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The wave equation in generalized coordinates

Jose M. Carcione*

ABSTRACT

This work introduces a spectral collocation scheme
for the viscoelastic wave equation transformed from
Cartesian to generalized coordinates. Both the spatial
derivatives of field variables and the metrics of the
transformation are calculated by the Chebychev pseu-
dospectral method. The technique requires a special
treatment of the boundary conditions, which is based
on 1-D characteristics normal to the boundaries. The
numerical solution of Lamb’s problem requires two
1-D stretching transformations for each Cartesian di-
rection. The results show excellent agreement be-
tween the elastic numerical and analytical solutions,
demonstrating the effectiveness of the differential op-
erator and boundary treatment. Another example,
requiring 1-D transformations, tests the propagation of
a Rayleigh wave around a corner of the numerical
mesh. Two-dimensional transformations adapt the grid
to topographic features: a syncline, and an anticlinal
structure formed with fine layers.

INTRODUCTION

Many problems need coordinate transformations so as to
conform to boundaries of a physical region. For instance, in
geophysical problems it is important to properly simulate the
different types of waves generated at interfaces, for instance,
Rayleigh and Love waves at the surface of the earth and
Stoneley waves propagating between geological formations.
In general, these interfaces have irregular shapes, like the
earth’s topography or the configuration formed by an oil
well, the formations, and the surface. Moreover, for anelas-
tic waves, accuracy is very important. In this sense, spectral
differential operators are free of numerical dispersion up to
the Nyquist wavenumber.

The generalized coordinates in spectral methods were first
introduced by Orszag (1980) to solve fluid dynamic prob-

lems. Fornberg (1988), and recently Nielsen et al. (1992),
used coordinate transformations to accurately represent
interfaces, in this way avoiding the unphysical noise pro-
duced by the discretization. Their method uses the Fourier
method in two dimensions to compute the spatial deriva-
tives, and therefore is restricted only to periodic boundary
conditions. Geophysical applications based on the Fourier/
Chebychev differential operator include the works of
Kessler and Kosloff (1990), who solved the acoustic wave
equation in cylindrical coordinates and Tessmer et al.
(1992a, b), who modeled elastic seismic waves in the pres-
ence of surface topography. Kosloff et al. (1990) and Car-
cione (1992a) simulated elastic and anelastic Rayleigh
waves, respectively, in a planar surface by using the same
operator. However, as before, the modeling algorithm is
restricted to periodic boundary conditions in one of the
directions.

Raggio (1986) first introduced a 2-D Chebychev differential
operator to solve the acoustic wave equation. The disadvan-
tage of his approach is that the collocation points are
restricted to the Gauss-Lobatto points.1 This restriction not
only produces a lack of flexibility in defining the material
interfaces but also greatly restricts the time step required for
stabilizing the time integration technique. In this work, I
extend Raggio’s modeling scheme from the acoustic case to
viscoelastic rheology and use a mapping transformation that
circumvents the severe stability condition and distributes
grid points in arbitrary locations. This spatial grid adaptation
concept was already applied by Augenbaum (1989, 1990) to
the 1-D wave equations solved with the Fourier method.
Applications of the algorithm to the Navier-Stokes equation
and to ultrasonic problems in elastic media can be found in
Wang et al. (1991) and Carcione and Wang (1993), respec-
tively .

A 2-D generalized curvilinear mapping transforms the
physical domain into a computational domain where the
spatial derivatives are calculated by the 2-D Chebychev

‘They correspond to the Chebychev-Gauss Lobatto quadrature
points and are related to the roots of a linear combination of
Chebychev polynomials.
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operator. In this way, arbitrary shaped bodies bounded by
continuous curves and continuous interfaces can be treated.
However, the conventional Chebychev operator requires
very small time steps depending on the super-fine grid near
the boundaries. Then, for each coordinate, a 1-D stretching
function is applied that circumvents the severe stability
condition. The nonperiodic properties of the Chebychev
operator allow the implementation of general boundary
conditions such as free surface, nonreflecting, or open
boundaries, etc. Since a direct application of the boundary
conditions produces numerical instabilities, a boundary
treatment based on the decomposition of the wave equation
into incoming and outgoing characteristics (Carcione, 1992b)
is implemented. The algorithm uses an explicit fourth-order
Runge-Kutta integration scheme for time marching
(Carcione 1992a).

