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Wave propagation simulation requires a correct implementation of boundary conditions to avoid
numerical instabilities, A boundary treatment based on characteristics, which includes as spe-
cial cases more simple rheologies involving isotropy and elastic behavior, is applied to the
anisotropic—viscoelastic wave equation. The method introduces the boundary conditions by speci-
fying the values of the incoming variables, which depend on the solution outside the model volume.
The formulation ends up with a wave equation for the boundaries that implicitly includes the
boundary conditions. The examples illustrate common problems in geophysical modeling, including
free surface and nonreflecting conditions. © 1994 John Wiley & Sons, Inc.

. INTRODUCTION

Wave propagation simulation is determined by the governing differential equations, the
initial conditions, and the time-dependent boundary conditions. In addition, when solving
with grid methods, nonreflecting conditions need to be implemented in order to avoid
nonphysical reflections from the boundaries of the numerical mesh.

In numerical modeling, direct implementation of the boundary conditions may produce
unstable schemes. The motivation of this work is to introduce, in a correct way, different
types of time-dependent boundary conditions for the solution of wave propagation in linear
anisotropic—viscoelastic media, Free surface, rigid, and nonreflecting boundary conditions,
and, in general, any arbitrary time-dependent boundary condition are treated.

The method used here was recently developed by Thompson [, 2]. The wave equation,
recast as a first-order hyperbolic system, is decomposed into wave modes, which describe
outgeing and incoming waves at the boundaries. The outgoing waves are determined by
the solution within the computational volume, while the incoming waves depend on the
boundary conditions. The result of this approach is a wave equation at the boundaries
that automatically includes the boundary conditions. This makes the technique suitable for
implicit time advancing schemes.

The next section introduces the 2-D wave equation in linear anisotropic—viscoelastic
media. Section III, briefly outlines Thompson’s technique, Then, Section IV applies the
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method to the general anisotropic case, with special emphasis on transverse isotropy which
includes the isotropic case. Section V describes several common boundary conditions in
wave propagation, giving a detailed formulation for the free surface condition when the
medium is transversely isotropic with symmetry axis normal to the free surface. Finally,
Section VI illustrates the complete modeling scheme for a typical geophysical problem.

Il. WAVE EQUATION

The wave equation for 2-D linear anisotropic and viscoelastic media, based on a particular
class of constitutive laws, involves the following equations [3).
(i) The equations of momentum conservation;
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where x = (x, z) are Cartesian coordinates, o (x,1), o..(x, 1), and a..(x, 1) are the stress
components, v,(x,7) and v.(x, 1) are the particle velocities, p(x) denotes the density, and
f(x,1) = (fy, f.) are the body forces. In (1a)—~(1b) and elsewhere, time differentiation is
indicated with the dot convention.

(ii) The constitutive equations:
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where
én=cy — D+ (D - ess)M + cssMz,
€3 =re;3 + 255 = D + (D — cs5)M,; — c55M,3,
Gy =cn =D+ (D - ess)My + cssM,
fss = cssM 2,

are the high-frequency limit elasticities, with

Cip €13 O
e e [(x) (3)
Cs5

the symmetric 2-D low-frequency limit elasticity matrix, and D = (¢, + ¢13)/2. The
quantities €;(x, 7) are memory variables related to the L, mechanisms, which describe the
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anelastic characteristics of the quasi-dilatational mode, and e5(x, ), €3(x,¢) are memory
variables related to the L, mechanisms for the quasi-shear mode. M,,,v = 1,2 are the
relaxation functions evaluated at 1 = 0, with v = [, the quasi-dilatational, and v = 2, the
quasi-shear, For a general standard linear solid relaxation function, they are given by

L, ()

Tel
My=1-2(1-5) v=12 4)

I=1 Tt

with 'rf:;) and Ti}‘] the material relaxation times.

