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A 3-D time-domain wave equation

for viscoacoustic saturated porous media

J. M. CARCIONE *

ABSTRACT. — The model for porous media introduced by Biot is representative of many materials encountered
in geophysical and engineering applications. However, Biot’s poroelastic equations have limited practical value
since the global flow mechanism does not predict the levels of attenuation and velocity dispersion observed
experimentally. In this paper Biot equations on reformulated to model the attenuation values observed in
laboratory experiments. Moreover, the wave equation is recasted in the time-domain which, as is well known,
allows more efficient wave field computations than in the frequency-domain. Invoking the correspondence
principle, Biot formally obtained a viscoelastic equation of motion which includes all possible dissipation
mechanisms. The approach involves the presence of convolutional integrals which arise from the replacement
of the elastic coefficients by time operators. In this work, the time operators are expressed in terms of suitable
relaxation functions in order to avoid the convolutions by the introduction of additional variables in the
formulation. The present work is restricted to viscoacoustic wave propagation, i.e., to dilatational waves. The
model allows the study of wave propagation due to specific attenuation mechanisms (fitting any general quality
factor function) and the analysis of the complete wave field in arbitrary inhomogeneous structures.

1. Introduction

Porous media arise in a variety of geophysical contexts and engineering applications.
The mechanics of porous solids with fluid-filled pores has received attention recently for
several reasons: the recovery of oil and gas depends upon flow in porous reservoirs; pore
fluids in the ground are believed to play a role in the triggering of earthquakes; underwater
acoustics involve propagation in the water-saturated bottom of the ocean, etc. The study
of wave propagation through porous media can give new insight into and a better
understanding of these phenomena. This fact combined with the progress in new algo-
rithms and computer technology suggests a strong need to develop an appropriate wave
equation to describe wave propagation in porous media. Most of the work on numerical
modeling in viscoelastic porous media was done by using frequency-domain methods,
e. g., Schmitt et al., [1988], but nothing is reported on time-domain wavefield simulations.
The purpose of this work is to establish a 3-D time-domain wave equation for porous
media which correctly describes the level of attenuation measured at typical seismic and
well logging frequencies. The base model is given by Biot’s poroelastic equations. This
theory assumes that the material consists of a connected pore network, with macroscopic
viscous fluid flow as the mechanism responsible for the anelasticity. However,
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it is well known that the attenuation values predicted by the theory are much
smaller than those measured experimentally [Mochizuki, 1982]. But as Biot [1962] cor-
rectly states, the model of a purely elastic matrix saturated with a viscous fluid is only
applicable in exceptional cases. Owing to the complexity of the solid-fluid system, there
are many types of dissipation mechanisms which can influence the wave propagation
characteristics. For instance, non-connected pores, considered as part of the solid, may
cause dissipation; the fluid itself contributes due to bulk relaxation; there are interfacial
energies produced by chemical reactions; the existence of local flow relaxation mecha-
nisms; thermoelastic dissipation produces a relaxation spectrum, etc. To consider these
mechanisms, Biot [1956] formally established a viscoelastic equation of motion for porous
media by substituting the elastic coefficients by time operators. The term viscoelastic
refers to properties of a more general nature than those of the solid alone, which arise
due to complex interactions between the solid and the fluid. As mentioned above, these
properties can be of mechanical, chemical or thermoelastic nature, and each dissipation
process can be represented by suitable time operators [Biot, 1962]. In this work the time
operators are expressed by appropriate relaxation functions, and the convolutional kernels
are avoided by the introduction of additional variables called memory variables. The
result is a differential wave equation in the time-domain. In this way, efficient wave field
calculations can be done with direct grid methods in arbitrarily inhomogeneous structures.
Applications of this approach to single-phase media can be found in Carcione et al.,
[1988 a, b] for isotropic solids, and Carcione [1990] for anisotropic solids.

The present model is restricted to the case of a viscoacoustic porous frame, i.e., only
compressional waves propagate. As in the purely elastic case, two types of waves exist,
commonly referred to as fast and slow waves. The first correspond to the classic P-
waves, and the slow wave is generally of diffusive character but may contribute to the
attenuation of the fast wave by mode conversion at discontinuities [Geertsma &
Smit, 1961]. Biot’s poroelastic equations, and the equation of a viscoacoustic single-phase
solid (Carcione et al., 1988 a], are particular cases of the wave equation obtained with
the present theory.

The first section establishes the constitutive relation of the porous medium as a
convolutional relation. Then, memory variables are introduced in order to avoid the
convolutional integrals. In the next section, Biot’s equations and the memory variable
differential equations are combined to give a single first-order matricial differential
equation in time to solve for the solid and fluid dilatation fields. A numerical solution
algorithm is proposed for high accuracy calculations. Next follows the calculation of the
phase velocities and quality factors; and finally, examples are given of how to pose
particular problems.