THE WAVE EQUATION

The wave equation is based on the equation of momentum
conservation combined with the constitutive relations for
2-D isotropic and viscoelastic media (Carcione, 1992a).
Here, for simplicity, one dissipation mechanism is consid-
ered for each body wave. The boundary treatment requires a
velocity-stress formulation that takes the following matrix
form:

is the vector of unknown variables,

with

(1)

(2a)

(2b)

where     In the preceding equations,    
are the Cartesian coordinates,   and  (x,  are the
particle velocities,      and   are the
stress components,    is a field variable related to the
dilatational wave, and   and   are field variables
associated with the shear waves, p(x) denotes the density,

   =  are the body forces per unit volume.
Quantity        and    are the
high-frequency limit or unrelaxed Lame constants, with 
and  as the low-frequency limit or relaxed Lame constants,
and  =  where  and  are the material
relaxation times. Element  = 1 corresponds to the dilata-
tional mode, and  = 2 to the shear modes. Finally,  

  The anelastic constitutive equation im-
plicit in this formulation is the standard linear solid rheology
(Carcione 

Equation (1) is expressed in the space of the physical
coordinates   where the interfaces have arbitrary
shapes. The physical mesh is transformed to a square
computational domain by using the following generalized
coordinates:

      (4)

The spatial derivatives are computed first with respect to the
generalized coordinates  and  by using the Chebychev
pseudospectral method, and afterward, the derivatives with
respect to the physical variables  and y are calculated by
using the chain rule. For example, if  is any of the variables
of vector v given in equation  the spatial derivatives in
the physical space can be calculated as

   
(5)

The metrics and the Jacobian of the transformation are
calculated from

(6)

  
 

 

  

 

  
 

whose derivatives are also computed with the Chebychev
operator. It is important to note that the transformations
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allowed requi
lar Jacobian.

re continuous (smooth) curves and a nonsingu- the characteristic equation, where

THE NUMERICAL METHOD

The computational domain is a square region    [  
      where the grid distribution is defined by the

Gauss-Lobatto points. The spatial derivatives in equations
(5) and (6) are computed via a variant of the fast Fourier
transform (FFT) for the cosine transform (Gottlieb and
Orszag, 1977; Kosloff et al., 1990).

The stability condition and the accuracy of the time
integration scheme depend on the minimum grid spacing of
the mesh. The super fine grid of the Chebychev mesh at the
boundaries implies time steps of the order  (N is the
number of grid points),* making the modeling algorithm
highly inefficient. This problem is solved by stretching the
grid at the boundaries to allow time steps of order O(N   
thus reducing considerably the computer time (see Kosloff
and Tal-Ezer, 1993). For instance, for Lamb’s problem
(Lamb, 1904), a nonsymmetric stretching function with
denser grid at the surface than at the center is used in the
vertical direction (Kosloff et al., 1990; Carcione, 1992a) to
properly model the free surface boundary condition. In the
horizontal direction, a symmetric stretching function is
implemented (Kosloff and Tal-Ezer, 1993). For problems
having more complex (curved) geometries, the stretchings
are treated separately to take care of the minimum grid size
explicitly.

The 2-D Chebychev operator is very sensitive to the
boundary conditions. Each time the right hand side of (1) is
computed, the boundary conditions are implemented. How-
ever, a direct application of these conditions produces
instabilities (Gottlieb et al., 1982). This problem is solved by
decomposing the wavefield into one-way modes (or charac-
teristics) perpendicular to the boundaries and modifying
these modes according to the boundary conditions. The
method was recently applied by Thompson (1990) to fluid
dynamic problems and by Kosloff et al. (1990) and Carcione
(1992b) to the elastic and viscoelastic wave equations, re-
spectively. The boundary treatment along a given direction
requires the characteristic equation corresponding to equa-
tion (1) in that direction. Let us consider the boundary
normal to the y-direction. Equation (1) can be expressed as

 
 

 

where

 

After local diagonalization of matrix  as  =   ,
equation (7) can be written as

     
 

*Near the boundary of the mesh, the smallest distance between
two points is proportional to N  . This affects the stability of the
time integration scheme which considers the minimum grid spacing.

are the characteristic variables.  is a diagonal matrix
formed with the eigenvalues of   =  . . . , 8 related to
the phase velocities of the outgoing and incoming wave
modes such that  represents each decoupled characteristic
mode in the y-direction. Equation (8) completely defines

 at the boundaries in terms of the decoupled outgoing
and incoming modes. The characteristics  with   
represent traveling modes in the positive direction of the
coordinate axes, and vice versa for those characteristics
with  < 0. Having this in mind, the incoming modes are
those quantities that point in toward the computational
domain. These characteristics are computed from the bound-
ary conditions, while the outgoing modes are not modified,
and replaced back into equation (8) to get the equations for
the boundaries. The directions of the characteristics at the
boundaries are illustrated in Figure 1. The boundary equa-
tions for the upper (upper sign) and lower (lower sign)
boundaries of the numerical mesh are now given.

