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ANISOTROPIC Q AND VELOCITY DISPERSION O F  
FINELY LAYERED MEDIA’ 
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ABSTRACT 
CARCIONE, J. M. 1992. Anisotropic Q and velocity dispersion of finely layered media. Geo- 
physical Prospecting 40, 761-783. 

When a seismic signal propagates through a finely layered medium, there is anisotropy if 
the wavelengths are long enough compared to the layer thicknesses. It is well known that in 
this situation, the medium is equivalent to a transversely isotropic material. In addition to 
anisotropy, the layers may show intrinsic anelastic behaviour. Under these circumstances, the 
layered medium exhibits Q anisotropy and anisotropic velocity dispersion. 

The present work investigates the anelastic effect in the long-wavelength approximation. 
Backus’s theory and the standard linear solid rheology are used as models to obtain the 
directional properties of anelasticity corresponding to the quasi-compressional mode qP, the 
quasi-shear mode qSV, and the pure shear mode SH, respectively. The medium is described 
by a complex and frequency-dependent stiffness matrix. The complex and phase velocities for 
homogeneous viscoelastic waves are calculated from the Christoffel equation, while the wave- 
fronts (energy velocities) and quality factor surfaces are obtained from energy considerations 
by invoking Poynting’s theorem. 

We consider two-constituent stationary layered media, and study the wave character- 
istics for different material compositions and proportions. Analyses on sequences of 
sandstone-limestone and shalelimestone with different degrees of anisotropy indicate that 
the quality factors of the shear modes are more anisotropic than the corresponding phase 
velocities, cusps of the qSV mode are more pronounced for low frequencies and midrange 
proportions, and in general, attenuation is higher in the direction perpendicular to layering or 
close to it, provided that the material with lower velocity is the more dissipative. A numerical 
simulation experiment verifies the attenuation properties of finely layered media through 
comparison of elastic and anelastic snapshots. 
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accepted April 1992. 
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INTRODUCTION 

Fine layering is one of the geological systems that frequently contribute to the for- 
mation of sedimentary basins. Moreover, the consituents of a fine-layered medium 
are among the components of reservoir rocks: sandstones and limestones, for 
instance, which are the recipient rocks, and shales, which form the seal rocks. By 
fine layering we mean that the dominant wavelength of the seismic pulse is long 
compared with the thicknesses of the individual layers. When this occurs, effective 
anisotropy takes place. In particular if the layers are parallel to the earth’s surface, 
the equivalent medium is transversely isotropic with a vertical symmetry axis. More- 
over, in the presence of hydrocarbons, the media may show substantial attenuation 
properties and velocity dispersion. This is the case with porous or cracked rocks 
such as sandstones and limestones, respectively, and even shale formations with 
considerable fluid content. 

The combination of effective anisotropy and attenuation implies anisotropic 
anelasticity of seismic waves, which means Q anisotropy and anisotropic velocity 
dispersion. EATective anisotropy of plane layering can be described using the well- 
known model of Backus (1962). If each component layer is isotropic, the result is a 
transversely isotropic equivalent medium represented by five averaged elasticities 
and an average density. On the other hand, anelasticity is well described by con- 
sidering rocks as viscoelastic solids. It is important, particularly in exploration seis- 
mology, that the material exhibits causal behaviour and an approximately constant 
Q factor. The viscoelastic model is based on the standard linear solid rheology. A 
series or a parallel connection of these elements can give any type of frequency- 
dependent Q factor. In particular, a continuous distribution of relaxation mecha- 
nisms is suitable for obtaining a nearly constant quality factor. For numerical 
simulations, a discrete set of elements is needed, two being enough to obtain a 
constant Q factor. 

The content of the next sections is, in outline, as follows. First, the equation of 
motion and the constitutive relation are derived. Then, the complex stiffness com- 
ponents of the long-wavelength transversely-isotropic viscoelastic medium are 
obtained from the averaging theory of Backus. The complex and phase velocities for 
homogeneous viscoelastic plane waves are calculated from the dispersion relation. 
In elastic media, the group and energy velocities coincide. Then the wavefront 
envelopes are obtained from the group velocity surfaces, since they are easier to 
calculate than the energy velocities. However, in anelastic media, the group velocity 
loses its physical meaning due to the spreading of the wave packet. Therefore, calcu- 
lation of the energy velocities is required. The calculation of the energy velocities 
and quality factors requires energy considerations. The energy balance equation 
describes the dynamic process of wave propagation, and allows the calculation of 
the previous quantities as a function of frequency. 

