of importance in several fields, from 
earthquake seismology and geophysical exploration to 
material science (e.g. Auld 1985; Parker & Maugin 1988). 
The first theoretical investigations carried out by Lord 
Rayleigh (1885) in isotropic elastic media showed that these 
waves are particularly important in seismology since their 
propagation is confined to the surface, and therefore, they 
do not scatter in depth as seismic body waves. 

Hardtwig (1943) was the first to study viscoelastic 
Rayleigh waves, though he erroneously restricts their 
existence to a particular choice of the complex Lam6 
parameters. Scholte (1947) rectifies this mistake, and verifies 
that the wave always exists in a viscoelastic solid. He also 
predicts the existence of a second surface wave, mainly 
periodic with depth, whose exponential damping is due to 
anelasticity and not to the Rayleigh character (referred to 
later as v.e. mode). Caloi (1948) and Horton (1953) 
analysed the anelastic characteristics and displacements of 
the waves considering a Voigt-type dissipation mechanism 
with small viscous damping and a Poisson solid. Press & 
Healy (1957) relate the Rayleigh wave quality factor to the 

body wave quality factors in a low-loss solid, and tested the 
result successfully with laboratory experiments in Plexiglas. 
The first to derive the attenuation coefficient from energy 
considerations were King & Sheard (1969). They obtained a 
formula for a Voigt-type anisotropic solid in terms of a 
viscosity tensor. Their predictions for quartz agree fairly 
well with the experimental values. Borcherdt (1973) further 
analyses the particle motion at the free surface and 
concludes that the differences between elastic and 
viscoelastic Rayleigh waves arise from the differences of 
their components: the usual inhomogeneous plane waves in 
the elastic case, and viscoelastic inhomogeneous plane 
waves in the anelastic case which allow any angle between 
the propagation and attenuation vectors. 

A complete analysis was carried out by Currie, Hayes & 
O’Leary (1977), Currie & O’Leary (1978) and Currie 
(1979). They show that for viscoelastic Rayleigh waves: (i) 
more than one wave is possible; (ii) the particle motion may 
be either direct or retrograde at the surface; (iii) the motion 
may change sense at many or no levels with depth; and (iv) 
the wave energy velocity may be greater than the body 
wave energy velocities. They refer to the wave that 
corresponds to the usual elastic surface wave as quasi-elastic 

453 



454 J .  M. Carcione 

(q.e.), and viscoelastic (v.e.) the wave that only exists in the 
viscoelastic medium. This mode is possible only for certain 
combinations of the complex Lam6 constants, and for a 
given range of frequencies. 

The purpose of this work is to investigate the Rayleigh 
wave characteristics from the standpoint of energy. Besides 
the phase velocity and attenuation factor which result 
directly from the Rayleigh secular equation, the calculation 
of the energy velocity and quality factor from energy 
considerations gives new insight into the anelastic properties 
of the waves. Moreover, a general viscoelastic medium is 
considered, in the sense that it is not restricted to a low-loss 
solid and to any particular type of dissipation mechanism, 
i.e., the complex Lam6 parameters may have any frequency 
dependence. 

The content of the next sections is, in outline, as follows. 
First, the equation of motion and the constitutive relation of 
the isotropic linear viscoelastic solid are derived in terms of 
the complex Lam6 parameters. In the next section, the cubic 
secular equation determining the complex velocities is 
derived. There follows the determination of the displace- 
ment field and phase velocities associated with the surface 
wave and each mode component. The calculation of the 
energy velocities and quality factors requires energy 
considerations. The energy balance equation describes the 
dynamic process of wave propagation and allows the 
calculation of the anelastic characteristics of the Rayleigh 
waves with depth and as a function of the frequency. Both 
energy velocity and quality factor are computed per unit 
surface area. Finally, special types of viscoelastic media are 
studied, for instance the incompressible solid which 
describes surface waves in polymers, or the Poisson solid, 
frequently used in seismological applications. The example 
studies the wave characteristics of a solid where two modes 
are possible, the quasi-elastic, and one viscoelastic surface 
wave. 