2. Constitutive relation

The material consists of a porous frame with a statistical distribution of interconnected
pores. These define the effective porosity, while sealed pores are considered as part of
the solid. It is assumed that the fluid is compressible.
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The stress-strain relation for a porous viscoelastic solid was obtained by Biot (1956)
from the thermodynamics of irreversible processes. The constitutive relation describing
viscoacoustic propagation, . e., dilatational waves can be written (Appendix A) as

0 [p }:[ ¥y ‘lfzjl*[e:], or, in compact notion,
pf _\IJZ \113 C’

2 P="Yx*E,

where p and p, are the pressure fields of the matrix-fluid system and fluid, respectively;
e and ¢ are the dilatation fields of the solid matrix, and fluid relative to the solid,
respectively. ,, r=1,...,3 are relaxation functions, which may be represented by
viscoelastic mechanical models of by more general frequency-domain rational functions
(see Appendix B). This is a necessary condition for obtaining a differential wave equation
in the time-domain, which for general initial value problems can be solved with higher
efficiency than a frequency-domain equation. The symbol * indicates time convolution,
and a dot above a variable denotes time differentiation.
As shown in Appendix B, the relaxation functions can be expressed as

LD‘
3) \|/,(z)=[AR,+ 3 A,.,e'/ff”J H(), r=1,...,3

1=1

with A,;, Ay, and (", space-dependent functions, and H () the step function.

3. Introduction of the memory variables

Eq. (2) can be alternatively written as
(4) P=Yx%E.

Since the relaxation matrix W contains a step function, further development implies

L
(5) P=Y(0)E+ Y ®xE,

1=1
where L=max(L,), r=1, ..., 3, for convenience. ®, called the response matrix (from
response function Adelman [1980]), is such that

L

©6) ®; ="', where the prime means that for a given causal function, g(f) is g=g' H.
=1~ 7

Hence,

. A r, . . ‘ . .
(7a, b) CD,=[ P W } with ¢ = — T’; e~ by virtue of equation (3). Defining
- “ P2 Py T

(8a, b) V,=[6“J, and W,=[€2'J, as the memory vectors, with

31 21
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a, b, ) en=Qy e, €= — 0y %e, and Cn=9,*C, r=23
the memory variables, the rheological relation of the porous medium (5) can be written
as

L

(10) P=Y()E+Y (V,+JW,),  where g=[? (I)J
1=1

4. Wave equation

Biot (1956) established the equations for wave propagation in a porous viscoelastic
solid as a consequence of the application of the correspondence principle to the elastic
wave equations. In the viscoacoustic case, the equations can be written in matrix notation
as

(an grad P=CU+HU+S,

where I and H are the mass and damping matrices whose elements, Yes and n,g, 1, s=1, 2
respectively, as functions of the material parameters, are given in Appendix A;

(12) Uz[ " J
— W

with u the displacement of the solid, and w a vector representing the flow of the fluid
relative to the solid, such that

(13) E=div U;

ST=s, sy] is the body force vector, with s acting on the matrix-fluid system, and s,
acting on the fluid phase. Multiplying both sides of (11) by [ ~! and recordering terms,
yields

(14) U=T"'(grad P-HU-S), where

(154, b) £*1=deir[1z _YY] det D=7, Y22+ 12,
since y,; = —7;,. Taking divergence in equation (14) gives

(16a, b) E=AP-divL ' (HU+S), and A=divD 'grad,

where (13) has been used. The operator matrix A acting on a vector AT=[a,, a,] is
simply

(17 AA=9,L ! [gf"l} i=1,...,3,
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where 0; means the spatial derivative with respect to the cartesian coordinate X;, and
implicit summation over repeated indices is assumed. Note that for a constant mass
matrix I, A becomes

(18) A=T"'A, where A is the Laplacian operator.

Replacing the constitutive relation (10) into (16 ) gives

L

(19) E=AMYOE+ Y (V,+IW)]—divD 1 (HU+S),

=1
On the other hand, since @), in (7b) satisfies the following differential equation:

o= — oL/, differentiating the memory vectors (8 @, b) with respect to time, and using
(9a, b, c) yields

(1)
(20 ) V,{q’“(o) U }E—[I/T' 0 }Vl, I=1,...,L,

0 93(0) (U VA8
. [= 1
(20 b) w,=| “P2@ 0 E-—_IW, I=1,... L
0 ¢4, (0) 7§

where I is the 2 x 2 identity matrix.

Eq (14), (19) and (20 a, b) fully describe the response of the 3-D viscoacoustic porous
medium and are the basis for solving wave propagation problems in the time-domain.
They can be reformulated as a first order differential equation in time:

1) D=MD+F,

where DT=[E, E, U, V...V, Wi, ... W] is the vector of the unknown variables,
F'=[0, —div[~'S, =[7'S,0,...0,0,...0] is the body forces vector, and M is a
matrix operator which contains the spatial derivatives and the material parameters. The
superscript T denotes transposition. For instance, for L=1, M is formed by 2 x 2 operator
matrices in the following way:

L
P}
o
1=}

|

N
—-
N
I

=R

(22)

=
I

3

ie
kS
=]