The examples considered are two-constituent, stationary layered media, and two 
cases are analysed, a sandstone-limestone system and a shale-limestone system, 
which exhibit different degrees of anisotropy. Phase and energy velocities, and the 
quality factor of the three propagating modes are computed as functions of material 
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composition and frequency. To verify the anisotropic attenuation properties of 
viscoelastic layered media, a wave simulation is carried out, which compares elastic 
and anelastic snapshots. 

CONSTITUTIVE RELATION A N D  EQUATION O F  M O T I O N  

Stress components oij and strain components cij  in anisotropic linear viscoelastic 
media are related by the following constitutive equation (e.g. Christensen 1982) : 

6i,(x, t )  = $ijkl(x, t)*ckkl(x, t), i, j ,  k, 1 = 1, . . . , 3 (1) 

where t is the time variable, x is the position vector, $i jk l  are the components of a 
fourth-order tensorial relaxation function, and the symbol* indicates time convolu- 
tion. A dot above a variable denotes time differentiation, and the Einstein conven- 
tion for repeated indices is used. 

The fourth-rank tensor $i jk l  contains all the information about the behaviour of 
the medium under infinitesimal deformations. In the most general case, the number 
of components is 81, but since the stress and strain tensors are symmetrical, and 
from the positive real nature of the strain and loss in energy densities (Auld 1973), it 
follows that the number of independent components reduces to 21. 

By using a convenient matrix notation, (1) can be written as 

T ( x ,  t )  = \y(x,  t)*S(x, t), or T,  = I(IIJ*SJ, I, J = 1, ..., 6 (2) 

T T =  [Tl, T2, T3, T4, T S ,  T6i = cbll, 6 2 2 ,  6 3 3 ,  q 2 3 ,  O139 a121, (3) 

ST = [sl, s2, s 3 ,  s4, s 5 ,  s6i = [ E I I ,  E 2 2 ,  8 3 3 ,  3 8 2 3 ,  2E13, 2E121, (4) 

where the stress vector 

the strain vector 

and 'y is the relaxation matrix. 
Applying the convolutional theorem to (2) gives - 

T; = * [ J J  = c&, 

where the tilde indicates a time Fourier transform. Equation (9) defines the 
frequency-domain complex stiffness matrix as - 

c I J ( o )  = $IJ(o)? (6) 

c = 9. (7) 

V * T = pii + f, or VijT'=  pUi + A ,  (8) 

where o is the angular frequency. In matrix notation (6) can be written - 
The equation of motion for a linear anelastic medium is 
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where u(x, t )  is the displacement vector, f(x, t )  is the body forces vector, p(x)  is the 
density, and ' V  - ' is a divergence operator defined by 

(9) 
o o a/az slay alax o 

(10) 

The strain-displacement relation can be written as 

S = VTu or S K  = VKjuj. 

Considering zero body forces and Fourier transforming (8) with respect to time 
gives 

(1 1) 

(12) 

(13) 

w vi, TJ = - pw2iii. 

vij c J K  S K  = -poZiii, 

(Vij c J K  V K j  + ~0'6ij)iij = 0, 

Substituting from (5 )  yields 

or 

by virtue of (10). Equation (13) is the frequency-domain equation of motion for a 
general anisotropic linear viscoelastic medium. 

THE MODEL 

The model represents a stratified medium by a set of isotropic linear viscoelastic 
plane layers. The complex stiffness matrix of each individual component is given by 

where 

/I= ( / I e  + tpe)M, - 5peM2, and p = peMz, (15a, b) 

are the complex Lame constants, with M, ,  v = 1, 2 being dimensionless complex 
moduli in dilatation and shear, respectively, and 1" and ,U', the low-frequency limit 
Lame constants. 