The Neumann boundary equations are

FIG. 1. Horizontal  and vertical  characteristics at the
boundaries of the numerical mesh. The characteristics at the
corners are also indicated. Subscripts 1 and 2 correspond to
the 1-D compressional waves and subscripts 3 and 4 to the
shear waves. Those quantities between parentheses (the
incoming modes) are computed from the boundary condi-
tions.
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where f and g are time-dependent functions, and  =
 and  =   are the unrelaxed compressional

and shear impedances of the medium. A dot above a variable
denotes time differentiation. The superscript (old) indicates
the variables given by equation (l), and the superscript (new)
refers to the variables of the left-hand side of equation (8),
after modification of the incoming characteristics. In prac-
tice, at every time step and after application of the differen-
tial operator, the vector of field variables is modified accord-
ing to the boundary equations. Note that f = g = 0 gives
free-surface boundary conditions. The method can also be
used to introduce a source function at a given point of the
boundary. For instance, f = 0 and   t) =  is a
vertical force located at  with time history g(t).

The Dirichlet boundary equations are

  

  

        

       

           

where  and  are time dependent functions.
rigid boundary conditions imply  = v = 0.

The nonreflecting boundary equations are

For instance,

l   
 

The equations for the left boundary can be obtained from the
upper boundary equations by substitutingx  y, y  and

  Similarly, the equations for the right boundary
are obtained from the left boundary equations by substitut-
ingx  where in this case,      
and   

When the boundary is not perpendicular to any of the
Cartesian coordinate axes; i.e., when the y  -direction (sys-
tem S’) normal to the boundary does not coincide with the
y-axis (system S) where the problem is solved, the boundary
treatment is applied to the variables in system S’, and then
the boundary equations are obtained by the inverse rotation
transformations. For the corner points, I use an “ad hoc”
treatment introduced by Lie (1991, Forsvarets Forsknings
Institut/Rapport-91/7009, Norwegian Defence Research Es-
tablishment), who defines the “normal to the corner point”
inwards and bisecting the angle between the adjacent bound-
ary lines (see Figure 1). For more details, see Carcione and
Wang (1993).

EXAMPLES

The first example solves Lamb’s problem to check the
accuracy of the Chebychev operator. When the source is
very close to the free surface, the high amplitude of the
Rayleigh wave represents a challenge to the boundary treat-
ment. The second example simulates wave propagation in a
model formed by a mount at the surface and a synclinal
structure in depth. The third example illustrates wave prop-
agation through a surface step to test the 1-D transforma-
tions and the characteristic approach applied to the corner
points. Finally, thelast example computes snapshots
anticlina1 structurecontaining a stack of fine layers.

in an

Lamb’s problem.– T h i s example simulates Lamb’s prob-
lem with compressional and shear velocities of  =

  = 1155 
 and with the choice

      = 1, 2, giving the elastic wave equation in the
low-frequency limit. The source is a vertical impact having a
Ricker
11 Hz.

wavelet time-history withcentral frequency  =

The calculations use a numerical mesh with  = 121 and
= 81 and with free surface boundary conditions applied

to the upper boundary and open (nonreflecting) radiation
conditions to the other boundaries. The size of the mesh is
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designed to have 2.5 grid points per minimum shear wave-
length at the center of the grid. Since for nonvertical
incidence the incoming waves are not completely eliminated,
absorbing strips are used at the sides and lower boundary to
eliminate the residual nonphysical reflections (Kosloff and
Kosloff, 1986). The solution is propagated to 2 s, with a time
step of 1 ms by using a fourth-order Runge-Kutta integration
scheme (Carcione, 1992a). Comparisons between numerical
and analytical elastic solutions are shown in Figure 2 where
the coordinates of the receivers relative to the source are (a)
(720, 0) m and (b) (720, 290) m. As can be seen from the
pictures, the results are satisfactory.

Mount and syncline model.–  The numerical mesh of this
second example, which uses the 1-D mapping functions of
Lamb’s problem, is illustrated in Figure 3. Also, the same
source type and number of grid points as in the previous
example are considered, but in this case the upper region
above the syncline is anelastic with the relaxed (elastic)
velocities of Lamb’s problem. Anelasticity is modeled by
one dissipation mechanism with bulk and shear quality
factors of  = 60 and = 40 at the central frequency of
the source. The compressional and shear velocities of the
lower region (see Figure 4) are  = 3000 m/s and  =
1500 m/s, respectively, with a density of  = 2 g/cm3.

FIG. 2. Comparison between numerical and analytical solu-
tions for Lamb’s problem where the coordinates of the
receivers with respect to the source are (a) (720,0) m and (b)
(720, 290) m. The match is virtually perfect with a maximum
error of less than one percent.

Figure 4 shows the elastic snapshots of the particle veloc-
ity vector at three successive propagation times. The ampli-
tude of the surface wave is saturated to allow the propaga-
tion of the body waves to be easily visualized. The
seismograms recorded near the surface are shown in
Figure 5. The main signal is the Rayleigh wave, which shows
attenuation and velocity dispersion.

