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Wavefronts in dissipative anisotropic media

Jose M. Carcione*

ABSTRACT

The purpose of this work is to draw attention to
several differences between wave propagation in dis-
sipative anisotropic media and purely elastic anisotro-
pic media. In an elastic medium, the wavefront is
defined as the envelope of the family of planes that
makes the phase of the plane waves zero. It turns out
that this definition coincides with the wavefronts ob-
tained from the group and energy velocities, i.e., the
three concepts are equivalent. However, for plane
waves traveling in dissipative anisotropic media these
concepts are different. Despite these differences, the
velocity of the envelope of plane waves closely ap-
proximates the energy velocity, and therefore can
represent the wavefront from a practical point of view.
On the other hand, the group velocity describes the
wavefront only when the attenuation is relatively low,
i.e., for Q values higher than 100. The values of the
different velocities and the shape of the wavefront are
considerably influenced by the relative values of the
attenuation along the principal axes of the anisotropic
medium. This means that the anisotropic coefficients
in attenuating anisotropic media may differ substan-
tially from the corresponding elastic coefficients.
Moreover, it is shown that the usual orthogonality
properties between the slowness surface and energy
velocity vector and the wavefront and wavenumber
vector does not hold for dissipative anisotropic media.

INTRODUCTION

Waves in anelastic media travel at velocities that are
different from those of waves in elastic media, the differ-
ences depending on the degree of attenuation that produces
more or less velocity dispersion. If the medium is isotropic
(and homogeneous) the velocity of the energy coincides with
the velocity of the plane waves, i.e., the phase velocity
(Carcione, 1990). However, in dissipative anisotropic media

the energy velocity is neither the phase velocity nor the
group velocity. The question arises if the wavefront (energy
velocity times one unit of propagation time) can be described
as the envelope of plane waves. In this paper, I investigate
this point and the influence of anelasticity on the different
physical velocities.

The paper is organized as follows. The first section intro-
duces the frequency-domain constitutive relation for aniso-
tropic-viscoelastic media from a general point of view. In the
next sections the phase, energy, group, and envelope veloc-
ities for homogeneous viscoelastic plane waves are defined,
the latter being the velocity of the envelope of plane waves.
Then, the calculation of the different velocities is carried out
explicitly for the SH mode in a plane of symmetry of an
orthorhombic medium. Finally, I introduce a constitutive
equation that models the attenuation properties along pre-
ferred directions and analyze the behavior of the different
physical velocities.

CONSTITUTIVE RELATION

Hooke’s law for elastic anisotropic media can be extended
to dissipative media by replacing the elastic constants by
appropriate relaxation components (Christensen, 1982;
Carcione, 1990). The viscoelastic constitutive relation is
Boltzmann’s superposition principle which can be expressed
as

  =   I, J= 1, . . . , 6, (1)

where x = (x, y , z) is the position vector and t is the time
variable, with the asterisk denoting time convolution;

     

xx       1 (2)

is the stress vector,

   s3,   

=       (3)

is the strain vector, and  are the components of the
relaxation matrix  t), such that  =  A dot above
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the relaxation components indicates time differentiation.
The notation assumes implicit summation over repeated
indices, with vectors written as columns and the superscript
T denoting the transpose. A general solution representing
viscoelastic plane waves is of the form

defined as a complex scalar quantity. The complex velocities
of the three wave modes are found by solving equation (9).
The phase-velocity vector is defined as the frequency di-
vided by the real wavenumber

(13)(4)

where  is the angular frequency, and k is the complex
wavenumber vector with K and  the real wavenumber and
attenuation vectors, respectively. They indicate the direc-
tions and magnitudes of propagation and attenuation. When
the directions of propagation and attenuation coincide, the
wave is called homogeneous. Hence,

in virtue of equation (12), with Re [•] taking the real part. The
slowness is the reciprocal of the phase velocity. In vector
form it is given by

(14)

      
i.e., it is the real part of the complex slowness.