The theory assumes constant quality factors over the frequency range of interest. 
Such behaviour is modelled by a continuous distribution of relaxation mechanisms 
based on the standard linear solid (Liu, Anderson and Kanamori 1976; Ben- 
Menahem and Singh 1981, p. 909). The dilatational and shear dimensionless 
complex moduli can be expressed as 

, v = l , 2 ,  
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where z1 and z2 are time constants, and Q, defines the value of the quality factor 
which remains nearly constant over the selected frequency fange. The elastic limit is 
reached when z1 + z 2 ,  in which case M, + 1. Note that Q, = Re [M,]/Im [M,], 
v = 1, 2 represent the bulk and shear quality factors, respectively, and that the 
quality factor of the compressional wave is given by QP = Re [A + 2p]/Im [A + 2 p ] .  

Assuming that the relative proportional contribution of each material is Pe , we 
have 1 Pe = 1, where the summation is over the number of different materials. Now 
let us assume that wavelengths of the seismic pulse are long compared to the layer 
thicknesses. In this case, the layered medium can be replaced by an equivalent trans- 
versely isotropic medium. For a viscoelastic medium, this can be done in the 
frequency-domain by invoking the correspondence principle (e.g. Bland, 1960). The 
elasticities, as given by Backus (1962), become complex and frequency-dependent. 
Then, in the long-wavelength limit, the complex frequency-dependent stiffness com- 
ponents of the equivalent medium are 

CIZ = (”) + ( 2 ) - l ( +  1 
1 + 2p I + 2 p  1 + 2 p  ’ 

1 - l  

c33  = (m) ’ 
- 1  

c 5 5  = (;) 7 

and 

c66 = (p), (17f) 
where (*) denotes the thickness weighted average. The averaged density is simply 
( p ) .  In the case of a periodic sequence composed of two alternating plane, parallel, 
and homogeneous elastic isotropic layers, (17a-f) lead to the elasticities obtained by 
Postma (1955). 

ENERGY B A L A N C E  EQUATION 
In the absence of sources, the complex Poynting’s theorem or energy balance equa- 
tion for homogeneous viscoelastic plane waves in a dissipative medium is given by 
(e.g. Carcione 1990) 

’ P - im[(Es)peak - (&v)peak] + m(&d)AV = 0, (18) 

T, v = (vX, v,) = U, (19) p = - +v* . 
where p is the complex Poynting vector defined as 



766 JOSE M .  CARCIONE 

and the superscript ‘ * ’ denotes complex conjugate. The real part of the Poynting 
vector gives the average power flow density over a cycle. The quantities 

(&,)peak = is : Re [C] : s*, 

(%)peak = 3 P  I 1’ (21) 

(20) 

and 

are the peak strain and peak kinetic energy densities. The double dot product ’ : ’ is 
defined by summation over a single abbreviated subscript, for instance, S : Re 
[C] : S* S ,  Re [ ~ i j ] S , * .  The quantity 

(&d)AV = is : Im [c] : s*, (22) 

is the dissipated energy density. 
The average stored energy density is 

In elastic media, (&(,)AV = 0, and since in the absence of sources the net energy flow 
into, or out of, a given closed surface S must vanish V - p = 0. Thus, the peak kinetic 
energy equals the peak potential energy. As a consequence, the average stored 
energy is half the peak potential energy. 

The Poynting vector and energy densities are derived in the Appendix. The cal- 
culation assumes, without loss of generality, propagation in the (x, z)-plane with the 
symmetry axis of the transversely isotropic solid in the z-direction. 

DISPERSION RELATIONS A N D  COMPLEX VELOCITIES 
Let a plane wave solution to (13) be of the form 

I I 9 (24) 

(25) 

f, = u , , - i k . x  

where k is the complex wavenumber vector defined by 

k = K - ia, 

and K and a are real vectors indicating the directions and magnitudes of propaga- 
tion and attenuation, respectively. In general, these directions are different, and the 
wave (24) is termed inhomogeneous, with K a strictly different from zero unlike the 
interface waves in isotropic elastic media. When the directions coincide, the wave is 
called homogeneous. Alternatively, the complex wavenumber can be written as 

k = k ,  Ex + k,  E, + k ,  E, k(1, E, + 1,E, + 2, E J ,  (26) 
where 
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are the direction cosines of the complex wavenumber direction. In general, these are 
complex quantities, but for homogeneous waves they are real and correspond also 
to the direction cosines of the propagation direction ii = K/ I K I .  For this kind of 
wave, planes of constant phase (planes normal to the propagation vector 2) are 
parallel to planes of constant amplitude (defined by a * x = const). 