CONSTITUTIVE RELATION A N D  
EQUATION OF MOTION 

The constitutive relation of an isotropic viscoelastic solid can 
be expressed as (Carcione 1990) 

T(X, t )  = W(X, t )  * S(X, t )  or 

I, J =  1 , .  . . , 6, 

with 

= qtiJ * SJ, 
(1) 

TT=(T1, T2, T3, T4,  T 5 ,  T6) ( 0 1 1 ,  (722, (7337 023, 0 1 3 ?  (712) 
(2) 

the stress vector, where uil, i ,  j = 1, . . . , 3 are the stress 
components, and 

sT' (SIP s 2 ,  s39 s4, s 5 ,  s6) = &227 E33t 2&23? 2.L13, 2E12) 

(3) 
the strain vector, where i ,  j = 1, . . . , 3 are the strain 
components; W is the symmetrix relaxation matrix with 
components 

1 + 206, I ,  J I 3, 

otherwise, 
I ,  J > 3, (4) 

where A(t) and P( t )  are Lam6 relaxation functions and 6, is 
the Kronecker delta, t is the time variable, x is the position 
vector, the symbol * indicates time convolution, a dot 
above a variable implies time differentiation, and the 
Einstein convention for repeated indices is used. Vectors are 
written as columns with the superscript T denoting 
transpose. 

The Lam6 relaxations functions can be expressed as 
(Carcione 1990) 

1 = (A" + 3p(")x1- ;pex2> P = pex2, (5a, b) 

with I" and pe the elastic Lam6 constants. x l ( t )  and x2(t) 
are adimensional stress relaxation kernels in dilatation and 
shear, respectively. This is proved in Appendix A where 
also some expressions for these kernels are given. Applying 
the convolutional theorem to equation (l) ,  the rheological 
relation takes the form 

Z =  + J j ~ p J j ,  (6) 

where the tilde means time Fourier transform. Equation (6) 
defines the frequency-domain complex stiffness matrix as 

PIJ(w) = GIJ + i q l J ( w ) ,  (7) 
with o the angular frequency. In matrix notation equation 
(7) is 

P =  R + iQ, (8) 

where 

R = %(P), Q = 4 m ( P )  

are real matrices. The operators 5% and 4 m  take real and 
imaginary parts, respectively. 

The complex stiffness components are from (4) and (7), 

A + 2p6,, I ,  J 5 3, 
I ,  J > 3, 
otherwise, 

where 

A = ( I e  + $p")Ml  - ;peM2, ( 1  la,  b) 

are the complex Lam6 constants, with M ,  = i,, Y = 1, 2 the 
adimensional complex given by equation (A4a). 

The equation of motion for a linear anelastic medium is 

p = peM2,  

V . T = p i i + f  or V,G=pii,+f,, (12) 

where u(x, t )  is the displacement vector, f(x, t )  is the body 
forces vector, p(x) is the density, and 'V a '  is a divergence 
operator defined by 

atax o o o aid2 way 

(13) 

The strain-displacement relation can be written as 

S=VTu or SK=VKlul. (14) 

Considering zero body forces and Fourier transforming 
equation (12) with respect to the time gives 

(V,PJKVK, + pw26,)II, = 0, (15) 
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where equation (14) has been used. Equation (15) is the 
frequency-domain equation of motion for a general 
anisotropic linear viscoelastic medium. The equation for the 
isotropic solid is obtained by using the complex components 
(10). 

COMPLEX VELOCITY 

Since the medium is isotropic, it can be assumed without 
loss in generality that the wave propagation is in the ( x ,  z )  
plane with z = 0 the free surface. Let a plane wave solution 
to equation (15) be of the form 
,, = LTei(wr-k. x) 

where k is the complex wavenumber. Substitution of (16) 
into the equation of motion (15) gives the solutions for the 
compressional and shear waves. Let m = 1 denote the 
compressional mode and rn = 2 the shear mode. Then, the 
following dispersion relations are obtained: 

( 16) 

A+2p V+!! w2 
Ik(m)(2 = z, rn = 1, 2, V2 - -, 

P' 
1 -  

P 

with V, and V2 the complex velocities for homogeneous 
viscoelastic waves, and U,, a scalar quantity. 