ENERGY VELOCITY AND WAVEFRONT
    (6)

In the absence of body sources, the complex Umov-
Poynting theorem or energy balance equation for homoge-
neous viscoelastic plane waves in a dissipative medium is
given by (Carcione, 1990),

defines the propagation direction through the direction co-
sines  ,  and  Substituting the plane wave (4) into the
stress-strain relation (1) yields

        (15)

where P is the complex Umov-Poynting vector defined as
where are the components of the stiffness
In matrix notation, equation (7) reads

 

(16)
(8)

with  the stress tensor given by
where the dot denotes ordinary matrix multiplication. For
anelastic media, the components of p are complex and
frequency dependent. (17)

SLOWNESS AND PHASE VELOCITY
The vector v is the particle velocity

The dispersion relation for homogeneous viscoelastic
plane waves has the form of the elastic dispersion relation,
but the quantities involved are complex and frequency
dependent. It can be written as (Carcione, 1990),

 (18)

where u is the displacement vector related to the strain
vector by S =  u. The asterisk used as superscript
denotes complex conjugate.

The real part of the Umov-Poynting vector gives the
average power flow density over a cycle. The quantities

(9)

(19)

is the 3 x 3 Christoffel matrix, with

(20)
(11)

are the peak strain and peak kinetic energy densities, and
the direction cosine matrix. In equation (9), pV is the density
and V is the complex velocity (instead of the phase velocity
in elastic media) given by   (21)

(12) is the dissipated energy density,where Im [•] takes the
imaginary part. The average storedenergy density is
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Then,

(22)

In elastic media  = 0, and also the net energy flow
into, or out of a given closed surface  vanishes:    
= 0. Thus, the peak kinetic energy is equal to the peak
potential energy. As a consequence, the average stored
energy is equal to the peak potential energy.

The energy velocity vector is defined as the ratio of the
average power flow density to the mean energy density (22).
The average power flow density is the real part of the
complex Umov-Poynting vector. Hence,

  
 

    
(23)

The location of the energy defines the wavefront. Therefore,
this is the locus of the end of the energy velocity vector at
unit propagation time.

An important relation between the phase velocity and the
energy velocity is

K l = (24)

where  is the magnitude of the phase velocity vector (13).
Relation (24) is proved by Auld (1990, eq. 7.57) for elastic
media. It can be shown that equation (24) also holds for
general dissipative anisotropic media and for inhomoge-
neous viscoelastic plane waves, i.e., for arbitrary directions
of propagation and attenuation.

GROUP VELOCITY

I compute the group velocity by generalizing the elastic
group velocity

where the partial derivatives here are taken with respect to
the real wavenumber components , and  Since an
explicit real equation of the form      is not
available, equation (25) is not appropriate.

Alternatively, the group velocity can be obtained by
implicit differentiation of the dispersion relation (9). For
instance, for the x-component

  
 

  
(26)

or, since     

do
- = R e -  .

 

 
(27)

Implicit differentiation of the complex dispersion relation
       = 0 gives

   (28)
 

  
(29)

 

and similar relations hold for the  and  components.
Replacing the partial derivatives in equation (25), the group
velocity can be evaluated as

    

   (30)

which is a generalization to dissipative media of Auld’s
(1990) equation (7.78).

ENVELOPE VELOCITY

Let us assume for simplicity that  = 0, i.e.,the propa-
gation is in the (x, z)-plane. Then, the wavenumber direc-
tion can be defined by  = sin  and  = cos 8, with  the
angle between the wavenumber vector and the z-axis.

As will be seen in the following demonstration, the wave-
front, defined by the energy velocity, is not the envelope of
the family of planes (straight lines in this case),

   (31)

which is the usual definition found in most books (Love,
1952, art. 209; Musgrave, 1970,88; Fedorov, 1968,148). The
velocity of the envelope of plane waves at unit propagation
time, which I call  , is

(32)

This equation is obtained by deriving equation (31) with
respect to  squaring it and adding the result to the square of
equation (31) (Postma, 1955; Zauderer, 1989, 93).

However, application of the same operations to equation
(24) yields

I show in the next section that, in general, the second term
on the right-hand side of equation (33) does not vanish for
dissipative media, and therefore the wavefront cannot be
synthetized as the envelope of plane waves.