Substitution of (24) in the equation of motion (13) yields the Christoffel equation, 

( k 2 r  - pd1)U = 0, (28) 
where is the Christoffel matrix and 1 the identity matrix. The determinant of this 
homogeneous system must be zero in order for U to have a non-zero value. There- 
fore, 

det (k2r  - pw21J = 0 (29) 

is the dispersion relation. Since we consider wave propagation in the (x, z)-plane 
(1, = 0), the Christoffel components reduce to 

and the dispersion relation (29) separates into a linear factor 

and a quadratic factor 

(rll - ~ v ; ) ( r ~ ~  - pv;) - rf3 = 0, rn = 1, 2 (31b) 

respectively, where 

w 
V m =-, rn = 1, ..., 3 

k m  

are the complex velocities of the three modes, qP, qSV and SH, respectively. The 
letter q denotes ' quasi '. The last mode is uncoupled from the first two, with particle 
motion normal to the (x, z)-plane and, therefore, is a pure propagating mode. 
Solving (3 la, b) for the complex velocities and replacing the Christoffel components 
(30) gives 

Vl = J7, c55 + cll  1,' + c33 1; + E )  (334 

and 
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PHASE VELOCITIES A N D  ENERGY VELOCITIES (WAVEFRONTS)  

The phase velocity is defined as the frequency divided by the real wavenumber, 

by virtue of (32), where 

I? = 8,1, + c,1, (35) 
defines the propagation direction. Equation (34) represents the phase velocity for 
homogeneous plane waves in the (x, z)-plane. 

In elastic anisotropic media, the calculation of the wave-front envelope is a rela- 
tively simple task since it is given by the group velocity, which can be easily com- 
puted from the dispersion relation. In fact, the group velocity gives the velocity of 
the energy. When the medium is anelastic, the concept of group velocity loses its 
physical meaning since the dispersion effect spreads the wave packet to a greater or 
lesser extent depending on the degree of anelasticity. Therefore, in this case, it is 
necessary to calculate the energy velocity to obtain the correct formulae for the 
envelope of the wavefront. 

The energy velocity is defined as the ratio of the average power flow density to 
the mean energy density. The average power flow density is the real part of the 
complex Poynting vector. Hence 

Re [PI 
Ce =-. 

&AV 

Substitution of (A8a, b) and (A15) into (36) gives the energy velocity for the qP and 
qSV modes, 



ANISOTROPIC Q A N D  VELOCITY DISPERSION 769 

Special care has to be taken for a numerical evaluation of equations (37a, b) when 
either I ,  or 1, -, 0. For instance, when I ,  -+ 0 and 1, -, 1, B ,  -+ CO and B,  -, 0. Taking 
these limits gives the appropriate formulae. 

The energy velocity for the SH mode (m = 3) is calculated in a similar way. In 
this case, the wave is polarized normal to the (x, z)-plane and, therefore, normal to 
the propagation direction. Only the strains S ,  and S6 are different from zero. The 
calculation is much more simple than before, and the energy velocity can be written 
as 

CV3I Re {v;1[zx1xc66 + z z 1 z c 5 5 1 } *  (374 -1 Re-' 
Ce3 = C3 P 

The symmetry axis of a transversely isotropic viscoelastic medium is a pure mode 
direction in the sense that the displacement vector is either parallel or normal to the 
real wavenumber K. In this direction, the wave solutions become purely transverse 
and purely longitudinal, and the energy and phase velocities coincide. 

QUALITY FACTORS 

The quality factor is defined as the ratio of the peak strain energy density (20) to the 
loss in energy density due to anelasticity (22). Then 

Substitution of (A13) and (A16) into (38) gives the quality factor for the qP and qSV 
modes. A similar expression is obtained for the SH mode. The result is 

Since the complex velocities depend on the propagation direction, the quality 
factors are anisotropic. 