A general solution is given by the superposition of the 
compressional and shear modes, 

(19) ,, = ~ ( m ) ~ i ( w f - k ( " ) .  x) 

At the free surface (z = 0), 

T3 = AS, + ( A  + 2 p p 3  = 0, T, = ps, = 0. (20a, b) 

These boundary conditions imply the horizontal wavenum- 

V =  wlk  (27) 
is the Rayleigh wave complex velocity in the x direction. 
The boundary conditions (20a, b) and equations (26a, b) 

imply that 

and 

2 kIk2 A +-=O. 
k2 

Squaring (29) and reordering terms gives a cubic equation 
for the complex velocity, 

V2 

This equation together with (29) may determine one or 
more wave systems. One mode, the q.e. surface wave, is 
always possible since it is the equivalent of the elastic 
Rayleigh wave. The other surface waves, called v.e. modes, 
are possible depending on the frequency and the material 
parameters. 

DISPLACEMENT FIELD 

The amplitude coefficients may be referred to U y ) =  1 
without loss in generality. Thus, from (26a, b) and (28) 

From (31a, b, c, d), the displacements (23a) and (24a) 
become 

- 9  (32a) u, = (e-ik~z + Ae-ikzZ 

The displacements (32a, b) are a combination of cornpres- 
sional and shear modes containing the following phase and 
decay factors: 

e i [ o f - ( u + ~ m ~ ) l  e - (ar+o,z )  , r n = l , 2 ,  

in virtue of equations (21) and (22). It is clear from (33) that 
in order to have attenuating waves, a physical solution of 
equation (30) must satisfy the following conditions: 

a>o, cu,>o, cu ,>O,  K > O .  (34~3, b, c, d) 

The last one imposes wave propagation along the positive x 
direction. In terms of the complex velocities, these 
conditions read 

(33) 

1 I2 

-w$m (;) >o, -w24m [(&-+) ] >o, 

Also, equation (29) must be verified to avoid spurious roots. 
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PHASE VELOCITIES 

The phase velocity in the x direction is defined as the 
frequency divided by the real wavenumber K, 

From (33), the phase velocities associated with each 
component wave mode are 

K% + K,% w 

K ’ + K ; ’  K 
c, = 0- rn = 1, 2, c, = - f (elastic case). 

(37a, b) 
In the elastic case, there is only a single and real physical 
solution to equation (30). Moreover, since V < V2< V, ,  and 
they are real quantities, k ,  and k ,  are both purely 
imaginary, and, K ,  = 0. Hence, c, = c, and (33) reduces to 

(38) 
ei(wc-rx) -mmz e ,  

with K = k  and a, =ik,. In this case, the propagation 
vector is along the surface, and the attenuation vector is 
normal to the surface; but in a viscoelastic solid, according 
to equation (38), these vectors are inclined with respect to 
the previous directions. 

ENERGY BALANCE EQUATION 

The complex Poynting’s theorem for a general medium is 
given by (Auld 1973; Carcione 1990) 

L p .  e n d s  - iw[(Es)peak - (Ev)peakl + (fd)AV = &> (39) 

with p the complex Poynting vector defined as 

p = -1 , v *  . T, v=(v,, v,)=U, (40) 

where the superscript ‘*’ denotes complex conjugate. The 
real part of the Poynting vector gives the average power 
flow density over a cycle. The surface integral in (39) is the 
total power flow outward in the direction of I?,,, through a 
closed surface S which includes a volume V. The quantities 

(Er)peak= /$&,)peak dV, (&,)peak= $S:R:S*, (41a9 b, 

and 

are the peak strain and peak kinetic total energies, with 
( E ~ ) ~ ~ ~  and ( the respective energy densities. The 
matrix R is given by equation (9a). The double dot product 
‘:’ is defined by summation over a single abbreviated 
subscript. For instance, S: R :  S* = S,r,,S;. The quantity 

( P J A V = w /  ( E ~ ) ~ ~ ~ V ,  ( E ~ ) ~ ~ = ~ S : Q : S * ,  (43a, b) 

with (&JAV the dissipated energy density, and Q given by 
equation (9b). Finally, P, is the complex power supplied by 
the sources. 

is the time-average power loss due to anelasticity, 

V 

The energy balance equation (39) can be expressed in 
terms of the energy densities. In the absence of sources, 
application of the Gauss theorem to the first term yields 

. P - iw[(Es)peak - (&v)peakl + O(&I)AV = O* (44) 
In an elastic medium is (&JAV = 0, and since in the absence 
of sources the net flow into, or out of S must vanish, 
V - p = 0, giving that the peak kinetic energy equals the peak 
potential energy. 