S
A~ oW
& B
SIS IS IS U
1= = LZ 53 =
S
=g
w
W

oo

| sy Mssj

where 0 is the zero matrix, and
(23a,b,c,d) My, =A%(0), My=-div[™'H, M,y=A,
(23e,f, g, h) M3 ="' grad ¥(0), M,,=-L["'H

r g )
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.. 0 0 1/z 0
(234, 7) M41:|:(P1() :la M44:|: / 3:|,
0 ;00 0 14@
@3k, 1) M51=|:_(p2(0) 0 J and Mg =— o1,
0 ¢,(0) @

Formally, the vector U has to be included in the unknown vector D, although due to
the form of the damping matrix H (Eq. (A 6 b)), only —w is involved, as implied by
Eq. (18). Actually, this variable appears by virtue of the Biot dissipation mechanism.
This is included in the theory to account for the diffusive character of the slow wave
since, as is well known, the Biot mechanism cannot explain the attenuation characteristics
of the fast wave, at least at seismic and sonic frequencies [Mochizuki, 1982]. On the other
hand, this mechanism can be simulated by choosing appropriate relaxation functions. It
can be seen that when the mass and damping matrices are constants, or when the
damping matrix is zero (zero viscosity), U is not involved in the calculations.

As an example, let only the relaxation function s, be time-dependent (i.e. assume 1V,
™3 > o), with L,=1., and consider a zero viscosity fluid. Then, from Eq. (1) and (3),
the relaxation matrix at =0 is

- (ARZ + Az) AR3
the response matrix (7 @) reduces to
0 1
25 b= .
25) o l: 1 0:' )

Then, the memory vectors contains only two variables, since

(264, b) V1=[OJ, and W1=[€2]
0 93

The unknown variable vector is D" =[e, {, ¢, {, e,, {,], and

(27a, b, ¢) M, =My, =0, M51:[1 0 :,ﬁ’ Mssz_llw
0 -1 1]+ T

with t the relaxation time corresponding to \,. As mentioned above, since the damping

matrix H is zero, the vector U disappears from the wave equation (see Eq. (19)), and

(14) is no longer necessary. The purely acoustic wave equation is obtained by taking

A, =0in Eq. (3) or 0”=1{" in Eq. (B2a). Hence, the response matrix ®, and the memory

vectors vanish, and -

0 I 0
(284, b) D'=[E, E U, M=|M, 0 M,|,
M31 Q M33
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which implies Biot’s poroelastic equations [Biot, 1962].

The equation for a viscoacoustic single-phase solid [Carcione et al., 1988 a] is obtained
with Ag,=A,;=0, r=2,3, fluid density p,=0, and fluid viscosity n=0. Then, the response
function and the memory vectors reduce to

0
@abe) o= " O v=||,  w=°| and forL=1,
~ 1o o 0 0

0 1 0
30a, b) D=, ¢, ¢,], M= |M,, 0 M,,;|, where
M;, 0 Mj;
(B3la, b,c) My, =0;p; ' 0,V (0), M;; =¢(0), Mjy;=—l/7,, M,;=0;p, ' 0,

with p, the density of the solid.

The differential equation (21) represents the wave equation of the viscoacoustic porous
medium which correctly describes the anelastic effects in wave propagation within the
framework of linear response theory. The solution of (21) subject to the initial condition

(32) D (t=0)=D, is formally given by
t
(33) D(t)=e”‘4DO+J ™M (1—0)do.

0

In Eq. (33), e is called the evolution operator of the system. Most frequently, an explicit
or implicit finite-difference scheme is used to march the solution in time. This technique
is based on a Taylor expansion of the evolution operator. An alternative and more
effective approach specially designed to solve wave propagation problems in linear
viscoelastic media was developed by Tal-Ezer et al., [1990]. The approach is based on a
polynomial interpolation of the exponential function in the complex domain of the
eigenvalues of the operator M, over a set of points which is known to have some maximal
properties. In this way, the interpolating polynomial is almost best. The eigenvalues
should have negative real parts; this is verified for viscoacoustic porous media in
Appendix C, where the eigenvalues of M are calculated for the one-dimensional wave
propagation problem. To balance time integration and spatial accuracies, the spatial
derivatives can be computed by means of the Fourier pseudospectral method, although
finite-differences or finite-elements can also by used.

5. Complex velocities, phase velocities and quality factors

To analyse if the wave equation (26) describes correctly the anelastic characteristics of
the dilatational waves, it is necessary to calculate the phase velocities and quality factors.
Applying the convolutional theorem to equation (4), the rheological relation in the
frequency-domain takes the form

(344, b) P-BE, B-

~

¥

El
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where the tilde over the variables means time Fourier transformation. The complex bulk
matrix is given by

M M
35) B= ! % |, where the complex moduli, given in Appendix B, are
-M, M s PP
2 3

L
"1+ iwd™
(364, b) M,.=AR’ 1+iof” , = 1+L,.ﬁ 77
L, = 1+ieth Ay,

with o the angular frequency, and 6{” and t{” relaxation times. Identification of the
purely elastic case, either with the low-frequency or the high-frequency limits, defines
the acoustic coefficients A,,, r=1,...,3 as the relaxed or the unrelaxed moduli
(equations (B 5) and (B 6), respectively). They can be written as functions of the properties
of the constituent material through the elastic coefficients A, R and Q of Biot theory.
This is done in Appendix D.