ANELASTIC PROPERTIES O F  3-D MEDIA 
The first example considers a two-constituent stationary layered medium. Two dif- 
ferent combinations are analysed, a sandstone-limestone system and a shale- 
limestone system, which show different degrees of anisotropy. The properties of the 
isotropic viscoelastic materials are given in Table 1 :  the low-frequency Lam6 con- 
stants and body-wave velocities, the density and the respective quality factors. The 
sandstone-limestone sequence was used by Postma (1955) to demonstrate the aniso- 
tropic properties of layering, while the shale properties are taken from Thomsen 
(1986). Let the time constants in (16) be z, = 0.16 s and z2 = 3 x lO- ,  s, so that the 
quality factors are nearly constant over the exploration seismic band. 
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TABLE 1. Material properties of the isotropic constituents. 

Material A'(Gpa) p'(GPa) p(Kg/m3) VAm/s) &(m/s) Q, Q, 

Limestone 30 25 2700 5443 3043 80 40 
Sandstone 8 6 2300 2949 1615 60 20 
Shale 6.28 1.70 2250 2074 869 60 20 

In the long-wavelength limit, the wave characteristics of the layered medium are 
defined by the phase velocities (34) which give the velocity of a plane-wave com- 
ponent, the energy velocities (37) whose geometrical representation is the wavefront 
envelope, and the quality factors (39) which give the dependence of the energy dissi- 
pation on the propagation direction. 

Figure 1 shows the quality factors of limestone. Qk, QP, and Qs represents the 
quality factors of bulk, compressional, and shear body waves, respectively. They 
remain nearly constant over the seismic exploration band. A lower quality factor 
implies more attenuation; hence, the shear waves are more affected by anelasticity. 
The sandstone and the shale have stronger anelastic properties than the limestone, 
though the quality factors present the same functional features illustrated in Fig. 1. 

Consider first a limestone-sandstone structure. The phase velocity curves for this 
system are shown in Fig. 2. The curves are zonal sections of a 3D surface which has 
symmetry of revolution. From left to right, the frequency range varies from the 
low-frequency limit to the high-frequency limit f,,, with an intermediate value of 
f =  25 Hz; from top to bottom, the limestone proportion takes the values PI = 0.2, 
0.5, and 0.8, respectively. The limit f,,, is the maximum frequency for which the 
long-wavelength approximation is still valid. The outer curve is the phase velocity of 

0~ I I I I 

0 20 40 60 80 11 
frequency (Hz) 

0 

FIG. 1. Quality factors versus frequency of isotropic limestone. Qk, Qp, and Qs denote the 
bulk, compressional and shear quality factors, nearly constant over the exploration seismic 
band. The model is based on a continuous distribution of relaxation mechanisms. 
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Sandstone-limestone 
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FIG. 2. Zonal sections of the phase velocity surfaces of the long-wavelength anisotropic 
medium equivalent to a sandstone-limestone sequence. The sections contain the symmetry 
axis, and curves are shown for different frequencies and limestone proportions. 

the quasi-compressional wave, while the inner curves represents the shear modes. 
Actually, since the theory holds for the long-wavelength approximation, the curves 
for f =  0 Hz are never reached, and they represent the limit of the low-frequency 
range. Velocity dispersion can be analyzed from left to right, with highest velocities 
at the high-frequency limit. A variation of the material proportions produces differ- 
ent curves with higher velocities for higher limestone proportions. The qSV curve 
shows four inflexion points, which are more pronounced for low frequencies and 
midrange compositions. These inflexion points give rise to lacunas or cusps in the 
energy velocity curves. 
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The energy velocity curves are illustrated in Fig. 3, for different frequencies and 
material proportions. The cusps, which are too small to be appreciated, form at 
angles of approximately 71/4 to the vertical and horizontal directions. The curves 
represent sections of the wavefronts. The long-wavelength equivalent medium is 
class V according to the classification given by Payton (1983), for which the phase 
slowness curve presents four bitangents and the wavefront curve four cuspidal tri- 
angles at an oblique angle (Fig. 3). The quality factors at f = 25 Hz are shown in 
Fig. 4 for different material proportions. At the low- and high-frequency limits, the 
quality factors tend to infinity. These curves have approximately the shape of the 
phase-velocity curves, though the quality factors are more affected by the aniso- 