The average stored energy density is 

(45) 

The Poynting vector and energy densities are derived in 
Appendix B. The calculation is done as a function of depth 
and per unit surface area. 

ENERGY VELOCITY 

The energy velocity is defined as the ratio of the average 
power flow density to the mean energy density (45). The 
average power flow density is the real part of the complex 
Poynting vector. Hence, 

The energy velocity per unit area of free surface is given by 
(46) through integration over L of equations (B3a, b), (B4) 
and (B5): 

(47) 

Substitution of equations (B3a, b), (B4) and (B5) into (46) 
gives the z-dependent energy velocity. At the free surface 
the formula simplifies to give 

ce=2lVIZ9% 1+9%(v;)+ -2 j2. (3 1:211-1 
By using (B15), the energy velocity results in 

ce = [ 9% (b) + ; %--I ($) 9% (12 I - 31 -li, (49) 

where the property that 9% [b(la12 + a’)] = 2% (a)% (ab), 
with a and b complex numbers, has been used. The second 
term in the denominator of equation (49) makes the energy 
velocity at the free surface different from the phase velocity 
(36). This term is zero for the incompressible and Poisson 
solids as can be seen in the next sections. 

In general, for a viscoelastic solid the energy velocity is 
not parallel to the surface, unlike in the elastic case where 
A,  p,  k and A are real quantities, and k, and k, are purely 
imaginary, giving 9ee (p,) = 0 from (B3b). In the elastic 
case, the energy velocity (as a function of depth and per unit 
area) equals the phase velocity since there is no energy flux 
in the vertical direction, and the medium is non-dispersive. 
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ABSORPTION COEFFICIENT A N D  
QUALITY FACTOR 

The absorption coefficient in the x direction is given by 

~ = - - 0 4 m  (3 - . (50) 

Each wave mode has an attenuation vector given by 
ai+ a,,$, m = 1, 2, a,,$, m = 1, 2 (elastic case). 

The quality factor is defined as the ratio of the peak strain 
energy density (41b) to the loss in energy density due to 
anelasticity (43b). Then 

S:R:S* 
( E ~ ) ~ ”  S:Q:S*‘ 

=- Q =  

As with the energy velocity, a quality factor per unit surface 
can be calculated by using equations (B4) and (B6), 

Jo 

with W given by equation (B19). At the surface the quality 
factor takes the simple form 

(53) 

with Vo a reference velocity defined in (B14). Unlike with 
body waves for which (e.g., Carcione, Kosloff & Kosloff 
1988) 

(54) 

the quality factor for Rayleigh waves is not of the form % 
(V2) /Sm (V’). This fact precludes the use of the body wave 
relation between absorption coefficient and quality factor, 
(I= K[(Q’ + 1)”’ - Q ] ,  for Rayleigh waves. Replacing 
(B15) into equation (53) gives 

(55)  

For k J k ,  real, the quality factor takes the body wave form. 
This is the case for the incompressible and Poisson solids. 
However, for k , / k ,  complex, the absorption coefficient (Y 

can be related to the quality factor by substituting Q by 
(QR + Z)/(R - QZ) in the previous formula relating a and 
Q, with R = % (1 + k l / k 2 )  and Z = 4 m  ( k l / k 2 ) .  Strictly, not 
even the quality factor per unit area Q can be related to a 
through the body wave relation previously mentioned. 
However, as seen in the example, for practical purposes the 
relation can be used with confidence. 

At the limit z + m, it can be shown that the quality factor 
is very close to Q, if cu,<cu,, and gives exactly Q, if 
a, > ff,. 

SPECIAL VISCOELASTIC SOLIDS 

Incompressible solid 

Incompressibility implies that A+ m, or, equivalently, 
Vl+m. Hence, from (30), the complex velocity satisfies the 

following cubic equation: 

V2 
(56) q=v,2. 

q3 - 8qz + 24q - 16 = 0, 

The roots are q, = 3.5437 + 2.2303i, q2 = 3.5437 - 2.23031’ 
and q3=0.9126. As shown by Currie et al. (1977), two 
Rayleigh waves are possible, the quasi-elastic mode 
represented by q3, and the viscoelastic mode, represented 
by q , ,  which is admissible if 4 m  (V$)/% (Vg) > 0.159, in 
order to fulfill conditions (34a, b,c,d).  In Currie el al. 
(1977) the viscoelastic root is given by q2 since they use the 
opposite sign convention to compute the time-Fourier 
transform (see also Currie 1979). In this sense, a correction 
has to be made in Christensen (1982, p. 226) where the 
correct root should be 4,. 

