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Modeling anelastic singular surface waves in the earth 

Jo& M. Carcione* 

ABSTRACT 

The propagation of anelastic surface waves presents 
substantial differences compared to the elastic case. 
Therefore, a forward modeling scheme to study sur- 
face waves in an anelastic earth is of some relevance to 
the geophysical problem. 

When propagating anelastic waves, accuracy is very 
important; in particular, numerical dispersion should 
not be confused with physical velocity dispersion. One 
modeling algorithm, based on the velocity-stress elas- 
todynamic equations, uses a spectral method with a 
Chebychev expansion in the vertical direction. This 
approach allows the calculation of the spatial deriva- 
tives with high accuracy, and an effective incorpora- 

tion of the free surface boundary conditions since the 
method is not periodic. However, a direct application 
of the traction-free boundary conditions without re- 
gard to the other variables produces numerical insta- 
bilities. To solve this problem, a boundary treatment 
based on characteristics is implemented that results in 
a wave equation for the surface that automatically 
includes the boundary conditions. 

Two examples of wave propagation in an unconsol- 
idated weathering zone are presented. The first model 
is homogeneous and the second structure contains a 
vertical interface separating an anelastic medium from 
an elastic region. The results indicate that the model- 
ing correctly describes the anelastic properties of 
Rayleigh waves, even in the presence of a strong 
contrast in the material parameters. 

INTRODUCTION 

Anelasticity of earth materials has an important influence 
on wave propagation, particularly on surface waves, since 
the weathering zone is generally an unconsolidated medium 
and therefore shows strong dissipation and velocity disper- 
sion. 

Moreover, anelasticity introduces new phenomena not 
present in the propagation of elastic surface waves (e.g., 
Carcione, 1992). Considering, for instance, anelastic Ray- 
leigh waves in a homogeneous half-space, there are several 
differences with the elastic case. In the first place, more than 
one Rayleigh wave is possible, one of them corresponding to 
the usual elastic surface wave, and the other, which exists 
only when the medium is viscoelastic, for certain combina- 
tions of the Lam6 parameters and for a given range of 
frequencies. In contrast to elastic materials, for these anelas- 
tic surface waves, the particle motion may be either direct or 
retrograde at the surface. The motion may change sense at 
many or no levels with depth, and for the second Rayleigh 
wave, the energy velocity may be greater than the body 
wave energy velocity. Consequently, a forward modeling 

scheme to study surface waves in an anelastic earth is of 
relevance for the geophysical problem. An analysis of 
anelastic Rayleigh waves by using energy considerations can 
be found in Carcione (1992) whe’re the energy balance is 
computed and the quality factors and energy velocity are 
calculated as a function of frequency, depth, and per unit 
surface area. A theoretical analysis of wave motion in 
anelastic media can be done for very simple structures like, 
for instance, the homogeneous half-space studied in Car- 
cione (1992). However, for more complicated models, wave 
simulation is needed. 

In addition to incorporating all these new effects in wave 
modeling, accuracy is very important when studying anelas- 
tic wave propagation. In particular, velocity dispersion is not 
to be confused with numerical dispersion. Spatial accuracy 
is achieved by using pseudospectral methods for computing 
the spatial derivatives of the anelastic wave equation. This 
modeling scheme is based on a spatial discretization on a 
grid in which the spatial derivatives are calculated with a 
Chebychev method in the vertical direction and a Fourier 
method for the horizontal direction. This approach allows a 
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natural incorporation of the free surface boundary condition, 
since the Chebychev method is not periodic in the vertical 
direction, and one can handle any source-receiver configura- 
tion unlike with the Fourier method. The modeling scheme 
used in this work was first introduced by Kosloff et al., 
(1990) to solve wave propagation problems in purely elastic 
media. 

A direct implementation of the free surface boundary 
conditions may produce instabilities. To avoid this problem, 
a boundary treatment based on characteristics is applied. 
The wave equation, recast as a first-order hyperbolic sys- 
tem, is decomposed into wave modes that describe outgoing 
and incoming waves at the boundaries. The outgoing waves 
are determined by the solution within the computational 
volume, while the incoming wave depends on the boundary 
conditions. The result of this approach is a wave equation at 
the free surface that automatically includes the boundary 
conditions. 