Taking time Fourier transform of Eq. (16 a), and using (18), yields
37 L IAP=(—0’+io L 'H)E,
where a zero source vector and constant material properties were assumed. Replacing
(34 a) into (37) gives
(38) L 'BA+o’l-iol "H)E=0.

Assume a plane wave solution to equation (38) of the form

(394, b) E=E, e, E0=[Z°],
0

where k is the complex wavenumber and x is the position vector. Replacing this solution
into (38) and taking zero determinant gives

1
(40) det[T"'B-V?(I+ —T"'H||=0,

i
where (41) V=w/k, is the complex velocity. The solution of (40) give the complex
velocities for the fast and slow compressional waves in a viscoacoustic porous solid.
Denote them be V,, o.=1,2, respectively. Then, for homogeneous viscoelastic waves, the

phase velocities are given by the frequency divided by the real part of the complex
wavenumber,

(42) c,=Re ™ '[V, '], «=1,2, and the quality factors by
Re[V2]

43 = *, a=1,2,

(43) Q, Im[V2]

where Re and Im take the real and imaginary parts, respectively. Eq. (43) is an extension
to porous media of the quality factors for homogeneous plane waves in a viscoelastic
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solid [Carcione et al., 1988b]. A detailed frequency-domain formulation for viscoelastic
porous media can be found, for instance, in Rasolofosaon [1991].

6. Solving a particular problem

To solve a given wave propagation problem, it is necessary to establish the relaxation
matrix ¥. Each relaxation function \s,, r=1, ..., 3 is completely determined, for instance
by the relaxed moduli Ag,» and the relaxation times 0f”, ©{”, /=1, ..., L,. In principle, it
should be possible to measure experimentally the relaxation functions and the complex
moduli. Having these quantities, the relaxed moduli and the relaxation times can be
obtained by curve fitting to the theoretical relaxation functions (3) or complex moduli
(36 a). Usually, the experimental quality factors and velocity dispersion curves of the fast
wave are given [Bourbie ef al., 1987]. In this case, the relaxation functions are obtained
by fitting the theoretical quality factors (43) and phase velocities (42) to the experimental
ones.

For instance, assume that the dots in Figure 1« correspond to hypothetical experimen-
tal values of the quality factor for a fast wave observed in brine saturated sandstone,
and that the material properties of the sandstone are those given in Table I
[Winkler, 1985]. The continuous lines in Figure 1a represent the theoretical quality
factors of the two compressional waves obtained by curve fitting, and Figure 15 displays
the theoretical phase velocity dispersion. Only the relaxation function \, is considered
time-dependent. Table IT gives the corresponding relaxation times. Of course, in this
example, only the quality factor of the fast wave is realistic. An appropriate evaluation

40— — 4.0
(b)
3.5 fast wave L3.5
150 ———— - B
() 3.0 3.0
)
Ez_s 2.5
. 100-¢ fast wave =
3 z
& 2.0 -2.0
z £
3 - ‘
3 @ |
7 50 815 1.5
a
/ 1.0 —1.0.
slow wave
slow wave |
o———————— 7—‘ | |
1 2 3 4 5 6 0.5- ro.s
log(f(Hz)) \
0.0 : . ‘ ! 0.0
1 2 3 4 5 6
log(f(Hz))
Fig. I. = (@) quality factors, and (b) phase velocities of a brine saturated sandstone. The dots give the

experimental values of the quality factor for the fast wave. The continuous lines represent the theoretical
values obtained by curve fitting. Table 2 gives the relaxation times which define the relaxation functions,
only \, in this particular problem.
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of the relaxation functions requires knowledge of the anelastic characteristics of both
the compressional modes.

TABLE |. — Material properties ol the porous medium.

Solid bulk modulus K; GPa 40.
density p,, kg/m? 2500.

Matrix bulk modulus K,,, GPa 20.
density p,,, kg/m? 2000.

porosity 0.2

permeability K, m? 0.6x 10712

tortuosity o 2.

Fluid bulk modulus K, GPa 2.5
density p,, kg/m? 1040.

viscosity 1, cP L.

TABLE 2. — Relaxations times.

o o
! (s) ()
1 1.600 x 1072 1.785x 1072
2 5.028 x 1072 5.220%1073
3 1.600x 1073 1.710x 1073
4 1.600 x 10~ 1.860 x 10~
5 5.028x107° 6.100x107°
6 1.600 x 1073 1.810x107°
7 1.600x 107° 1.740 x 107°
8 1.600x 1077 2.250% 1077

On the other hand, the relaxation functions can be derived by application of the
correspondence principle to the acoustic coefficients. This approach allows the study of
the wave field due to specific dissipation mechanisms of the constituents, and of the
solid-fluid system. For example, internal dissipation in the solid or fluid, or the local
flow model introduced by Biot [1962] in which the pore fluid is squeezed out of, and
sucked back into, narrows cracks between the surfaces of the grains in contact. Biot
demonstrates how this mechanism can be represented by a spring dashpot model, and
established the form of the frequency-domain viscoelastic coefficients. These can be
expanded as partial fractions, and the corresponding relaxation functions can be obtained
by inverse time Fourier transform.