The reference velocity V, (equation B14) becomes in this 
case V,= 2V,, and k, = -ik according to (34d). For the 
quasi-elastic mode, k , / k ,  = (1 - q3)-”’ is real, and from 
(49), the energy velocity equals the phase velocity at the 
free surface. For the viscoelastic mode the energy velocity 
becomes 

The quality factor at the free surface (equation 53) becomes 
the quality factor of shear waves: 

To obtain the z-dependent Poynting vector and energy 
densities, it is necessary to analyse in detail the form of the 
constitutive equation. This is done in Appendix B. The 
energy velocities can be calculated by using equations (B5), 
(B7a, b) and (B8), and the quality factor by using (B8) and 
(B9). The quality factors calculated per unit volume 
(equation 52), and per unit area become simply Q,. 

Poisson solid 

A Poisson solid has A = p, so that V, = fi V,, and equation 
(30) becomes 

V2 

q =z 3q3 - 24q2+ 56q - 3 2 = 0 ,  (59) 

This equation has three real roots: q 1  = 4, q, = 2 + 2/ f i ,  
and q 3 = 2 - 3 / f i .  The last root corresponds to the q.e. 
mode. The other two roots do not satisfy equations (29), 
and therefore, there are no v.e. modes in a Poisson solid. 
The Rayleigh wave satisfies k , / k ,  = [(l - q3/3)/(1 - q3)]lR, 
a real number. Therefore, as with the incompressible solid, 
the surface energy velocity of the q.e. mode equals the 
phase velocity. Similarly, the quality factors per unit volume 
and unit area are those of shear body waves, as in equation 
(58). 

Hardtwig solid 

Hardtwig (1943) studied the properties of a viscoelastic 
Rayleigh wave for which 9% ( A ) / %  ( p )  = 4 m  (A) /$ ,  (p) .  
From equations (17b, c) and (55) ,  this condition implies that 
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Q, = Q2, i.e. for this type of solid the compressional wave 
and the shear wave have similar anelastic characteristics. 
Therefore, equation (51) together with (B4) and (B6) shows 
that the quality factor of the Rayleigh wave is that of the 
body waves. Moreover, the coefficients of equation (30) are 
real, ensuring at least one real root corresponding to the 
q.e. mode. As before, this implies that the surface energy 
velocity coincides with the phase velocity. A Poisson 
medium is a particular type of Hardtwig solid. 

EXAMPLE 

The viscoelastic medium is defined by: (i) the low-frequency 
limit Lam6 constants, A' = 8 GPa, p' = 4.5 GPa, and density 
p = 2000 kg mP3, which give compressional and shear 
velocities of 2000 and 1500ms-', respectively; and (ii) 

Figure 1. Normalized displacements components for (a) elastic 
case, (b) q.e. mode, and (c) v.e. mode. The normalization factor is 
(C(z  = 0 m, f = 20 Hz)~ .  

2.0 

6 

Figure 1. (conrinued) 

complex moduli of the type given by equation (A4a) with 
L = 1, such that the dilatational modulus M, is defined by 
O(') = 0.008 s and dl) = 0.007 s, and the shear modulus M2 
is defined by 0(2) = 0.008s and d2) =0.0065 s. These are 
standard linear solid elements with one dissipation 
mechanism each. They give minima in the body wave 
quality factors at fo=20Hz, with Q,(fo)= 15 and 
Q2(fo)=9.6. Two roots satisfy equations (29) and (30); 
q ,  = 0.7109 - iO.0046 is the q.e. mode, and q2 = 1.7640 - 
i0.0156 is the v.e. mode. It can be seen that these waves 
satisfy the energy balance equation (44). The v.e. mode 
disappears if the shear velocity is taken less than 1407 m s-'. 