The first section introduces the 2-D wave equation for 
linear isotropic-viscoelastic media. Then, the boundary 
treatment is outlined, and the wave equation at the free 
surface is obtained. Next follows a description of the numer- 
ical modeling algorithm. The first example computes syn- 
thetic seismograms and snapshots of Rayleigh wave propa- 
gation in a homogeneous anelastic half-space that represents 
an unconsolidated weathering zone. A second example tests 
the modeling scheme in a structure containing a vertical 
interface separating an elastic medium from an anelastic 
region, and bounded at the top by a free surface. 

THE WAVE EQUATION 

This description of wave propagation is based on the 
equation of momentum conservation combined with the 
constitutive relations for infinitesimal deformations. For 2-D 
media, the equations of momentum conservation are 

(la) 

where x = (x, z) are Cartesian coordinates, u,,(x, t), uXZ 
(x’, t), and uZZ(x, t) are the stress components, uX(x, t) and 
uZ(x, t) are the particle velocities, p(x) denotes the density, 
and f(x, t) = (f,, f,) are the body forces per unit volume. 
In equation (la and b) and elsewhere, time differentiation is 
indicated with the dot convention. 

The constitutive relations for an isotropic-viscoelastic 
medium expressed in terms of the particle velocity deriva- 
tives are (Carcione et al., 1988; Carcione and Behle, 1989) 

+ (A + F) c. tile + CL c i’2e> CW 

(2b) 

WI 

where 

ii = (A + F)M,I - @4u2 > and I; = IJ,M,z, Ua, b) 

are the high-frequency limit Lame constants, with A and p, 
the elastic Lame constants, and M uy , Y = 1, 2 are relaxation 
functions evaluated at t = 0, with v = 1, the dilatational 
mode, and v = 2, the shear mode. For a general standard 
linear solid rheology, they are given by 

L” 7y 
MU” =1- c l-C, u=l,2, 

t i +> 
(4) 

e=1 

with T,$) and r$ material relaxation times. The quantities 
e te (x, t) are memory variables related to the L 1 mechanisms 
which describe the anelastic characteristics of the dilata- 
tional wave, and eze(x, t), e3[(x, t) are memory variables 
related to the L2 mechanisms for the quasi-shear wave. 

The scheme is completed by the memory variables first- 
order equations in time

e= 1, . . . , L1, (54 

e= 1, . . . , Lo, (5b) 

e= 1, . . . , L2, (5c) 

where 

u= 1, 2. (6) 

In the elastic limit, TE($) + 722; thus, M,, -+ 1 and $“e + 
0, and the memory variables vanish. In this case, equations 
(2a-c) become Hooke’s law. As can be seen from the 
stress-strain equations, the mean stress (u,, + a,,)/2 
depends only on the parameters and memory variables with 
index u = 1, which involve dilatational dissipation mecha- 
nisms. Similarly, the deviatoric stress components (uxX - 
u,,)/2 and a,, depend on the parameters and memory 
variables with index u = 2 involving shear mechanisms. 

Equations (1), (2), and (5) together with the boundary 
conditions completely describe the wave motion of the 
earth. Let the surface of the earth be flat and normal to the 
variable z; then, the boundary conditions read 

e=l e=l uzz = 0, uxz = 0. C’a, b) 
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For a suitable implementation of the boundary conditions, 
the formulation requires recasting the equation governing 
wave propagation as 

where 

v= 
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Pa, b) 

Equation (12) completely defines aV/at at the boundaries 
in terms of the decoupled outgoing and incoming modes. The 
boundary conditions are implemented in the following way. 
Assume that a I z 5 b. For points (z, a), compute 
X i(Ai < 0 outgoing waves) from equation (13) and Z+(hi > 
0 incoming waves) from the boundary conditions. Similarly, 
for points (z, b), compute Xei(Xi > 0) from equation (13) and 
~i(Ai < 0) from the boundary conditions. Then, solve 
equation (8) for the interior region and equation (12) at the 
boundaries. For the isotropic-viscoelastic rheology the 
eigenvalues are: 

I + 26 
Al = J- --ccp, 

P 

A2 = -cp, 

r; 
A3 = 

J 
--cs, 
P 

(loa, b) A4 = -cs, 

The notation ( )Lv denotes a succession of elements from 
e= l,... , L,, v = 1, 2. The vectors have dimension m = 
5 + L1 + 2L2, and matrices are of size m x m. 