The following example considers a porous medium saturated with brine in which the
skeleton is dissipative with a constant quality factor over part of the sonic frequency
band (1 to 10 kHz). By using the correspondence principle, the solid and matrix bulk
moduli, K, and K,,, respectively, are replaced by complex bulk moduli calculated from a
continuous distribution of relaxation mechanisms based on the standard linear solid. The
complex moduli obtained by Liu et al., [1976] can be rewritten as

(44) K¥=K,In"! [(3(”,-%)2/716,}

1+iot,

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N° 1, 1993



WAVE EQUATION FOR VISCOACOUSTIC POROUS MEDIA 63
300 — A 4.2
(a) [ (b)
250
4.0-{— 4.0
5 200+ \ solid
s solid ‘
?_?150— 33.5 ‘ 38
3 matrix £ |
100 > ‘
'_g 3.6 ‘ 3.6
50 g ‘
H
o |
£ |
o Q3.4 F3.4
-1 0 1 3 4 7 8
log(f(Hz))
3.2 _/—»3.2
matrix
3.0 — T T—71—— T T30
-1 0 1

2 3 4 5
log(f(Hz))
Fig. 2. — (a) quality factors, and (b) phase velocities of the solid and the dry frame (matrix). The theory used
is the continuous relaxation model based on the standard linear solid rheology. The quality factors are

nearly constant over part of the sonic band.

where u=s, u=m for the solid and the matrix, respectively. T, and t, are time constants,
and Q, defines the value of the quality factor which remains nearly constant over the
selected frequency range. In (44), e denotes the Euler number. The quality factors are
Q,=Re[K[}]/Im[K}¥], and the phase velocities are ¢,=Re ™! (p,/K*). Replacing the solid
and matrix complex moduli in equations (D 7a-c), the viscoacoustic coefficients A,
r=1,.... 3, are obtained such that

} Lo 1o i } 1
@S5a,b,c) RAy=———+p| ——— |, RA,=— - RA,=_.
K¥ K K* K, K K* K
with
i, 1
(46) g= B | ], trtr_1q
Ki| K, Kf| Kf|Kr Kr

The material properties of the porous medium are given in Table I. The parameters in
Eq. (44) are 1;=1.5x 1072, 1,=1.5x10"7, Q,= 150 and Q,,= 100. Figure 2 displays (a)
the quality factors, and (b) the phase velocities of the solid and the matrix. As can be
seen, the quality factors are nearly constants from 1 to 10 kHz. Calculation of the quality
factors and phase velocities of the porous medium is done with Eq. (42) and (43),
respectively, and replacing the matrix B in (40) by the matrix of the viscoacoustic
coefficients. This is

A
(47) B - l: vl Av2 :I .
- A\'Z A\'3
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Figure 3 shows the quality factors (@), and the phase velocities (b) of the porous medium.
The dotted line corresponds to the elastic porous material, i.e. no viscoelasticity in the
solid. As can be appreciated, the solid anelasticity contributes mainly to the fast wave.
That the slow wave is not much affected comes from the fact that this mode is of a
poroelastic nature. This result is in agreement with that of Rasolofosaon [1991]. Wave
field computations in the time-domain require the calculation of the relaxed moduli Ag,,
and relaxation times ©{” and 0", r=1, .. ., 3. To get them, the matrix of the viscoacoustic
coefficients should be fitted to the complex moduli matrix B. Alternatively, the curve
fitting can be done with the quality factors and phase velocities.

300 : . e 3.5 ‘ 35
250 ‘
{ 3.0+ fast wave 3.0
L 200 ‘
2 i
. 2:5 F2.5
o |
3:1507‘ fast wave I
] =
o
. £
100 2.0 L2.0
=
o
s .l
50 2
2 1.5 1.5
slow wave o |
e |
e 3 4 7 s
- 1.0+ et 1.0
log(f(Hz)) i
0.5 slow wave 0.5
(b)
0.0 —T—— —1——r—71— 71— 0.0
-1 0 2 3 4 8
log(f(Hz))
Fig. 3. — (a) quality factors and (b) phase velocities of the porous medium with internal dissipation in the

solid. The dotted lines correspond to the elastic porous material. The anelasticity contributes mainly to the
fast wave.

7. Conclusion

Many earth materials can be considered as multiphase solids with fluid-filled pores.
Attenuation and velocity dispersion are strongly dependent on the characteristics of the
porous medium, which include intrinsic properties of the solid and the fluid, and complex
interations of the solid-fluid system. This work proposes a phenomenological model
for describing wave propagation in viscoacoustic porous media where any dissipation
mechanism can be included within the framework of the linear response theory. The
theory requires knowledge of the relaxation functions, whose complex moduli should
have a rational form in the frequency-domain. The relaxation times can be obtained by
curve fitting provided that one knows the quality factor and phase velocity dispersion
curves. The theory allows the modeling of the anelastic properties of dilatational waves
observed experimentally in porous rocks, and efficient wave field computations by direct
grid methods since the wave equation is expressed in differential form in the time-domain.
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APPENDIX A

Constitutive relations and equation of motion

The frequency-domain stress-strain relations for a linear viscoelastic and isotropic
porous solid are given by [Biot, 1956, 1962]