Sandstone-limestone 
Energy velocity (km/s) 

f -  OH2 

-8 -4 -2 0 2 4 8 

f - 2 6 H Z  

- 8 - 4 - 2 0 2 4 8  

f -  f, 

-8 -4 -2 0 2 4 8 

-8 -4 -2 0 2 4 
I C O h  

FIG. 3. Zonal sections of the energy velocity surfaces of the long-wavelength anisotropic 
medium equivalent to a sandstone-limestone sequence. The sections contain the symmetry 
axis, and curves are shown for different frequencies and limestone proportions. 
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Sandstone-limestone 
f = 25 Hz 

-60 I -- I ILW 
-60 -40 -20 0 20 40 60 

w x  

FIG. 4. Zonal sections of the quality factor surfaces of the long-wavelength anisotropic 
medium equivalent to a sandstonelimestone sequence. The sections contain the symmetry 
axis. Curves are shown for a frequency of 25 Hz and different limestone proportions. 

tropy. Table 2 gives the values of the anisotropic factor 

where 0 = cos-’ I ,  is the angle with the symmetry axis, and go = g(O = 00). As can 
be seen, the quality factors of the shear modes are more anisotropic than the phase 
velocities. A similar phenomenon occurs in cracked systems. Crampin (1981) shows 
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I -  OHz 

TABLE 2. Anisotropic factor A(%) 
limestonesandstone (PI = 0.5). 

qP qSV SH 

Shale-limestone 
Phase velocity (km/s) 

f - 21 Hz I -  f, 

-0 -4 -2 0 2 4 0 

-0 -4 -2 0 2 4 8 
(CIX (CIX 

FIG. 5. Zonal sections of the phase velocities surfaces of the long-wavelength anisotropic 
medium equivalent to a shalelimestone sequence. The sections contain the symmetry axis, 
and curves are shown for different frequencies and limestone proportions. 
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Energy velocity (km/s) 
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-8 4 -2 0 2 4 0 
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FIG. 6.  Zonal sections of the energy velocities surfaces of the long-wavelength anisotropic 
medium equivalent to a shale-limestone sequence. The sections contain the symmetry axis, 
and curves are shown for different frequencies and limestone proportions. 

that attenuation has a much greater anisotropy than the corresponding phase veloc- 
ity. 

A more anisotropic system is obtained by substituting the sandstone by shale. 
Phase velocities, energy velocities and quality factors are shown in Figs. 5, 6, and 7, 
respectively. As before, the equivalent medium has four cuspidal triangles, and can 
be classified as class V .  Both equivalent media, limestone-sandstone and limestone- 
shale, differ mainly in their degree of anisotropy, but in many respects they are 
similar. However, a close look at the quality factor curves indicates that, for the qP 
wave, the attenuation is higher for limestone-sandstone, although the anelastic 
characteristics of the sandstone and the shale are similar. On the other hand, the 
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-60 - 1- 
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FIG. 7. Zonal sections of the quality factor surfaces of the long-wavelength anisotropic 
medium equivalent to a shale-limestone sequence. The sections contain the symmetry axis. 
Curves are shown for a frequency of 25 Hz and different limestone proportions. 

shear modes show opposite behaviour along the symmetry axis and perpendicular 
to it. In general, attenuation is higher in the direction perpendicular to layering or 
close to it, unless the qSV mode also shows high attenuation along layering. 

It is generally assumed that for real materials, the higher the wave velocity the 
lower the dissipation properties. This is the case in the examples considered so far. 
However, one could consider, for instance, a limestone-sandstone sequence where 
the more anelastic medium is the limestone, say, inverting the values of the quality 
factors assigned to each material in Table 1. The quality factors for this system are 
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FIG. 8. Zonal sections of the quality factor surfaces of the long-wavelength anisotropic 
medium equivalent to a sandstone-limestone sequence, where the more dissipative medium is 
the limestone. 

shown in Fig. 8, where midrange compositions have been considered. As can be 
seen, opposite behaviour occurs compared with Fig. 7; attenuation here is higher 
along layering, and the qSV mode has maxima in the quality factor at approx- 
imately 45". 