Implementation of the boundary conditions along a given 
direction requires the characteristic equation corresponding 
to equation (8) in that direction. 

THE BOUNDARY TREATMENT 

The method used here was recently developed by Thom- 
son (1990). The characteristic equation corresponding to 
equation (8) is 

-S-i c+ x •l- S-k, = 0, 
at 

C, = A ; + D, (11) 

or 

where 

“beEAs- E -_ az ’ 
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(12) 

and 

4 = S_‘I33, (14) 

with 4 the diagonal matrix corresponding to I5, and eigen- 
values Ai, i = 1, . . . , m. 5 is formed by the columns of the 
right eigenvectors of @. X includes each decoupled charac- 
teristic wave mode in the z-direction. Since the system of 
equations is hyperbolic, the eigenvalues of B are real. Some 
of the eigenvalues give the characteristic velocities of out- 
going and incoming waves at the boundary. 

hi = 0, 

i=5 , . . . , m, (15) 

where the subindices P and S denote compressional and 
shear waves. 

The quantities pi relevant for the implementation of the 
boundary conditions are given by 
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(164 

The wave propagation equations in terms of the decoupled 
outgoing and incoming modes are 

1 am,, 1 
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The equations describing wave propagation are evaluated in 
form (12) at the z boundaries, where the quantities Xi, repre- 
senting incoming variables, depend on the boundary condi- 
tions. Actually, each Xi represents a one-way wave motion as 
indicated in Figure 1. They are the four possible propagating 
modes traveling perpendicular to the free surface. 

FREE SURFACE BOUNDARY CONDITIONS 

The method states that for the interior points a < z < 6, 
equation (8) must be solved, while for I = a and z = b, 
equations (12) or (17a-h) are used. Those variables Xi, which 
represent outgoing variables, are calculated from their defi- 
nitions in equations (16a-d), while those which represent 
incoming variables are specified from the boundary condi- 
tions. At the surface of the earth, the force-free boundary 
conditions (7) hold. This means that the normal stresses are 

zero at all times. Thus, the initial conditions at the surface 
should include uZZ = uxZ = 0, say at z = b = 0. The 
incoming waves correspond to h2 = -cp and A4 = -cs. 
Then, X2 and Xe4 must be computed from the boundary 
conditions. From equations (17d) and (17e), uiZ and uxZ will 
remain zero at the surface if 
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Substituting Xl and X3 from equations (16a) and (16~) into 
(18a) and (18b), and the results into equations (17e-h), yield 

au,, auxz -+- 
ax az I 

LI L2 

+ (A + CL) 2 elr -EL c t’ze 

t=1 e=l 
I 

+.fi> (19b) 

4&O; + &) au, * 
uxx = - + & (A + PI % 2lY 

i+2P. ax L=l 

20; + I;) L2 
+ - P. c 22t 1 

i + 2$ e=i 
(19c) 

free surface 

air 

from bokbary conbitions 

FIG. 1. The diagram displays the four propagating modes 
perpendicular to the interface. The incoming characteristic 
variables X2 and Xe, are calculated from the boundary 
conditions. 
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These are the equations to be used at the free surface. 
Denoting the variables given in equations (I), (2), and (5) 
with the superscript (old), and the variables given in equa- 
tions (19) with the superscript (new), the latter read 

(204 
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This notation is consistent with that used in Bayliss et al., 
(1986), and Kosloff et al., (1990). 

THE MODELING SCHEME 

A seismic reflection survey involves an explosion close to 
the surface and the recording of the earth response at 

receivers located at the surface. The solution is discretized 
in time as well as in space. This modeling algorithm consists 
in the calculation of the spatial derivatives, incorporation of 
the boundary conditions, and time integration. Pseudospec- 
tral methods are used to compute the spatial derivatives. In 
the horizontal direction, the Fourier pseudospectral method 
is used since it is efficient in terms of the number of grid 
points per wavelength. Then, in the horizontal direction the 
coordinates of the sampling points are given by 

XllltXS 
x; =K(i- l), i= 1, . . . , Nx, (21) 

where x,,, is the maximum distance and N, is the number 
of grid points. For a given function f(x), with transform 7, 
derivatives are computed as 

df 
- = ik,f, 
dx 

27F 
k,=----- 

NxDx 
J? 