In the following, all the 3-D graphics display the physical 
variables as a function of depth and frequency, with the 
surface represented by orthogonal grid lines and isolines. 
The normalized displacements are plotted in Fig. 1: (a) 
elastic case, (b) q.e. mode and (c) v.e. mode. The graphs 
represent equations (23b) and (24b) normalized by 
IG(z = 0 m, f = 20 Hz)~. The behaviour of the q.e. mode 
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of energy dissipation is given by the quality factors, whose 
inverse is the energy loss per unit of potential energy. They 
are represented in Fig. 3. The minimum is in both cases at 
fo = 20 Hz, and both modes have quite similar values at the 
surface, with the q.e. wave presenting more attenuation 
with depth. 

The energy flux in an elastic medium is in the horizontal 
direction since (p,) = 0. In the viscoelastic case, this is 
true only at the surface, to satisfy the boundary conditions, 
but not in depth. The energy velocity components are 
plotted in Fig. 4: (a) q.e. mode and (b) v.e. mode. They 
show dispersion with remarkably higher velocity values for 
the v.e. mode. The horizontal velocities do not show 
appreciable variations with depth, particularly the q.e. 
mode. On the contrary, the vertical component shows a 
maximum at maximum attenuation for the q.e. mode, and a 

,Q%! 

Fiiure 1. (continued) 

compared to the elastic wave is quite different. The elastic 
horizontal displacement vanishes at a depth of 0.192h, 
where A = 2n/%e (k) is the wavelength (e.g. Pilant 1979), 
indicating that the motion changes sense at that level. This is 
not the case for the q.e. wave. Moreover, this mode shows 
an oscillating behaviour and a less pronounced decay with 
depth. These effects are stronger in the v.e. mode. 

Figure 2 displays (a) peak potential energy density, (b) 
peak kinetic energy density, and (c) average energy loss, for 
the two wave modes. A normalization factor pw21 C/!’)1*1/8 is 
applied to study particularly the dependence with depth. As 
can be seen, for the q.e. mode, the energy is confined to the 
surface and, relatively in the low frequencies compared to 
the v.e. mode. For this wave, the energy is not confined to 
the free surface showing an oscillating behaviour with depth 
and at high frequencies. The energy loss peaks at 
fo = 20 Hz [log (fo) = 1.31 in both cases, with a maximum at 
certain depth for the v.e. mode. However, the real measure 

Figure 2. Normalized energy densities for the q.e. and v.e. modes, 
where (a) is peak potential, (b) peak kinetic, and (c) average loss. 
The normalization factor is po21U;)1*1/8. 
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Figure 2. (conrinued) 

component towards the surface at high frequencies for the 
v.e. mode. 

Figure 5 displays the phase velocities c and the horizontal 
components of the energy velocities per unit area (tJX. 
Both velocities are very close to each other; for practical 
purposes they are the same. The v.e. mode presents the 
most interesting characteristics; phase and horizontal energy 
velocities closely follow the dispersion curve of the 
compressional body wave, c p  = w / %  (k:  + k2)”*, with 
(tJX < cp < c. Moreover, the phase velocities associated 
with each wave component (equation 37a), whose moduli 
are c,  = w/[%’ (k,) + %’ ( k ) ] ,  follow the respective 
dispersion curves of the body waves. On the other hand, the 
q.e. mode shows a completely different behaviour. All the 
velocities involved have values that are less than the body 
wave velocities with c < ( C e ) X .  This mode. has th’e expected 
characteristics that one should expect from an anelastic 
Rayleigh wave. Fig. 6 represents the quality factors per unit 
area compared to the body wave quality factors. In 

principle, one may consider that the Rayleigh wave quality 
factor takes the body wave form Qb = % (V2)/& (V2). 
For the q.e. mode, Q = Q b ,  and the low- and high- 
frequency limits, as well as for low-loss solids, Q+Qb; 
while for the v.e. mode, Q = Q , - Q , ,  regardless of the 
degree of anelasticity. Since Qb is easier to compute than 0, 
for practical purposes, it can be used as the Rayleigh wave 
quality factor. 