In the anisotropic-elastic limit, i.e., when -rf,',') — r,l,‘:.), and the memory variables vanish,
Egs. (2a)~(2¢) become Hooke's law [4]. In the isotropic—viscoelastic limit, ¢y, 33 —
A4 2p, cj3— A, cs5 — p and c¢j5,c35 — 0, with A and g the Lame constants, and
(2a)—(2c) become the isotropic—viscoelastic rheology introduced in [5]. Note that the
mean stress (o, + ..)/2 depends only on the parameters and memory variables with
index v = 1, which involve quasi-dilatational dissipation mechanisms. Similarly, the
deviatoric stress components, (o, — o..)/2 and o,,, depend on the parameters and
memory variables with index v = 2, involving quasi-shear mechanisms.

(iii) The memory variable equations:

i dv, dv, €
€y = ff’u(,j_'} + ?_) - % L=1....L, (5a)
ox ez Terl
. dv, av, €y
& = f/sz(—' - —) - o = TR (5b)
dx dz Tert
; dv. av, €1
€y = f/J:ef(Tj " d_:) - o =1L, (5¢)
i % Tul
where
(v}
] Tel
dw=—wll -] r=L2 (6)
Terl Terl

The equations given in (i), ii), and iii) are the basis for the numerical solution algorithm,
The formulation requires recasting the equations governing wave propagation as

: A .
il BT g B B 3 i =, (7)
at dx az
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where
B
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The notation (), denotes a vertical a succession of elements from [ = 1,. ..

(8a,h)

(9a, b)

!LI" Y= 1-2

The vectors have dimension m = 5 + L; <+ 2L,, and matrices are of size m X m.
Implementation of the boundary conditions along a given direction requires the character-

istic equation corresponding to (7) in that direction.

lll. OUTLINE OF THE METHOD

Let the boundary be normal to the z direction. Equation (7) can be expressed as

¢, =A— +d.
dx

av

(10)
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The scheme, developed by Thompson [2], determines an equation for dv/dr at the
boundaries, where outgoing and incoming waves are decoupled. Then, the boundary
conditions are introduced through the incoming waves. The method involves the following
steps.

1. Compute the eigenvalues of B from

det(B — Al) = 0, (11)

where 1 is the identity matrix. It is shown in the next section that some of the eigenvalues
give the characteristic velocities of outgoing and incoming waves at the boundary.
2. Compute the left and right eigenvectors of B, denoted by 1; and v, respectively. They
satisfy

ITB = A1, Br, = Airy, i=1,....m (12)
(since B is a real matrix), and the relation of mutual orthogonality,
T =
¥ 'rJ-— 3” (13)

i
3. Construct the matrix § such that its columns are the right eigenvectors. The rows of

the inverse S™! are then the left eigenvectors. The diagonal matrix, whose components
are the eigenvalues, are then

A=S8""BS. (14)
4. Define a vector FH by
il .
H=A5"Z, o H=sr'% i=1,..,m. (15)
0z az

Vector ZH includes each decoupled characteristic wave mode in the z-direction. Multiply-
ing equation (10) from the left side by § ', and using (15), gives

—S"i;—:+5—(+s ‘e, =0, or —[}"i;—r+3-[,-+l;-"cz=0, i=1,...,m.
(16)

5. Multiply Eq. (16) by S to get the original wave equation in terms of the JH; variables,
—Z—:+Sﬂ+cz=0. (17

This equation completely defines dv/ar at the boundaries in terms of the decoupled
outgoing and incoming modes. The boundary conditions are implemented in the following
way: assume that @ = z = b, for points (x,a), compute .’?‘ﬂ(A,- < () for outgoing waves)
from Eq. (15), and (A, = 0 for incoming waves) from the boundary conditions.
Similarly, for points (x, »), compute H.(A, = 0) from Eq. (15), and H,(h, < 0) from
the boundary conditions. Then, solve Eq. (7) for the interior region, and Eq. (17) at the
boundaries,

The boundaries normal to the x-direction are treated in a similar way: the equation reads

_a_v + rrR + l:_.- - U‘ C_‘ — B"’_v + d‘ {18)
at az
where
v OV
R = MT'= o Bomgmies: &= (19)

ax’ "oy
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with M the diagonal matrix of the eigenvalues p;,i = 1,...,m. The rows of T~ are the
left eigenvectors m;.
Al corner points, a tentative approach is to perform the characteristic analysis for both
coordinates, obtaining an equation of the form
dv
~a F TR +8SH +d=0. (20)
The values of R; and JH, are determined depending on the values of u; and A; in the x
and z-directions, respectively. An alternative approach is to rotate one set of characteristics
(H or R) by 7/4 and apply the boundary treatment.