Nx - 1 Nx + 1 
j= -p, . . . , ~ 

2 2 
(22) 

for odd NX, where k, is the discrete wavenumber and Dx is 
the grid size. However, the Fourier method is not appropri- 
ate for the vertical direction since it cannot handle the 
recording configuration mentioned before, with source and 
receivers close to the free surface (Kosloff et al., 1990). 
Thus, in the vertical direction, the modified Chebychev 
pseudospectral method is used. The method is nonperiodic 
and provides high accuracy and resolution at the surface. 
When solving the problem with an explicit time marching 
algorithm, the conventional Chebychev differential operator 
requires time steps of the order O(Nm2), where N is the 
number of grid points. A new algorithm, based on a coordi- 
nate transformation, allows time steps of order O(N -‘), 
which are those also required by the Fourier method. 

The Nz sampling points are defined by 

Zi = s(5;), <i = COS ” , 

i I NZ 
i=O, . . . , NZ - 1, 

(23) 

where 5; are the Gauss-Lobato collocation points, and g(c) 
is a grid stretching function that stretches the super fine 
Chebychev grid near the free surface to have a minimum grid 
size Dz = O(N,‘), thus requiring a less severe stability 
condition. Figures 2a and b represent the conventional and 
modified Chebychev grids, respectively. In particular, the 
density of grid points at the lower boundary has been 
reduced considerably since a fine grid is not necessary there. 
The vertical derivatives are calculated by the chain rule, 

df dfd5 
dt=ig2 

(24) 

The derivative with respect to 5 at the ith sampling point is 
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NZ - 1 

g(ii, = 2 bkQk(ii)> i=O, . . . , Nz- 1, (25) 
!i=I 

where Qk are Chebychev polynomials, and bk are the 
coefficients for the derivatives (Gottlieb and Orszag, 1977). 
Integration of the viscoelastic wave equation in unbounded 
media is carried out with spectral accuracy by using the 
algorithm given in Tal-Ezer et al., (1990). This technique is 
adapted to the Fourier pseudospectral method, which is used 
to compute the spatial derivatives in both the vertical and 
horizontal directions. Unfortunately, the algorithm is not 
efficient when Chebychev differential operators are used 
since the eigenvalues of the collocation matrix are not near 
the imaginary axis of the complex wavenumber plane, unlike 
with the Fourier differential operator. 

An efficient time integration algorithm is the fourth-order 
Runge-Kutta method (e.g., Canuto et al., 1988). Let the 
spatial derivative operation in equation (8) be abbreviated to 

a) free surface 

FIG. 2. (a) Chebychev and (b) modified Chebychev grids in 
the vertical direction. The stretching overcomes the severe 
stability condition imposed by the conventional Chebychev 
grid due to the very fine sampling at the boundaries. The 
horizontal sampling points are equidistant since the Fourier 
method is used to compute the horizontal derivatives. 

(26) 

If dr is the time step, the solution at time (n + 1) dt, Vn+' , 
is obtained in terms of the solution at time ndt, V”, as 

v” + ’ = V” + ; dt (A, + 2A2 + 2A3 + A,), (274 

where 

A, = I’@‘” + D”, (27b) 

(27~) 

(274 

A4 = ikl(V” + dtA3) + D” + ‘. We) 

As mentioned before, a favorable stability condition is 
achieved with dt = O(N-‘). 

At the free surface, the boundary conditions are applied 
by solving equations (19), whereas for the bottom boundary, 
nonreflecting conditions are implemented. The appropriate 
equations for this case are given in the Appendix. Since for 
nonvertical incidence, the incoming waves may not be 
eliminated completely, an absorbing strip can be added to 
improve the efficiency (Kosloff and Kosloff, 1986). Similar 
absorbing regions can be placed along the boundaries in the 
horizontal direction to avoid wraparound caused by the 
periodic properties of the Fourier method. The mesh config- 
uration is displayed in Figure 3. The boundary conditions are 
automatically implemented when solving equations (20) with 
the appropriate operator &I obtained from equations (19) for 
the free surface, and equations (A-3) for the nonreflecting 
boundary at the bottom of the model. 

EXAMPLES 

The following numerical experiments test the modeling 
scheme. Since there is no analytical solution for anelastic 
surface waves, the aim is to verify whether the anelastic 
effects and different events come out correctly in the pres- 
ence of free surface boundary conditions. The first example 
represents an unconsolidated weathering zone, while the 
second example introduces an elastic-anelastic vertical in- 
terface. 