CONCLUSIONS 

Looking at anelastic Rayleigh wave propagation from the 
standpoint of energy gives new insights into the physical 
processes involved. The model analysed in the example 
considers two dissipation mechanisms, one for the 
compressional wave and one for the shear wave. As is well 
known, the anelastic characteristics of a general medium can 
be described by a set of such relaxation mechanisms. The 
media has fairly low wave velocities and relatively high 
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less pronounced and oscillating compared to the elastic case, 
with no changes in the sense of the motion; the energy of 
the v.e. mode is distributed in depth and high frequencies, 
while for the q.e. mode the opposite effect takes place. 
Also, the anelastic properties of the v.e. mode follows 
closely the characteristics of the compressional body wave. 
For incompressible, Poisson and Hardtwig solids, the phase 
and energy velocities coincide at the surface. Moreover, the 
quality factor at the surface and per unit area equals the 
quality factor of shear body waves. 

Further research requires the verification of the existence 
of the v.e. mode through numerical forward modelling. 
Modelling would also be useful to analyse the physical 
properties of anelastic Rayleigh waves, particularly their 
relative amplitudes in seismological applications. Extension 
to the anisotropic case will also be investigated in future 
work. 

&a 

Figure 3. Quality factors for the q.e. and v.e. modes 

dissipation, and may represent, for instance, an unconsolid- 
ated weathering zone containing the water table and very 
soft sediments. 

The analysis shows that, in contrast to elastic materials, 
the energy flow is not along the surface, and that the energy 
velocity is not equal to the phase velocity. However, the 
horizontal energy velocity per unit area is very close to the 
phase velocity. Strictly, neither the quality factor at the 
surface nor the quality factor per unit area can be related to 
the attenuation factor with the usual body wave relation. 
However, for practical purposes, the relation can be used 
with confidence, i.e. the quality factor of the Rayleigh waves 
can be calculated as 9ee (V2)/9nb ( V 2 ) ,  with V the complex 
velocity. At increasing depths the quality factors approach 
the P or S quality factors depending on the value of the 
body wave attenuations. 

Furthermore, the decay with depth of the displacements is 
Figure 4. Energy velocity components, where (a) is q.e. mode, and 
(b) v.e. mode. 
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Flgwe 4. (continued) 
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APPENDIX A 

Relaxation functions and complex moduli 

Defining the mean stress as 0, = C:=, T,/3, and the mean 
strain as 0, = C:=, SI/3, and using equations (1) to (5a, b), 
the following relations hold: 

6, = 3(nc + $ p = ) 6 ,  *XI, (All  

i.e., x1 and x2  are relaxation functions in dilatation and 
shear, respectively. 

A relaxation function appropriate for numerical wave 
field calculations in the time-domain can be expressed as 
(Carcione 1990) 

x(t) = (AR + Ale-"") H ( t ) ,  (A3) 
I= 1 

with A,, A,, and T I ,  space-dependent functions, and H ( t )  
the step function. Fourier transforming the time derivative 
of the relaxation function gives the complex modulus, which 
can be written as 

A, 1 + i w 8 ,  , e , = ( i + ~ ? ) ~ , ,  
L I = 1  1 +iwt, 

M ( w ) = i ( t ) = - Z  ~ 

with o the angular frequency. 0, and t, are relaxation times, 
and the tilde indicates time Fourier transformation. For the 
relaxation matrix (4), A, = 1, in order to obtain the elastic 
Lam6 constants at the low-frequency limit in equations 

Equation (A4a) is the expression of a general rational 
function in the variable iw. As special cases, the general 
standard linear solid, and the generalized Maxwell body can 
be represented by this complex modulus. 

A parallel connection of L single standard linear 
elements, each with constants M , / L ,  tEl and tot, 

1 = 1, . . . , L, has a complex modulus of the form (A4a), 
with A, = M,, t, = rut, and 8, = tEI. Similarly, a parallel 
connection of L Maxwell elements, each with constants k ,  
and t,, 1 = 1 , .  . . , L, plus a spring of constant M,, gives 
A, = MR, tl = t,, and 8, = (1 + Lk,/M,)t,. Expressions for 
the complex moduli and relaxation functions of single 
standard linear and Maxwell elements can be found, for 
instance in Ben-Menahem & Singh (1981). For 0 4 0  in 
(A4a), or t -+m in (A3), M(O)-+I$(m)-A,, the relaxed 
modulus associated with the long-term behaviour of the 
system. For w -+ a, or t -+ 0, 

(5% b). 

the unrelaxed modulus, which characterizes the instan- 
taneous response. 

