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Summary

We introduce a modeling algorithm to simulate wave propagation
through a rotationally symmetric borehole environment  in the presence
of the earth’s surface. The modeling simulates 3-D waves in a
multidomain 2-D Chebychev mesh, and requires domain decomposition
technique and a special treatment of corner and-joint side points, both
based on a characteristic decomposition of the wavefield. The
performance of the multidomain mesh is verified in 2-D Cartesian
soordinates by solving Lamb’s problem.Finally, simulation in an

(1d)

empty borehole for two different frequency ranges shows that the
method can handle a model with a realistic hole diameter and suitable
for reverse VSP configurations.

Introduction

The problem of obtaining a realistic VSP survey by using
pseudospectral differential operators was attacked b David Kessler
and Dan Kosloff in a series of papers (Kessler an Kosloff, 1990,
1991, 1992). In the first two, they solve for 2-D acoustic and elastic
wave propagation in a plane perpendicular to the hole by using
Chebychev and Fourier differential o eratorsin the radial and
angular directions, respectively. In the third paper, they add a
Fourier expansion in the vertical direction to propagate 3-D
wavefields. They simulate a 4 m borehole diameter and propagate
a 40 Hz pulse a distance of 300 m from the hole, which is equivalent
to a maximum to minimum significant length ratio of 75. On the
other hand, Yoon and McMechan (1992) use a staggered
finite-difference scheme to simulate full-wavefield sonic logs. They
use a realistic hole diameter and propagate a 10 KHz pulse 25 cm
from the borehole. However, the challenging problem is to
propagate a seismic pulse with a realistic borehole diameter. With
resent-day computers, this task seems difficult to accomplish, at
least in three dimensions and with realistic computer times.
The present modeling technique solves wave propagation in 3-D
rotationally symmetric media. In this context, the azimuthal
particle velocity component decouples from the other components.
The algorithm is based on a multidomain spectral method which
combines 2-D Chebychev meshes. The advantages of this type of
mesh is that general boundary conditions can be implemented at the
four boundaries of the grid (Carcione 1993a,b), allowing the
modeling of the borehole and the Earth’s surface. In addition, grid
matching handles wave proagation from one subdomain to the
other. Both boundary conditions and domain decomposition are
based on characteristics perpendicular to the boundaries. This 2-D
approach for modeling 3-D propagation avoids the angular
direction grid, which involves very small grid spacings (Kessler and
Kosloff, 1992) and therefore very small time steps for the
time-integration algorithm.

(1f)

(2b)

The wave equation .

The wave equation combines the equationof momentum
conservation with the constitutive relations for isotropic and elastic
media. The velocity-stress formulation below represents either
propagation in 2-.D Cartesian coordinates  or 3-D propagation
in cylindrical coordinates   z), where axially symmetric
borehole, formation and source are assumed. In this case, the
wavefield does not depend on the azimuthal variable 

    propagation

(1a)

(1b)

(1c)

2-D Cartesian,   plane:  = x,  = 0,  = 0,

3-D Cylindrical:   

SH - propagation (torsional waves)

(1e)

(2a)a

(2c)

2-D Castesian, (x,z) - plane:         0,

3 -D Cylindrical:    

In the preceding equations,  =  +  , with  and  the Lame’
constants;  are the particle velocities,  are the stress components,
 denotes the density, and f are the body forces per unit volume..

The Numerical Method

Each computational subdomain is a square region where the grid
distribution is defined by the Gauss-Lobatto points  The spatial
derivatives are computevia a variant of the fast Fourier transform
(FFT) for the cosine transform. The distribution of the grid points
can be altered conveniently by 1-D) stretching transformations. In
the exam les presented here the following stretching function is
used (Kos off et al., 1990):l

l  4
   

(3)

where p =    and q =  -1). It can be seen
that the amount of grid stretching at  = -1 is    and that
the stretching at  = 1 is  = 
The 2-D Chebychev operator is very sensitive to the boundary
conditions. Stabilization of the algorithm is based on a
characteristic treatment of the wavefield at the boundaries of each
subdomain. The wavefield is decomposed into one-way
characteristics) perpendicular to the boundaries, and the incoming