W A V E  M O D E L L I N G  I N  2-D M E D I A  

To verify the anelastic properties of fine layering, a set of modelling experiments is 
carried out. The modelling scheme solves the wave equation in the time-domain, an 
approach that requires a discrete set of relaxation mechanisms (Carcione, Kosloff 
and Kosloff 1988). The numerical integration algorithm is described by Tal-Ezer, 
Carcione and Kosloff (1990). The calculation of the theoretical quality factors and 
energy velocities is performed using the formulae previously developed, provided 
that the complex stiffnesses are chosen according to the dimensionality of the 
media; two in this case. Moreover, the complex moduli of the generalized standard 
linear solid are used (Carcione et al. 1988). Figure 9 shows (a) the quality factors and 
(b) the energy velocities of the 2D medium equivalent to a sandstone-limestone 
sequence, where Qk = 40 and Qs = 20 for limestone, and Qk = 20 and Qs = 10 for 
sandstone. 

The numerical mesh has N, = 143 and N ,  = 429 with grid spacings of D, = 
30 m and D, = 10 m. The thickness of the individual layers is 10 m with layering 
normal to the z-direction. The time function of the source is a causal Ricker wavelet 
with central frequency of 12 Hz. The ratios dominant wavelength to spatial period 
of the sequence along the vertical directions, are 17 and 8 for qP and qSV waves, 
respectively. This assures that the long-wave approximation is valid (Carcione, 
Kosloff and Behle 1991). 
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ENERGY VELOCITY (0 Hz) ENERGY VELOCITY (12 Hz) 

( W x  (Ce)x 
FIG. 9. (a) quality factors and (b) energy velocity curves of the long-wavelength anisotropic 
medium equivalent to a 2D sandstone-limestone sequence. A discrete set of relaxation 
mechanisms is used to give Qk = 40, and Qs = 20 for limestone, and Q ,  = 20, and Q, = 10 for 
sandstone. 

Snapshots at a propagating time of 0.48 s are shown in Figs. 10 and 11, (a) 
elastic and (b) anelastic. In Fig. 10, the motion is initiated by a pressure source, 
producing a mainly qP wavefield. The cusps of the qSV mode are visible, showing 
where the coupling of the two modes is stronger. The snapshots are not scaled, in 
order to compare true amplitudes, but it is possible to analyse relative amplitude 
differences along the wavefronts since the anelastic properties are due solely to 
intrinsic attenuation. Velocity dispersion is evident by comparison; the anelastic 
wavefronts appear larger than the elastic wavefronts, in agreement with Fig. 9. It is 
more difficult to detect changes in amplitude with angle. A close look at the wave- 
fronts indicates that amplitudes have been preserved along the direction of layering. 
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FIG. 10. Snapshots at a propagating time of 0.48 s in sandstonelimestone periodic sequence 
with individual thickness 10 m; (a) elastic and (b) anelastic. The motion is initiated by a 
pressure source of central frequency 12 Hz. 

The snapshots in Fig. 11 have been produced by a shear source; only the qSV 
mode can be observed. As before, wave dispersion is evident. Here the amplitudes 
are preserved along the cusps where the attenuation has minima as in Fig. 9. A 
more precise determination of the variation of the quality factor with direction can 
be made using a method for Q estimation, e.g. the spectral ratio method. 

CONCLUSIONS 
The influence of intrinsic anelasticity of finely layered media is analysed for two- 
constituent stationary sequences of typical sedimentary materials. Elastic layered 
media produce a characteristic radiation pattern. This phenomenon can be appre- 
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(a) 

ELASTIC horizontal component ELASTIC vertical component 

(b) 

ANELASTIC horizontal component ANELASTIC vertical component 

FIG. 11. Snapshots at a propagating time of 0.48 s in sandstone-limestone periodic sequence 
with individual thickness 10 m; (a) elastic and (b) anelastic. The motion is initiated by a shear 
source of central frequency 12 Hz. 

ciated in the snapshots of Figs. 10 and 11, where isotropic pressure and shear 
sources are used. In addition, intrinsic anelasticity of the individual layers disperses 
and dissipates the wavefield. 