(Ala) T=H* &2 %@ +8,)—CFE,

(Al1b) T, =H*e—2p* (@ +é,)—C*,

(Alc) T= H*E— 2™l +&,)—C¥(,

(Ald, e, f) TL=20%8,,  T,=2p%e,, ¥, =2pe,
(Alg) prp=—C*e+M*T,

where T;; are the stress components of the bulk material, ¢;; are the strain components
of the solid matrix, & and { are the dilatations of the bulk material and fluid phase,
respectively, and j is the fluid pressure. The qualities H*, p*, C* and M* are frequency-
dependent material properties. The model is restricted to the viscoacoustic case, which
implies that no shear deformations can take place. This is done by taking p*=0. Applying
the convolution theorem to Eq. (Al a-g) yields

(A2a, b) —p=H*e—C*{, and pr=—C¥et+M*(,

where p is the bulk pressure, and symbol * denotes time convolution.

Expressed in terms of relaxation functions, and using the properties of convolution,
Eq. (A2 a-b) can be written as

) L v

Py -\, /A g
such that \j!l =—H, \j/z =C, \i!3 =M, where a dot above a variable denotes time differentia-
tion. Expressions for the relaxation functions are given in Appendix B. As stated by
Biot [1962], the symmetry of the operational matrix of Eq. (A 3) is a consequence of the
laws of the thermodynamics of irreversible processes, particularly Onsager’s theorem.

The dynamical equations for a saturated poroelastic solid were obtained by Biot using
a macroscopic approach, and verified by Burridge & Keller [1981] and de la Cruz &
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Spanos [1986] starting from the detailed microstructure of the system. For zero body

forces. and restricted to the viscoacoustic case, the equations can be expressed [Biot,
1962] as

(Ada, b) —grad p=pii+p,W, and —gradpfzpfii+m\"v+%"v,

where u is the average displacement of the solid, and w is an average vector giving the
flow of the fluid relative to the solid such that e=divu, and {= —divw. The composite
density of the saturated material is p=(1—p)p,+pp » where pg is the density of the
solid, p, is the density of the fluid, and P is the effective porosity; m=ap, B, with o the
tortuosity, a dimensionless parameter that is dependent on the pore geometry [see, for
instance, Johnson et al., 1982]. Finally, n is the fluid viscosity and K is the global
permeability of the porous medium. The validity of the theory is given by the condition
imposed by Poiseuille flow, which implies a high-frequency limit. For higher frequencies,
the viscosity and the density parameters in Eqgs. (A 4a, b) are time-dependent, and the
right-hand side terms become convolutional integrals. Scattering dissipation is not explici-
tely considered (since the wavelength is assumed larger than the pore size) although, in
principle, its contribution could be simulated with the relaxation functions.

Egs. (A4a, b) can be alternatively written as

(A5a, b) - grad P=TU+HU,  where UZI: " }, and
—w

(A6a, b) I:EI:_p pf} and Ij=[0 0],
—p; m 0 n/K

are the mass and damping matrices, respectively.

APPENDIX B

Relaxation functions

A relaxation function appropriate for wave field computations in the time-domain can
be expressed as

(B1) ¢(r)=[AR+ 5 A,e*"‘f}H(o,

=1

with A, Ag, and 71, space-dependent functions, and H(¢) the step function. Fourier
transforming the time derivative of the relaxation function gives the complex modulus
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[Ben-Menahem & Singh, 1981], which can be written as

L
. 1+im0,
M (0) =\ (¢
( ) \lj() L 121 1+I(DTI

A Ar [0
6,=<1+L’ o A= (%)
Ag L \1
with ® the angular frequency. 0,, and 1, are relaxation times, and the tilde indicates time
Fourier transformation. Eq. (B2a) is the expression of a general rational function in the
variable i ®. As special cases, the general standard linear solid [Carcione et al., 1988 a]

and the generalized Maxwell body [Emmerich & Korn, 1987] can be represented by the
complex modulus (B2 a).

(B2a, b, ¢

A parallel connection of L single standard linear elements, each with constants Mg/L,

1, and 1, /=1, .... L, has a complex modulus of the form (B2a), with
(B3a, b, ¢ Ar=My, T ="Tg, 0,=1,.
Similarly, a parallel connection of L Maxwell elements, each with constants k, and T,
[=1, ..., L, plus a spring of constant Mg, gives
k,
(B4a, b, ¢ Ar=Mg, =1, 0,=(1+L— | 1.
R

Expressions for the complex moduli and relaxation functions of single standard linear
and Maxwell elements can be found, for instance, in Ben-Menahem and Singh [1981].