SH-WAVES IN ORTHORHOMBIC MEDIA

In this section I explicitly perform the calculation of the
different velocities for SH-waves in one of the planes of
symmetry of an orthorhombic medium. The dispersion rela-
tion (9) in, say the (x, z)-plane, separates into a quadratic
factor and a linear factor. The latter is the dispersion relation
for viscoelastic SH-waves:

     (34)

The solution of equation (34) is given by
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V =
+ 

The displacement field has the following

. (35)

U = (36)

where U0 is a complex quantity.
The Umov-Poynting vector and energy densities are cal-

culated in the Appendix. Substitution of these quantities into
equation (23) gives the energy velocity for the SH-waves

(37)

The complex dispersion relation for the SH-waves is from
equation (34):

  =  +    = 0. (38)

The partial derivatives are given by

 (39)

 

 =  +   
do

(41)

where the prime denotes the derivative with respect to the
angular frequency. Consequently, substituting these expres-
sions into equation (30) gives the group velocity for homo-
geneous SH-plane waves as

(42)

D =  +   

Comparison of equations (37) and (42) indicates that the
energy velocity does not coincide with the group velocity.
The differences for a realistic medium are analyzed in the
example of the next section. In dissipative anisotropic me-
dia, the wavefronts are given by the energy velocity multi-
plied by one unit of propagation time. The group velocity has
physical meaning only for low-loss media as an approxima-
tion to the wavefront. It is straightforward to verify that the
two velocities coincide for purely elastic media.

Deriving the phase velocity (13) [by using equation (35)],
and replacing it in equation (32), gives the magnitude of the
envelope velocity:

For elastic media =  (the elasticities) are real
quantities, then,  = V, and

1
V =  + (44)

In elastic anisotropic media, the energy velocity  is
always normal to the slowness surface [Auld, 1990, equation
(7.71)]. From this fact, and using equation (7.71), Auld
[equation (7.74)] also proves that the wavenumber K is
always normal to the wavefront. However, these properties
do not apply, in general, to anelastic anisotropic media as
will be seen in the following derivations for viscoelastic
SH-waves. From the dispersion relation (34), and since the
slowness components are  =  and  =  the
equation for the slowness curve is

 ( 4 5 )

A vector normal to this curve is given by

. (46)

It is clear from equations (37) and (46) that  and  are
not collinear vectors; thus, the energy velocity is not, in
general, normal to the slowness surface.

The other orthogonality property of elastic media (i.e.,
that the slowness vector must always be normal to the
wavefront) is not valid for anelastic media. By using  =

 and differentiating equation (24) with respect to  gives

dtc  
   ( 4 7 )

de

where =  with

V    
tan 

V
tan (48)

 

defining the energy velocity direction as represented in
Figure 1. It can be shown that  is always different from
zero, in particular = 1 for isotropic media. Since  is
tangent to the slowness surface, and  is not normal to it,
the first term in equation (47) is different from zero. Since

 lies on the wavefront, from the second term, equa-
tion (47) implies that the wavenumber vector K is not normal
to this surface. In fact, taking into account that K(o) =

   sin    cos  calculation of the first term
of equation (47) gives

(43)
For elastic medi .a, V is real and equation (49) is identically

zero; in this case, the orthogonality propertiesare verified:

dtc
=  Re   



648 Wavefronts in Dissipative Anisotropic Media

 
 = 0, (50)

and from equation (33) the envelope velocity equals the
energy velocity, and the wavefront is defined by
equation (32) in agreement with Postma (1955) and Berryman
(1979). In dissipative media this equivalence is no longer
valid.

EXAMPLE

A class of constitutive equations for anisotropic-viscoelas-
tic media based on two complex moduli was introduced by
Carcione (1990). In the present work, I introduce two
additional complex moduli to model in more detail the
anelastic properties of the shear modes. The stiffness matrix
of this new rheology is

 
 1

P33
 (51)

 

4
=  

3
for I= 1, 2, 3,

(52a)

2
PIJ  

3

Here   J = . . . , 6 are
limit elastic constants , and

for  J = 1, 2, 3; I  J. (52b)

taken as the low-frequency

4
K = D - - G ,

3
(53)

where

3
 +  + (54a)

1

3
 +  +  l (54b)

 are dimensionless complex moduli,  = 1 is for the
quasi-dilatational mode, and v = 2, 3, 4 are for the shear
waves. In (52a and b),  is a shear modulus with 6 = 2, 3,
or 4. It can be verified that the mean stress only depends on
the first relaxation function involving quasi-dilatational dis-
sipation mechanisms, and that the deviatoric stress compo-
nents depend on the other relaxation functions, describing
quasi-shear mechanisms. Equation (5 1) gives the elasticity
matrix of the generalized Hooke’s law in the anisotropic-

elastic limit when   1 and the 3-D isotropic-viscoelastic
constitutive relation in the isotropic limit.