The quality factors show important variations with the direction of propagating. 
Attenuation of the qP and SH modes is higher along the direction normal to lay- 
ering. The qSV mode also shows high attenuation along layering. This is true for 
finely layered media whose component with lower velocity is the more anelastic, a 
valid assumption for most realistic materials. Velocity dispersion produces isotropic 
variations in the wave velocity surfaces, i.e. they preserve the shape approximately. 
Changes in material proportions produce a similar effect. It could be difficult to 
distinguish the cause of these variations, unless a good estimation of the quality 
factors can be made, since the Kramers-Kronig integrals relate them to velocity 
dispersion. The anelastic properties of finely layered media are verified by wave 
modelling through visual comparison of elastic and anelastic snapshots. However, a 
rigorous verification of the theory should be done by Q estimation, e.g. spectral ratio 
or rise-time methods. 
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A P P E N D I X  

Poynting vector and energy densities 

ment components 
Let us consider a plane wave polarized in the (x, z)-plane with particle displace- 

X X 9 (A 1 a) 

(A 1 b) 

(A2) 

= U ei(wr-kxx-kzz) 

= ~ ~ ~ i ( r n t - k ~ x - k . z )  > 

with 

k = k x d x  + k ,d ,  = ( K  - ia)i?, 

i.e. a homogeneous viscoelastic plane wave. 
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The associated strain components are 

and 

For a transversely isotropic and viscoelastic medium, the stress components are 

TI =c l1S1 +c13S3 = - i (c11k,U,+c13k,U,)e-a'xei~"~-K'x~,  

T3 = ~ 1 3  S1 + c33S3 = -i(c13 k, U, + c33 k, U,)e-a'xei("t-K'"), 

(A44 

(A4b) 

and 

T, = c,, S, = -ic,,(k, U, + k, U,)e-a'"ei("t-K'x). (A44 

From (19) the complex Poynting vector is 

645) p =  -1 2C*x( e U* ', Tl + li: T,) + &,(li: T, + ti,* T3)]. 

Replacing (A3a-c) into (A4a-c), and the results into (A5) yields 

where (30) has been used. In (A6a, b), m = 1 identifies the qP  mode and m = 2 the 
qSV mode. The ratio U x  to U, is obtained by substitution of (A6a, b) into the 
Christoffel equation (28). For instance, from the first line, 

and from the third line, 

B,=  - r13 m = l , 2  
r33 - P V i '  

according to (32). Replacing B,, the Poynting vector components (A6a, b) become 

~ x = ~ ~ k m e - ~ " ~ ' " I ~ x l ~ C ~ x ( c ~ l  + c 5 5 I B m I 2 )  + I ~ ( ~ 1 3 ~ m  + ~55B:)], ('484 

(A8b) p = && m e-2a ' " 1  U ,  12Clx(C55 Bm + c13 + ' ~ (~55  + c33 1 B m  12)1. 

The peak kinetic energy density from (21) and (Ala, b) is 

= +po2 I U, 12e-2am ' "(1 + I B, 1'). 649) 
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The peak potential energy density from (20) is 
1 

(%)peak = 3 Re [sl(cll s: + c13 s:) + s3(c13 s: + c33 s:) + c 5 5  1 s5 121. (A1O) 
After substitution of the strain components (A3a-c) and equations (A7a, b), the 
potential energy density becomes 

Re [l:cll + 1:c5, + B,B;(lZc,, + 12c3,) 1 
(%)peak = 7 I km l 2  1 1 2 e  ' 

+ (c13 + c 5 5 ) l x l z ( B m  + Bf)l, (All)  
or, replacing the Christoffel components (30), 

= 3 I k, l 2  I U, 12e- 2am ' Re IT11 + BmBzr33 + ( B m  + Bf)r13], (A12) 
which by virtue of (A7a, b) reduces to 

(Es)peak= 3pIkm121Ux12e-2am'X (1 + I Bm 1') Re CV3. 

eAV = $pw2( U,Iz(l + IBm12)e-2am'X{1 + I V,'12 Re [ V ; ] } ,  

cAV = )pw2IU,I2(1 + IB,12)e-2am'x Re [V,] Re [V,']. 

(A 13) 

('414) 

(A 15) 

In consequence, using (32), the average stored energy density (23) is 

Using properties of complex numbers, (A 14) becomes 

The loss energy density (22) is calculated in the same way as the potential energy. It 
gives 

(&JAv = )pIk,121Ux12e-2am'X (1 + I Bm 1') Im 1 ~ 3 .  (A 16) 
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