For ® > 0in (B2), or t - oo in (B1),

(BS) M (0) - Y (0) = Ag, the relaxed modulus associated with the long-term behaviour
of the system. For @ — co, or t — 0,

L L
A .
(B6) M(0)->VY(0)> A=A+ ) A= TR Y %, the unrelaxed modulus, which
1=1 =17
characterizes the instantaneous response.
APPENDIX C

Eigenvalues of the propagation matrix M

Let a one-dimensional plane wave solution to Eq. (21) be of the form

(&) D=Dg ¢ @ci=+,
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where 7 is the time, x is the position variable, w. is the complex frequency, and k is the
real wavenumber. In the 1-D case D, has nine components:

(C2) D, =[eq, Lo, o, COa —Wos €10> G305 €205 G20l-

Replacing (C 1) into (21), and considering constant material properties and zero body
forces, yields

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
M, M;, 0 0 M My, My, My My
My, My, 0 0 My My My, My My

(C3) iocDy= |Ms; Ms, 0 0 Mss Mss Ms; Mgy Mo | Do,

My, 0 0 0 0 Mg 0 0 0

0 M;,, 0 O 0 0 M, 0 0
Mg, 0 0 0 0 0 0 Mgg 0

0 My, 0 O 0 0 0 My,

where

det TMy,=—k>[y5, ¥y (0)+vi, ¥, (0)],  det LMy, = =k [y, 5 (0) =1, W3 (0)],
det T M;s=iky,,n/K, det TM;= —k%7v,,, det TM;,=k*v,,
det TMyg=k*v,,, det TM,o= —k?7,,,
det TMy, = —k*[y12 W1 (0) =74, W, O],
det CMy, ==k [y;2 V2 (0)+ v, U3 (0),  det TMys=—ikvy, /K,
det TM = —k*v,2, det TM,,=—k*v,4,
det TMyg= —k? 744, det TMy o= —k*v,,,
det LM =ik [y, 0, (0) =y V2 (0)],  det Mg, =ik [y, V2 (0)+y,5 W3 (0)),
det T Mss=—7v,;n/K, det [T Msg=1ikyy,, det L Ms,=ikyqq,
det T Msg=ikvy,,, det L Mso=1ikvy,,,
Mg, =9, (0), Mgg=~1%, M, =93(0), M,,=—1/79,
Mg, = —¢,(0), Mgg = — 1, My, = —9,(0), Mgo= *1/1:(2)1
Eq. (C3) is an cigenvalue equation for the eigenvalues A=io¢. The following example
clarifies the physical meanning of the eigenvalues. The material properties of the porous
solid are given in Table 1, and the relaxation times are: 1=1.600% 102,
OD=1785%x10"2; 1@=1.600x10"% 6P=1860x10"% and t¥=1.600%x 1076,
9 =1.740 x 10~°. For k=100 m ', the eigenvalues are
Ay =(—762+i341258)s ", A, =A%, Ly =(—84223+i50865)s ", hy=2%
As=0, Ae=—55s"1, A, =—622861s"1, Ag=—599757 ", ho= —685557",
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where here the symbol * means the complex conjugate. As can be seen the eigenvalues
have negative real parts. The complex frequency is given by o.=w+iw,= —i\. Then,
the temporal quality factor is defined by [Pilant, 1979].

) Im [A] —
C4 w)=—=— , and the phase velocity is
(C4) Q, (w) 2o, IRe ] p y
I
(©5) c@=2="0
k k

which should be the same as that given by Eq. (42). Re and Im take real and imaginary
parts, respectively. A; and A, correspond to the fast wave, giving /=54 k Hz, Q,=223,
and ¢=3413 m/s., while X, and A, correspond to the slow wave, with =8 k Hz, Q,=0.3,
and ¢= 508 m/s. The zero eigenvalue arises from the fact that the fourth and fifth rows
in the propagation matrix are linearly dependent. The other eigenvalues are attenuating
static modes which are given by Ag~—1/t", A~ — 1/, and Ag~hg~ — /1. This
analysis confirms the stability of the system represented by Eq. (21).

APPENDIX D

Acoustic coefficients

A real material behaves elastically at both very high and very low frequencies. As
shown in Appendix B, the complex modulus becomes real when @ — o0, or ® — 0, giving
the unrelaxed and relaxed moduli, respectively. In such cases, it can be seen that the
quality factors (43) are equal to infinity, indicating elastic behaviour. The reaction of the
medium to a propagating wave represents the instantaneous response, and therefore
corresponds to the more usual interpretation of elastic behaviour. However, observed
discrepancies between the static and dynamic moduli are not caused by a frequency
difference but by a difference in strain amplitudes [Cheng & Johnston, 1981; Winkler,
Nur & Gladwin, 1979]. Therefore, the present model allows the possibility of choosing
the elastic matrix ¥, as

‘l’e(f)zlim‘f=[ A Ay,
7A112 A

t—0 u3

(D1la, b) or

A A
Y. (H)=lim Y= k1 2 H(),
Y. (1) £ [_A A } (1)

1= w R2 R3
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depending on whether the elastic limit is the high or low frequency range, respectively.
Then, replacing (D 1) into (1) yields the elastic constitutive relation:

A
®2 el R k]
pf Z; _AeZ Ae3 Q
where A,,, r=1, ..., 3 are the acoustic coefficients. These can be obtained as functions

of the solid and fluid properties, either experimentally of from Biot theory [1957].
Biot [1955] expressed the stress-strain relations for uniform porosity as

(D3a, b) —(p—Bps)=Ae+Qes, and —Bp,=Qe+Reg,

where e=e—{/B, with zero shear modulus. A, R and Q are elastic coefficients which
can be expressed as functions of the matrix (dry rock), solid and fluid properties.
Following Plona & Johnson [1980], after Biot & Willis [1957], these coefficients are

Aol B _ 1], B w6 _ B
(D4a, b, ¢) RA=(1 B)[fK K}LKJ’ RR=" —,

m S m

KQ=B[%—£], with

m

_ | 1 1
(D5) K= Brs._t + L :I, where K, K, and K, are the bulk
K,LK, K KK, K

moduli of the solid, matrix and fluid, respectively.