Step model.– The model is a square mesh with two free
surfaces at the upper and right edges, including a material
interface at 525 m depth, separating two elastic media whose
velocities and densities, as well as source type and number
of grid points, are the same as in the previous example. The
upper and right boundaries of the physical mesh satisfy
traction-free conditions. The vertical mapping function of
Lamb’s problem is implemented in both spatial directions,
taking a denser mesh at the step to correctly model the free
surface boundary condition. The lower and left boundaries
satisfy open radiation conditions. A vertical force is applied
at grid point 90 located at 525 m from the corner and 1.86 m
deep.

Figure 6 displays snapshots of the particle velocity vector
at  = 0.6 s and  = 0.9 s. In the first picture, the
compressional wave has been diffracted by the corner, while
the Rayleigh wave is on the corner with the shear wave
slightly in advance. At 0.9 s the Rayleigh wave has been split
into transmitted and reflected surface waves traveling verti-
cally and horizontally, respectively. Figure 7 represents the
response of the medium recorded at 1.86 m from the surface.
The first 60 receivers correspond to the upper boundary and
the next 40 receivers to the right boundary of the step. The
sequence of reflected and transmitted Rayleigh waves, from
both the corner and the interface, can be seen.

Anticline of fine layers.– This example illustrates the abil-
ity of the method to model a stack of fine layers, one of the
most common geological structures appearing in sedimen-
tary formations. The grid geometry with  =  = 8 1 is
shown in Figure 8, where the fine concentration of points at
the center of the mesh has been obtained with the mapping

FIG. 3. Numerical mesh for the mount and syncline model.
The upper boundary is a free surface and the others satisfy
nonreflecting boundary conditions.
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FIG. 4. Elastic snapshots of the particle velocity vector at (a)
0.75 s, (b) 0.95 s, and (c) 1.25 s. The amplitudes on the plot
were gained to allow the propagating body waves to be easily
visualized, leading to saturation of the large amplitude
surface waves.

function introduced by Augenbaum (1990) (the upper bound-
ary is a free surface). This shows that it is more effective to
use mapping transformations to resolve the structure than to
simply add more grid points into the physical coordinate
system.

The anticline structure is a periodic set of sandstone-
limestone layers (from grid point 35 to grid point 47) of equal
thickness embedded in homogeneous sandstone. The spatial
period of the stratification is approximately 4 m, such that
the total thickness of the system is approximately 25 m. In
Carcione et al. (1991) can be found the values of the wave
velocities and elastic constants of the equivalent medium.
The sandstone is viscoelastic with bulk and shear quality
factors of Qk = 40 and Qs = 20 at the central frequency of
the source. At the center of the anticline, a vertical force of
central frequency 17.5 Hz excites the medium. The ratio of
dominant wavelength to spatial period for vertical incidence
is equal to 40 for the P-waves and to 22 for the S-waves, so
the long-wavelength approximation is satisfied, and the
medium behaves as an anisotropic medium (e.g., Carcione et
al., 1991).

The solution is propagated to 1.2 s with a time step of
0.25 ms. Figure 9 shows snapshots of the particle velocity
vector at three different propagation times. This example
illustrates the performance of the differential operator in
regions where sharp discontinuities of the material proper-
ties occur.

The 2-D mesh generator used in the examples is far from
optimum. More flexible techniques can be found in the
computational fluid dynamics literature; for instance, the
methods described in Thompson et al. (1985). The technique
implemented by Nielsen et al. (1992), based on a multi-block
strategy where the whole mesh is divided into subgrids
containing homogeneous material properties, is also prom-
ising.

CONCLUSIONS

The present method solves the equations of dynamic
viscoelasticity in heterogeneous media with arbitrary shaped
smooth boundaries. Neumann and/or Dirichlet boundary
conditions can be imposed at the four boundaries of the
mesh. In addition, spatial grid adaptation by appropriate 1-D
mapping functions allows a more accurate modeling of
complex structures, and reduction in the computational cost
by increasing the minimum grid spacing. The technique has
immediate application to domain decomposition since the
subdomains can be joined by imposing the appropriate
boundary conditions on the incoming waves at the inter-
faces. In this way, different geometrical features, rheologies,
and algorithms can be implemented in the same model
(Carcione, 1991). Furthermore, the mesh generator can be
improved by using techniques already applied in other areas
of research like for instance computational fluid dynamics.
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FIG 5 Elastic [(a) and (c)] and anelastic [(b) and (d)] seismograms,
recorded near the surface, of the particle velocity

components corresponding to the mount and syncline model. Attenuation and velocity dispersion of the Rayleigh wave can be
observed.
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FIG. 6. Snapshots of the particle velocity vector for the step
problem at (a) 0.6 s and (b) 0.9 s. In (a) the Rayleigh wave
produced by a vertical impact has reached the corner. The
reflected and transmitted surface waves can be observed in
(b) .
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