The stiffness matrix (51) differs from that given in
Carcione (1990), since three relaxation functions instead of
one are used to describe the anelastic properties of the shear
modes. In this way, it is possible to control the quality factor
along three preferred directions, such as the principal axeso
the anisotropic medium. The choice of the complex moduli
depends on the symmetry system. For isotropic, cubic, and
hexagonal media, two relaxation functions are necessary and
sufficient to model the anelastic properties.

The theory assumes the following form for the complex
moduli:

1 + 
  (55)

whose 1-D quality factors are given by

Qv 
Re 1 + 

    
(56)

where  and are relaxation times such that    .
Equation (55) represents the complex modulus of a standard
linear solid with maximum attenuation at  = 

The complex velocities are the key to obtain the attenua-
tion properties. These velocities are now given for the
symmetry planes of orthorhombic media. In the natural
coordinate system, orthorhombic media have p  =  =

= 0, J  4, and  =  =  = 0, and nine
independent stiffness constants. For these media, the eigen-
values of the Christoffel matrix (10) in the (x, z)-plane of
symmetry are as follows:

1
 =  +  + (57a)

and

 =  + (57b)

where

 =     22 2    +  +  

In principle,  is the velocity of the qP wave (+ sign),
while V2 (- sign) and V3 correspond to the shear waves,
with the second one a pure mode. In complex materials this
identification does not apply, since along the same wavefront
the wave may change from quasi-compressional to quasi-
shear or vice versa. Note that, in a weak anisotropic
medium, the qSV wave is defined by the velocity V2.

The physical velocities for the SH-waves are explicitly
given in the previous section. The group velocity needs 
and  which from equation (52) involves the calculation of

 = 2 and 4, given by

 =
 

(1 +  
(58)
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Note that for the particular case M2 = M4 = M, V3 =
 where  is the elastic phase velocity. When this

happens, the right-hand side of equation (49) vanishes and
= from equations (33) and (50). Moreover, the

orthogonality properties of elastic media are verified. This
case corresponds to  isotropic attenuation in the (x, z)
plane of symmetry.

The phase velocities and  of the  and  modes
are given by equation (13) by substitution of the correspond-
ing complex velocities given in equation (57a). For complete-
ness, the expressions of the group and energy velocities of
the coupled modes are given below:

     

       

       (59)

     

A careful numerical evaluation of equation (59) should
consider the limits when either  or   0. For instance,
when   0 and   1,    and   0. Taking these
limits gives the appropriate energy velocities.

 
V gm     +   

L

FIG 1. Relation between the energy velocity  and the
phase velocity 

(60)

          

with

  

  

and in terms of the Christoffel components

   

    

These velocities have been obtained in Carcione (1990) for a
meridian plane in hexagonal media, which are similar to the
expressions for the (x, z)-plane in orthorhombic media. The
envelope velocities are computed numerically [i.e., the
calculation of  in equation (32)].

The properties of the medium are given in Table 1. The
relaxation times represent dissipation mechanisms with
maximum attenuation at a frequency  =  = 20 Hz.
The 1-D quality factors at  are indicated below the
relaxation times, with  =  for this problem. For a
given value of the quality factor  at  the values of the
relaxation times are determined by

(61a)

(61b)

The quality factor is defined as the peak strain energy
density (19) divided by the dissipated energy density (21).
From the appendix, the quality factor for SH-waves is

    (62)

and a similar expression is obtained for the coupled modes
(Carcione, 1990). Figure 2a shows a polar representation of
the quality factor curves in the (x, z)-plane. Only one
quarter of the plane is displayed because of symmetry
considerations. The values at the Cartesian axes are defined
by the 1-D quality factors  for the shear waves, and simple
functions of the stiffnesses for the  wave. The slowness
and energy velocity curves are illustrated in Figures 2b and
2c, respectively.