HOMOGENEOUS WEATHERING ZONE 

The most simple structure is a homogeneous viscoelastic 
half-space bounded by a free surface. The low-frequency 
limit compressional and shear-wave velocities are taken as 
V, = 2000 m/s and V, = 1155 m/s, respectively, corre- 
sponding to a Poisson solid; the density is p = 1 kg/m3. Two 
sets of relaxation times, indicated in Table 1, are used (L, = 
L2 = 2), such that the quality factors are nearly constant 
over the exploration seismic band. The quality factors for P 
waves, S waves, and bulk waves turn out to be Qp = 30, 
Qs = 20, and Q, = 40, respectively. The structure may 
represent an unconsolidated weathering zone. 
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The calculations use a grid size of N, = 135 and Nz = 8 1, 
with uniform grid spacing DX = 20 m in the horizontal 
direction, and a largest vertical grid spacing of DZ = 20 m. 
To prevent wavefield wraparound in the horizontal direc- 
tion, an absorbing region of 18 points surrounds the numer- 
ical mesh. A vertical point force is applied at grid point 20 at 
a depth of 1.8 m. The source is a shifted zero-phase Ricker 
wavelet with a central frequency of 11 Hz, and a high cutoff 
frequency of 22 Hz. At the dominant frequency, the P and S 
phase velocities are 2052 m/s and 1200 m/s, respectively. 
These values indicate that significant dispersion is expected, 
with the anelastic wavefields faster than the low-frequency 
elastic wavefields. The numerical solution is propagated to 
2 s with a time step of 1 ms. 

A Poisson solid has A = CL, so that V, = k’j Vs. The 
equation for the Rayleigh wave complex velocity V(o) in a 
Poisson solid is given by (Carcione, 1992): 

3q3 - 24q* + 56q - 32 = 0, 
V* 

q=-_2> 
VS 

(28) 

where (Carcione et al., 1988), 

(29) 

free surface 

Nonreflecting boundary 

FIG. 3. Numerical mesh and imposed boundary conditions. 
At the bottom of the grid the incoming waves are eliminated 
by the boundary treatment. 

Table 1. Relaxation times. 

e 7;;) (s) 70 “k (s) T(S) (s) F 
T’?u’ (s) (r 

- 

:. 0.0332577 0.0033257 0.0304655 0.0030465 0.0352443 0.0029370 0.0287482 0.0023957 

:. 0.0325305 0.0032530 0.0311465 0.0031146 0.0332577 0.0033257 0.0030465 0.0304655 

is the complex velocity of shear waves. 
Equation (28) has three real-roots, but only one has a 

physical meaning: q = 2 - 2/g/3, which corresponds to the 
anelastic Rayleigh wave. It is proved in Carcione (1992) that 
the quality factors per unit volume at the surface and per unit 
area are the same, and equal to the S-wave quality factor: 

Re [vz] 
Q=L.+ 

Im Wsl 
(30) 

Moreover, the velocity of the energy equals the phase 
velocity which is given by 

(31) 

Thus, the phase velocity at the central frequency of the 
source (11 Hz) is c = 1104 m/s. 

Figure 4 compares elastic and anelastic snapshots, where 
(a) r = 0.75 s, and (b) t = 1.25 s. The different events are 
indicated in the elastic horizontal component. The shear 
head wave connects the P and S waves, and makes an angle 
of 8 = sin -’ V,/V, = 35 with the free surface. The Rayleigh 
wave is confined to the surface, which is a node (zero 
amplitude) for the S wave since the source is a vertical 
impulse. At t = 1.25 s, the surface wave has attenuated 
considerably and precedes the elastic Rayleigh wave by a 
distance of approximately 50 m. The latter travels with a 
velocity of c, = 0.9194 Vs = 1062 m/s, which compared to 
1104 m/s gives nearly 50 m in 1.25 s traveltime. 

The seismic response is recorded at the same depth as the 
source position. Figure 5 compares elastic and anelastic 
seismograms, (a) horizontal components, and (b) vertical 
components. As can be appreciated in the elastic horizontal 
component, the compressional wave loses amplitude with 
time due to geometrical spreading, while the Rayleigh wave 
keeps the same amplitude since it is confined to the surface. 
The situation changes in the anelastic medium where the 
attenuation and velocity dispersion have considerable affect 
on the surface wave. 