A useful complex modulus for obtaining constant quality 
factors over a wide range of frequencies is given by a 
continuous distribution of relaxation mechanisms based on 
the standard linear solid. The complex modulus obtained by 
Liu, Anderson & Kanamori (1976), can be written as 

where tl and t2 are time constants, and defines the value 
of the quality factor which remains nearly constant over the 
selected frequency range. In (A5), e denotes the napierian 
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number. For the relaxation matrix (4) one should take 
M = l .  

APPENDIX B 

Poynting vector and energy densities 

Substitution of equations (31a, b, c, d) into (23b) and (24b) 
gives the z-dependent coefficients of the displacements (23a) 
and (24a), 

e-ikzz 
F = e - i k ~ z  + ~ ~ - i k 2 z  G = ' ( e-iklz +-) (Bla,b) 

k A 

where the prime denotes derivative with respect to z. 

substitution of the stresses into equation (40). It gives 
The Poynting vector components are obtained from 

(B24 p x =-I 2 { vx * [ ( A  + 2p)S, + AS31 + v;Ps,}, 

p z =-; { v 34s3 + vf[AS, + ( A  + 2P)S31}. (B2b) 
From (14), and in terms of F and G ,  they result in 

p x  = &oe-2m{AF*G' + ~ G * F '  - ik[(A + 2p)I~1* + ~ I G I ~ ] } ,  

(B34 
p z  = iiwe-2""{-ik[AG*F + p F * G ]  

(B3b) + (A + 2p)G*G' + p F * F ' } .  

The peak potential energy density is obtained from (41b) by 
replacing the strain components. It yields 
( & )  peak - - ze 1 - 2 m  9% [AlG' - ikF12 + p(2 lkFI2 

+ 21G'12+ IF' - ikGI')]. 034) 
The peak kinetic energy density can be obtained by 
substitution of the displacements (23a) and (24a) into (42b), 

(&,)peak = $pw2e-2m(IF12 + 1 ~ 1 ' ) .  035) 
The average loss energy density (43b) can be calculated in 
the same way as the potential energy density, 

(&d)AV = ie-2m9nt [A(G' - ikFI2 + p(2(kFI2 
+ 21C'I2 + IF' - ikGI2)]. (B6) 

In the incompressible case, A-00 and (S, + S3)+0, such 
that A(S, +S3)-+ - p ,  with p a reactive pressure which 
depends on the particular boundary conditions of the 
problem. Then, from (6) the stresses are T, = - p  + 2pS,, 
T3 = - p  + 2pS3, and T, = pS5. The free surface condition 

= 0 gives p = 2pS3, which can also be extended for all z 
values. Then, TI = 4pS1 and T3 = 0, which imply that the 
Poynting vector components (B2a, b) take the form 

p x  = 4iwe-'"p[G*F' - ik(41FI2 + lCl')], 
p z  = +iwe-'"pF*(F' - ikG). 

The potential energy density is given by (41b) with 
AISl + S312- 0, 

(B74 
(B7b) 

( E ~ ) ~ ~ ~  = $e-'-% (p)(41kF12 + IF' - ikG1'). (B8) 

Similarly, equation (86) becomes 

( E ~ ) ~ ~ ~  = &-2m9m (p)(41kFI2 + IF' - ikG1'). (B9) 
At the free surface, equations (B3a, b), (B4), (B5) and (B6) 
simplify to give 

respectively, where 

v;=- I T ,  (-) = 4V:( 1 - 5). 
P s1 z=o 

It is important to point out that the relation 

is equivalent to equation (30). If the medium is elastic, 
substitution of (B15) into (B12) verifies that the peak kinetic 
energy equals the peak potential energy. 

From equation (44), the energy balance equation requires 
the calculation of the divergence of the Poynting vector. At 
the surface one gets 

(B16a) 

(B16b) 

The Poynting vector and energy densities can also be 
expressed per unit area by integration over the coordinate z. 
All the formulae have expressions of the form 

(a,e-ikv + a2e-ikzz)*(ble-ikiz + bZe-ikzz) dz 

where y = (k: - k2)-', and a, ,  u2,  b ,  and b, are complex 
numbers. After some algebra, the peak potential energy per 
unit area is 

(w), ( B W  
with 

and the average loss energy per unit area is 

(E~),.,,, = $e-2m.%m (W) .  (B20) 