modes (or

modes are modified according to the particular boundary condition,
In this work, the multidomain shown in Figure 1 is used. The
directions of the characteristics are also represented. Corners
points, like L, for instance, were tested in a previous work
Carcione, 1993a,b). Problems may arise from the so-called ‘I

points, which combine interface and free surface boundary
conditions (T 1), or interface and non-reflecting boundary conditions
(T2). These points are treated independently (in each subdomain)
with rotated characteristics, Unlike the interface points, where the
wavefield is unique for both subdomains, T points have dissimilar
values.
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  and  boundary equations for the upper
a n d  l o w e r   o f  e a c h  s u b d o m a i n ,  
corresponding to equations (la-f) are now 

 stress-free boundary  are:

 . )   . )   . r  a

characteristics,  This is done at each time step.
 non-reflecting boundary equations are:

 a
 . )

- -   )

7 1

The stress-free equations for the left boundar of  are obtained
from  by substituting    , z  Similar y, the non-reflecting

4
 for the right boundary of   are obtained from

a-l).
 ‘he vertical the subdomains can be a real
material interface or just a  ary separating regions of the same
medium. As before, the wave equation is decomposed into wave
modes describing out
to the boundary.

oing and incoming wave modes 
 outgoing waves are determined by the

solution inside the subdomain, while the incoming waves are
calculated   conditions at the interface, i.e., continuity 
displacements and normal  interface boundary
equations (e.g., Carcione,  Tcssmer et al,, 1992) arc given by

 =        A)   A) +  B)] ,

 =        A)   A) + Z

where    +  and  =   For
the L and ‘I‘ points WC USC an ad hoc treatment suggested by Lie
(199  who defines the ‘normal to  point’ inwards and bisecting

the  between the adjacent    
involves rotation of  characteristic by an angle n/4.

 boundary and interface equations for  propagation arc
similar but  simple than the  uations for    propagation.

 characteristics for  right an
and 

left.  arc  
and for the  and lower     and

  are  by
  boundary):

Non-reflecting (lower  t-y):

a  

As before, the  and    for the right
and left boundaries, respectively, are  (7) and 
substituting    and 
Interface:

Wave propagation in a 2-D Cartesian 

 example tests  performance of the boundary  
 points,  particular on the intersection of the  

with the  surface (point Tl) (see Figure 1). We  the
medium  with corn  and shear  of

 =  = 2000 m/s and  =   = 1300 m/s,  and
a density of  = 1 The source is a vertical force  a

  time-history with central   = 16  
force is in subdomain  at 1.87 m  and 37 m from the
interface. A receiver is located in  omain  at 12 1 m from the
interface, and at 212.8 m depth.The example is basically Lamb’s

for which a  analytical solution exists.
he calculations use a numerical mesh with  = 8 1 and  = 121

for each subdomain. Their dimensions after the  are
  m and = 2252.3 m, with maximum grid  of

=  m at the centers of the meshes. The stretching
 are a, = 4.86, a, = 7.2 and  = 2. We found from

numerical tests that in order to maintain stability, the aspect ratio
of the cells (maximurn to minimum length), close to L and T points,
must be less than  The solution is propagated to 0.8  with a time
step of   using a  Runge-Kutta integration scheme.
Figure 2 shows a snapshot of the particle velocity vector, and
compares numerical and analytical  histories at the receiver.
As  be seen from the pictures, the result is satisfactory.