FIG. 2. Polar representations of (a) quality factors, (b)
slownesses, and (c) energy velocities of the three propagat-
ing modes in the (x, z)-plane of symmetry of the orthorhom-,
bic medium defined in Table 1. The values of the quality
factors at the Cartesian axes are defined by the quantities
Q  = 1, 4 given in the Table.V

Table 1. Material properties.
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The different physical velocities of the SH mode versus
the propagation angle are represented in Figure 3, with
 = 0 measured from the z-axis. The values at  = 0 and  =

90 degrees are, in accordance with Figure  the values of
 and  respectively. Figure 3a corresponds to the

values defined in Table 1, and Figure 3b and Figure 
represent the low- and high-frequency limits, respectively.
Velocity dispersion causes the differences between these
two limits, where the energy, group and envelope velocities
coincide because of the elastic behavior. The differences in
Figure 3a indicate that the group velocity is not a good
approximation for the wavefront, and that the envelope
velocity closely approaches the energy velocity. On the
other hand, by inverting the values of  and  the
behavior of the velocities changes substantially (see Figure
3d). Surprisingly, the energy and envelope velocities are
equal to the phase velocity for this particular case. This
implies that anisotropic coefficients for dissipative media
depend considerably on the anisotropic dissipation coeffi-
cients, such as the ratio  for the pure shear mode. The
effects of more dissipation can be appreciated in Figures 3e
and 3f, where besides the inversion at the coordinates axes,
the differences between the energy and envelope velocities
are distinguishable. I demonstrated in the previous section
that, unlike elastic media, the energy velocity vector in
anelastic media is not normal to the slowness surface. The
angle  between the normal [equation (46)] and the energy
velocity vector (37) is represented in Figure 4 versus the
propagation angle  The deviation is larger in the direction
of maximum attenuation, but is not very important from a
practical point of view. Figure 5 displays the energy densi-
ties (A-7), (A-8), and (A-9) as a function of the propagation
angle. They are normalized with respect to the kinetic
energy; in elastic media the strain and kinetic energies
coincide and do not depend on the propagation direction as
in this case.

The analysis of the physical velocities for the coupled
modes refers to Figures 6 and 7. It can be shown that
the behavior of the qP curves at the coordinate axes de-
pends on the relation    , and cannot be inverted
by an appropriate choice of the 1-D quality factors as
in the preceding case. The behavior of the  modes
depends mainly on the values of  and  the latter
defining the values of the attenuation at the coordinate
axes. The effects of the choice of these parameters can be
appreciated in Figures 7a and 7e where anelasticity strongly
influences the shape of the curves at intermediate propaga-
tion directions.

An important result of this analysis is that the envelope
velocity closely approaches the energy velocity even in the
presence of strong attenuation. This means that the envelope
velocity at unit propagation time is a good approximation of
the wavefront. At least from a practical point of view, this
fact indicates that the  (or plane wave decom-
position) of a reflection hyperbola in dissipative anisotropic
media can still be a good approximation to the slowness
surface of the upper medium (Hake, 1986).

However, we should remember that the analysis was
carried out for homogeneous viscoelastic plane waves.
These types of waves represent a particular case where the

attenuation and propagation vectors have the same direc-
tion. This is an exception in the earth since inhomogeneous
anelastic waves are generated in the presence of heteroge-
neities and interfaces. Therefore, a more realistic analysis
should consider the case when the propagation and attenu-
ation directions are different. In fact, as pointed out by
Winterstein (1987), these effects can be important for Q
values less than 15 and for large propagation distances in
anelastic heterogeneous media.

CONCLUSIONS

The proper definition of the wavefront should be that
given by the location of the energy. For elastic anisotropic
media, there is no contradiction since the usual definition of
wavefront coincides with the concept of energy velocity.
However, this is not the case in dissipative anisotropic
media. Moreover, the physical meaning of group velocity
breaks down since in the presence of strong attenuation the
wave packet spreads considerably. Therefore, for general
dissipative media, it is convenient to define the wavefront as
the locus of the end of the energy velocity vector. In
practice, the envelope velocity closely approaches the en-
ergy velocity for all propagation directions, and therefore is
a good approximation to the wavefront. This fact has favor-
able implications for plane-wave decomposition and 
transform processing techniques, at least for homogeneous
anelastic plane waves.

From the analysis, it is seen that the differences in the
quality factors along the principal axes strongly influence the
velocities and, therefore, the anisotropic coefficients that
could be defined from them. On the other hand, the group
velocity can be used to describe the wavefront but only for
low-loss media involving Q factors of, say, greater than 100.
Actually, the group velocity is much simpler to compute
than the energy velocity, which involves the calculation of
the eigenvectors of the Christoffel equation. In addition, it is
proved that, in general, for anelastic media the energy
velocity vector is not normal to the slowness surface, and
that the propagation vector is not normal to the wavefront.
These predictions should be confronted with laboratory
experiments. Promising research in this direction was re-
cently reported by Arts and Rasolofosaon (1992) who devel-
oped an experimental method for obtaining the slowness and
attenuation curves of homogeneous plane waves in general
anisotropic viscoelastic rocks.