S s m S

Comparison of Egs. (D 2) and (D 3 a, b), yields the acoustic coefficients:

D6a,b,c) A,=—(A+R+2Q), A,,=(Q+R)/B, A_=R/B%

{ X

By substitution of (D 5a-c), they are

_ 1 1 1 |
(D74, b, c) RA, =———+B| ——-— |,
Ks I<m s Kf
_ 1 1 - 1
RA,=—=—, KAp=—
I(m Ks Km
REFERENCES

ADELMAN S. A., 1980, Advances in Chemical Physics, 1. Prigogine and S. A. Rice, Wiley-Interscience, New
York, Vol. XLIV.

BEN-MENAHEM A. B., SINGH S. J., 1981, Seismic Waves and Sources, Springer-Verlag, New York, Heidelberg
& Berlin.

Biot M. A., 1955, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26,
182-185.

BioT M. A., 1956, Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys., 27, 459-
467.

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N° 1, 1993



WAVE EQUATION FOR VISCOACOUSTIC POROUS MEDIA 71

Biot M. A., WiLLis D. G., 1957, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24,
594-601.

BioTr M. A., 1962, Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33,
1482-1498.

BoursIE T., Coussy O., ZINSZNER B., 1987, Acoustics of porous media, Institut frangais du Pétrole Publications.

BURRIDGE R., KELLER J. B., 1981, Poroelasticity equations derived from microstructure, J. Acoust. Soc. An.,
70, 1140-1146.

CARCIONE J. M., KosLoFF D., KosLoFF R., 1988a, Wave propagation simulation in a linear viscoacoustic
medium, Geophys. J. Roy. Astr. Soc., 93, 393-407. Erratum: 95, 642 (1988).

CARCIONE J. M., KosLorr D., KosLorr R., 19885, Wave propagation simulation in a linear viscoelastic
medium, Geophys. J. Roy. Astr. Soc., 95, 597-611.

CARCIONE J. M., 1990, Wave propagation in anisotropic linear viscoelastic media: theory and simulated
wavefields, Geophys. J. Roy. Astr. Soc., 101, 739-750.

CHENG C. H., JounsTON D. H., 1981, Dynamic and elastic moduli, Geophys. Res. Lett., 8, 39-42.

DE LA Cruz V., Spanos T. J. T., 1986, Seismic wave propagation in a porous medium, Geophysics, 50, 1556-
1565.

EMMERICH H., KORN M., 1987, Incorporation of attenuation into time-domain computations of seismic wave
fields, Geophysics, 52, 1252-1264.

GEERTSMA J., SMIT D. C., 1961, Some aspects of elastic wave propagation in fluid-saturated porous solids,
Geophysics, 26, 169-181.

JoHnsoN D. L., PLoNA T. J., ScALA C., PasierB F., KojiMA H., 1982, Tortuosity and acoustic slow waves,
Phys. Rev. Lett., 49, 1840-1844.

Liu H. P., ANDERSON D. L., KANAMORI H., 1976, Velocity dispersion due to anelasticity; implications for
seismology and mantle composition, Geophys. J. Roy. Astr. Soc., 47, 41-58.

MocHIZUKI S., 1982, Attenuation in partially saturated rocks, J. Geoph. Res., 87, 8598-8604.

PiLANT W. L., 1979, Elastic waves in the earth, Elsevier North-Holland Inc.

Prona T. J., JonnsoN D. L., 1980, Experimental study of the two bulk compressional modes in water-
saturated porous structures, Ultrasonic Symp. IEEE, 868-872.

RAsoLoFosAON P. N. J., 1991, Plane acoustic waves in linear viscoelastic porous media: Energy, particle
displacement, and physical interpretation, J. Acous. Soc. Am., 89, 1532-1550.

ScuMmiTT D. P., BoucHON M., BoNNET G., 1988, Full-wave synthetic acoustic logs in radially semiinfinite
saturated porous media, Geophysics, 53, 807-823.

TAL-EzerR H., CARCIONE J. M., KosLOFF D., 1990, An accurate and efficient scheme for wave propagation in
linear viscoelastic media, Geophysics, 55, 1366-1379.

WINKLER K. W., NUR A., GLADWIN M., 1979, Friction and seismic attenuation in rocks, Nature, 277,
528-531.

WINKLER K. W., 1985, Dispersion analysis of velocity and attenuation in Berea sandstone, J. Geophys. Res.,
90, 6793-6800.

(Manuscript received June 10, 1991,
accepted January 8, 1992.)

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 12, N° 1, 1993



	1
	2
	3