Wave propagation in a  grid

In this problem we solve equations (la-f) on a cylindrical grid for
an empty  of diameter 20 cm. The grid and 
conditions are shown in Figure 1. The left side of  A
sitnulates the boreholc wall, and the upper part of the subdomains
the surface of the earth. The medium homo  with wave
velocities and density as in the previous  e. The problem is
solved in two    with source central
frequencies of 1.5 Kl lz and 400  corresponding to the 
logging and reservoir seismic prospecting bands, respectively.
Figure 3 shows  mesh for the  logging run.  number
of grid points in the vertical  is 121, and in  
directions 49 (subdomain A) and 121 (subdomain  The vertical
distance is  m, and  radial extensions of A and  are 1.2 m and
 m,  ivcly. In  to keep the algorithm stable when

applying the characteristic treatment, we choose the ratio between
 interior and the  radii of both meshes less than 80
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(Kessler and Kosloff, 1990).  The stretching parameters are        
       2.88        = 7.2 and       .  The minimum to maximum
significant length ratio (radial extent  over the borehole radius) is 73,
and the radial distance is 8.4 shear wavelengths. A vertical force is
applied at 2.7 mm from the borehole wall (a ring-shaped source)
and at 1.6 m from the surface. The timestc
Runge-Kutta scheme is 5 1O-4 ms. Snapshots of  the wavcfield are

used by the

dis
wall and the Rayleigh surface waves have very high amplitude

played in Figure 3.The waves traveling through the borehole

(actually, they are cli ppcd in the second snapshot).
The second model has a vertical distance of 50 m, and radial
extensions of 1.2 m and 50 m, rcspcctivel, for subdomains A and
B  The stretching (3) is only applied to the radial direction of the
inner mesh, with  = 2.88 and  = 2. In this problem, the
minimum to maximum length ratio is 513, and the radial distance
is 16 shear wavelengths. As before, a vertical ring-shaped source is
applied (clamped) to the borehole wall , at 13 m from the surface.
A snapshot of the particle velocity vector is shown in Figure 4,
where the different waves can be appreciated:
(borehole wave),  (coniprcssional) an

R (Rayleigh), T
S (shear). Finally, Figure 5

displays the seismogram recorded at the borehole wall and surface.
It can be seen that, at the surface, the wave T generates a Rayleigh
wave R and a new borehole wave propagating downwards (also
labeled T in the Figure).

Conclusions

The present modeling
phenomena in h

scheme is designed to investigate wave
bore ole

propagating
environments; in particular, waves

through the wel l  system and reverse 
configurations.   Since we solve 3-D propagation with the same effort
as   modeling, borehole waves and their interaction with the
surface can be simulated with realistic computer times. The
examples involve an empty hole in a homogeneous formation, but,
the borehole fluid can easily be modeled by adding a third
subdomain. The numerical scheme can be improved by considering
different time steps for each subdomain, thus resulting in a
reduction of computer time. The Performance of the L and T points
can be irnproved by applying alternative characteristic aroaches.
Moreover, the use of genera ized coordinates (Carcione, 1993
allow the modeling of surfacetopogra hy and variable hole
diameter. Realistic material rheology (ane asticity and anisotropy)
can be easily incorporated in the modeling (e.g., Carcionc, 1992,
1993b; Tessmer and Behle, 1992).
Although the model has rotational symmetry, it allows for lateral
variations of material properties, truncated casing, vertical
variations in hole diameter, washouts, borehole bottom, etc. For
instance, knowledge of” the velocity of the longitudinal and torsional
modes propagatmg through a drill-string provides useful
information ‘or the data-processing (e.g., Poletto et al., 1992).  Thef
drill-tool (including the coup lng joints) and the drill rig (which
generates surface waves) are, Tactically, a rotationally symmetric
system.
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Cartesian or cylindrical mesh composed of two Chebychev. . . ,Fig ure 1.
subgrids (A and B). The directions of the characteristics are indicated
The left andupper boundaries satisfy stress-free boundary conditions,
and the right and lower boundaries non-reflecting boundary conditions.

Figure 2. Snapshot of the particle velocity vector for Lamb’s problem
and comparisen between numerical and analytical solutions. The source
is in the left subdomain and the receiver is in the right subdomain.
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Figure 3. Mesh and snapshots  the particle vctocity vector  the acoustic logging run
central frequency source). (3

Figure 4.  of  particle velocity vector for the 
  R denote the with  (800  central frequcnc

‘I’  borchote wave,  the  y   ayleigh 
the   wave.

Figure 5. Seismo ratn recorded at the  wall and earth’s surface,
corresponding to  seismic problem.
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