WEATHERING ZONE WITH A VERTICAL INTERFACE 

This model consists of a vertical interface separating an 
elastic medium from an anelastic region bounded at the top 
by a free surface. The structure, together with the material 
parameters, is represented in Figure 6, where the relaxed or 
low-frequency limit wave velocities are indicated. The nu- 
merical grid, source type, and central frequency are those of 
the first example. The experiment tests the modeling algo- 
rithm when the material parameters vary laterally, particu- 
larly in the case of a strong contrast in the anelastic proper- 
ties. 

Compared to the previous example, the structure is more 
complex and more events take place, as can be appreciated 
in Figure 7, where snapshots for (a) t = 0.75 s, and (b) t = 
1.25 s are displayed; R denotes the Rayleigh wave. In Figure 
7a, only the P wavefront and the head wave have reached 
the interface, while in Figure 7b, the Rayleigh wave has been 
transmitted and reflected and has created a Stoneley wave 
traveling downward along the interface. Clearly, anelasticity 
causes strong attenuation and velocity dispersion; compare 
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FIG. 4. Comparison between elastic and anelastic wavefields propagating in a homogeneous weathering zone, (a) t = 0.75 s and 
(b) t = 1.25 s. Relaxed P and S wave velocities are 2000 m/s and 1155 m/s, respectively, while quality factors for P waves, S 
waves, and bulk waves are QP = 30, Qs = 20, and Qk = 40, respectively. The source is a vertical point force of the Ricker 
type with a central frequency of 11 Hz located at a depth of 1.8 m. 
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for instance, the position of the Stoneley wave in the elastic 
and anelastic snapshots. 

A good test of the effectiveness of the boundary conditions 
is the analysis of the anelastic properties of the Rayleigh 
wave at both sides of the interface. This can be done in the 
synthetic seismograms represented in Figure 8, recorded at 
the same depth as the source along the free surface. The 
different events are identified in the elastic horizontal com- 
ponent. Also indicated in the Figure are converted body 
waves originating from the collision of the Rayleigh wave 
with the interface. It is clear how the surface wave is 
dissipated in the left side of the interface (up to approxi- 
mately 1 s traveltime) and keeps its amplitude after crossing 
the interface since the medium there is elastic. On the other 
hand, the reflected Rayleigh wave attenuates almost com- 
pletely after 2 s propagating time

CONCLUSIONS 

The present forward modeling scheme simulates anelastic 
surface waves with spectral accuracy in the calculations of 
the spatial derivatives. The examples show that the modeling 
correctly reproduces the anelastic properties even in the pres- 
ence of strong contrasts in the material parameters, especially 
the quality factors. Further research is required to determine if 
a spectral time integration technique can be used with this 
technique. The modeling will be very useful for analyzing the 
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FIG. 7. Comparison between elastic and anelastic wavefields propagating in a weathering zone with a vertical interface: (a) t = 
0.75 s and (b) I = 1.25 s. R indicates the Rayleigh wave. 
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FIG. 8. Comparison between elastic and anelastic seismograms recorded at the surface of a weathering zone with a vertical 
interface: (a) horizontal components and (b) vertical components. R indicates the Rayleigh wave. 

physical properties of Rayleigh waves and the existence of a 
new surface wave in anelastic media. Extension to 3-D and the 
anisotropic-viscoelastic rheology introduced in Carcione (1990) 
will also be investigated in future work. 
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APPENDIX 

NONREFLECTING BOUNDARY CONDITIONS 

Suppose that z = a = -za is a boundary of the numerical 
mesh. Since this is not a physical boundary, the incoming 
wave must be suppressed to avoid nonphysical reflections. 

The incoming variables are X, and X3. The first and third 
components of equation (12) give the following characteris- 
tics equations: 

(A-lb) 

These equations contain the time derivatives of the ampli- 
tudes of the incoming characteristic waves. Imposing con- 
stant amplitudes in time is equivalent to suppressing the 
incoming waves. This can be done by choosing 

Ll L2 

x 2 t'le - p. c I'2e +fi 1 I 3 (A-2a) 
e=l 

while X2 and X4 are computed from equations (16b) and 
(16d), respectively. Then, substituting X into equations (12) 
gives at the nonreflecting boundary: 
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