Future work should consider the case when the propaga-
tion and attenuation directions differ, and the numerical
analysis of the resulting wavefield with forward modeling
techniques (Carcione et al., 1992).
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FIG. 3. Physical velocities of the SH mode versus the propagation angle  measured from the z-axis. The values at  = 0 degrees
and  = 90 degrees in Figure 3a correspond to  and  given in Table 1. Note that the envelope velocity  closely approaches
the energy velocity  even for strong dissipation. However, deviations from the elastic case (3b and 3c) are substantial.
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FIG. 4. Deviation of the energy velocity from the normal to FIG. 5. Normalized energy densities as a function of the
the slowness surface versus the propagation angle for the
dissipative orthorhombic medium defined in Table 1. In

propagation angle. The dissipated energy is higher along the
direction of maximum attenuation (9 = 0 degrees). In elastic

elastic media there is not such deviation. media  = = 1 for all propagation directions.



FIG. 6. Physical velocities of the  mode versus the propagation angle  measured from the z-axis. The values at   0
degrees and  = 90 degrees in Figure 3a correspond to the values indicated in Figure 2a for this wave.



FIG. 7. Physical velocities of the qSV mode versus the propagation angle  measured from the z-axis. The values at  = 0
degrees and = 90 degrees correspond to Q3 and Q4 as indicated in Figure 2. Comparison of Figures 6a and 6e shows that the
behavior of the velocities is strongly influenced by the choice of different quality factors in different directions.



656 Wavefronts in Dissipative Anisotropic Media

REFERENCES

Arts, R. J., and Rasolofosaon, P. N. J., 1992, Approximation of
velocity and attenuation in general anisotropic rocks: 62nd Ann.
Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 640-
643.

Auld, B. A., 1990, Acoustic fields and waves in solids, Vol. 1,
second edition: Robert E. Krieger Publ. Co.

Berryman, J. G., 1979, Long-wave elastic anisotropy in transversely
isotropic media: Geophysics: 44, 896-917.

Carcione, J. M., 1990, Wave propagation in anisotropic linear
viscoelastic media: Theory and simulated wavefields: Geophys. J.
Int., 101, 739-750.

Carcione, J. M., Seriani, G., and Priolo, E., 1992, Wave simulation
in three-dimensional anisotropic-viscoelastic media: 62nd Ann.

Intemat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1251-
1254.

Christensen, R. M., 1982, Theory of viscoelasticity, an introduction,
Academic Press, Inc.

Fedorov, F. I., 1968, Theory of elastic waves in crystals: Plenum
Press.

Hake, H., 1986, Slant stacking and its significance for anisotropy:
Geophys. Prosp., 34, 595-608.

Love, A. E. H., 1952, A treatise on the mathematical theory of
elasticity: Cambridge Univ. Press.

Musgrave, M. J. P., 1970, Crystal acoustics: Holden-Day.
Postma, G. W., 1955, Wave propagation in a stratified medium:

Geophysics, 20, 780-806.
Winterstein, D. F., 1987, Vector Attenuation: Some implications for

plane waves in anelastic layered media: Geophysics, 52, 810-814.
Zauderer, E., 1989, Partial differential equations of applied mathe-

matics, 2nd ed., John Wiley & Sons, Inc.



Consider anSH-plane wave propagating in the(x, z)-plane
of symmetry. Then, the displacement can be written as

Carcione
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UMOV-POYNTING VECTOR AND ENERGY DENSITIES FOR SH-WAVES IN ORTHORHOMBIC MEDIA

U =     kzz).

The associated strain components are

au  

The stress components are

 =  =   

  = (A-5)

From equation (16) the Umov-Poynting vector is

1 1
P   +  =  

2

  

Note that for elastic media the Umov-Poynting vector is
real. On the other hand, from the energy balance (15) it can

be seen that the imaginary part of the Umov-Poynting vector
is closely related to the dissipated energy. The peak kinetic
energy density is from equation 

1 1
  peak    =  (A-7)

and the peak potential energy density is from equation 

1
  peak    + 

1 Re 
=    (A-8)

where equations (12) and (35) have been used.
Similarly, the dissipated energy density is

 =

As can be seen from equations (A-7) and  the two
energy densities are identical for elastic media since V is
real. For dissipative media, the difference is given by the
factor Re 