Gottlieb, Gunzburger, and Turkel [6] developed a similar way of implementing boundary
conditions in the one-dimensional elastic wave equation. For the anisotropic—viscoelastic
wave equation, their approach can be interpreted as follows: define the characteristic
variables vector, say the z-direction, as

W =_8""y, (21)
such that Eq. (10) becomes
dW aW

= o TR
it az

+ 87¢, = 0. (22)

Then, Eq. (22) is the characteristic equation corresponding to (10). This approach requires
that those components of W corresponding to outgoing characteristic variables remain
unmaodified after application ol the boundary conditions, since these variables have
their behavior entirely defined by the solution inside the physical region. Instead, those
components of W corresponding to incoming characteristic variables are determined by the
boundary conditions. In this way, the components of v, calculated by some scheme using
interior points, are corrected in order to fulfill the constraints imposed by the boundary
conditions,

Applications in fluid dynamics can be found in reference [7], while references
[8,9,10, 11] present examples in isotropic—elastic media for geophysical problems. In
the same context, Canuto and Quarteroni [12] introduce a modification to this method,
for application with implicit time advancing schemes. It can be shown that the method
in [6], although using a different formal approach, gives identical results to Thompson’s
technique. However, the latter has the advantage that the eigenvectors corresponding to
zero eigenvalues need not be calculated.

IV. BOUNDARY TREATMENT

Consider the problem in the z-direction: Eq. (17) has to be found in order to apply the
boundary conditions. The first step involves the calculation of the eigenvalues of B given
in Eq. (9b). They are

-1
A= (QP)_”Z(ESS + &y + \/(533 — &s5)” + 46‘%5) y A

I

-A, (23a,b)

=1/2
Ay = (2;:-)"”(6-55 * 5 = yf(es = 2w + 4c§5) . h=-X, (2ab)

Ay =0, b= 8 unym (25)



TIME-DEPENDENT BOUNDARY CONDITIONS FOR ... 777

The zero eigenvalues arise from the fact that B has m — 5 zero columns. The first four
eigenvalues satisfy

(pA] = &s5) (pA] = &33) = ¢35 = 0, b= by (20}

Eigenvalues A, and A; are the phase velocities of quasi-compressional waves moving in
the positive and negative z-directions; while Ay and A, are the corresponding velocities
of the quasi-shear mode (see [3] for the expression of the phase velocities in linear
anisotropic—viscoelastic media).

The next step is to find the left eigenvectors of B in order to construct the matrix
§~! and compute the quantities J{; from (15), The analysis is greatly simplified since
most of the eigenvalues are zero, and only M, i =1,...,4 do not vanish. To compule
them, only the left eigenvectors I;f',f' = 1,...,4 are needed. At this point, it is important
to consider the case ¢35 = ¢)5 = 0, which defines a transversely isotropic solid with
symmelry axis in the z-direction, and the isotropic solid as a special case. The eigenvalues
are

Al =+énfp=cr, A= —cp, Az =4/8ss/p =cs5, A= —cs, (27a,b,¢,d)

where the subindices P and S denote pure compressional and shear waves.
Consider first the general case with ¢35 # 0. The left eigenvector of B may be
writlen as

.
L {p 1
= —|=,1,0,— 5 28
h N(C‘J_"s‘l " pAL peash <U>f"<0>{"(()>h) (na)
I, = l(i. o e (O} (), OV, )I (28b)
N\ e pA an\] : %
1 4
S5 .'S'
= = 1,20, —— {0y, 0y, ) 28
Ls M( Tt 5 peishy’ {A 0025 (0, € >”) (255,
o= (S0 ——— Loy, ), 40) i (28d)
4 M s (.':gﬁ' s Pﬂ'ﬁﬁ.&j' p’\:‘v Ly Li L s

where

P= P*"% — 1834, §y = P"‘% = &4

and the normalization factors are

2 _ = 2 _ =&
N2 = 2(1 + p—’\‘—c“) M= 2(1 + M) (30a, b)

)*'J)tl2 — Css P/\:zx = &3

The calculation of 82 in (17) requires only the first four right eigenvectors since
H, =0,i =5,...,m. The corresponding right eigenvectors are

T
1| p 1(, €15 ) prAL <¢'|f> < 4’:u> <P¢52:>
r=—| —,1,—é&; + s ), ik, = = ) e :
: N[C‘_‘J,_s A H F €35 i Cas Ay /g, Ay L, \Cas Ay L

(31a)
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Next compute the quantities Hii=1,..., 4 from Eq. (15), giving
9 = Ay Pdf’t N dv, " ldo,, o P .E}fr,\.E ' (32a)
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g M\ daz 1502 fCas Azdz P Az dz ( )
The product 74 that is required in Eq. (17) is
[ 1p |
—’(9{‘ + 30) + (3 + H) |
5'[t + FHa) + —(3{1 + FHy)
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Substitution of (33) into Eq. (17) completes the scheme.

Consider now a transversely isotropic solid whose symmeiry axis coincides with the
z-direction, thus having ¢35 = ¢j5 = 0. In this case the left eigenvectors are

I

]

&=

.
(0 1,0, ~—,0,(0), (0),2,{0),,) ; (34a)

lp_=

i
0,0}, (0 ):z'(U};_;) ) (34b)

SI-

SI

.
(! 0,0, n (”>r. (0),,,40),, ) , (34c)

"
1,0,0,0, = =0z, (Ohs,, (O, ) , (34d)

"\1|

and the right eigenvalues are

(n,l, :J,ptf <¢'”> < ) (0),), (35a)

0,1, ",pcp 0, <—”—) > A0),, ) . (35b)
[

(1‘0 0,0, ,m,m)f,,(o),z,( ) (350)
( > ) (35d)

' 7

i

3|

SI

1,0,0,0, = pes, 0),,,40),,, <

SI

and the quantities H; are

p [ dv. | dor..
B o SE (B 2@ 36a
' V2 ez T pepoz o8
p [ dv ldo,,
. = T (1A 2, 36b
Ha 2\ az pepdz e
vy 1 dery.
P 2 [Ny 2 36c
3 \/'- ( pc-':.-c'lz ( )

g [ dv | dery,
BB i i 25 2 | 36d
1 J2N\ oz pesiz (36d)
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Finally, the product S H is

(

‘1_

k] o

ﬁ” (H, - 3)

J—pl"p

\/—E[M‘S(}[_; - H,)
Y, N

( i 7))

(12 0r-0)

( 2 (36 - 7))

(Hs + Hy)
(H, + H>)

(3, — 35)

Ly

Ly

Ly ]

(37)

Substitution of (37) into Eq. (17) gives the wave propagation equations in terms of the
decoupled outgoing and incoming modes,

lder,,

7 ]

N=am T Bt

" lder,. 1

y - — o —=(H, + H) + [,

v, YT Jf( I N

ps 4+ L2030 30) + D - os5) ’S + ;Sz

T = Ol - & : 4 s
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. ay 1 2 &

e = Pre—= + —=pCs - H) + ¢ ;
. Cs55 ar ﬁﬂts ( 3 4) Css ;_l €3/

oy 1 €
B iy bl = -l | =
€y = ¢'H_ 35 + B (H, = 3y) Tc('rln']’ [ =1,
[ dv, l €

€y = — (1, - H) | - X, =1,

2 tﬁzr_ x N 2 |)} T‘[;a._}

§ [ dv, €3]

o & 3 i =
€3 6‘521_ Ix \fi o3 (FH; - .‘}“ﬂ):| 7',[,2,]’ ! L,

wla.

(38a)

(38b)

(38¢)

(38d)

(38¢)

(38D

(38g)

(38h)

The equations describing wave propagation are evaluated in the form of (17) at the z
boundaries, where the quantities ;, representing incoming variables, depend on the

boundary conditions.
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One important result obtained from the boundary treatment is that the quantities F
depend only on the unrelaxed elasticities, i.e., the characteristics are not affected by the
memory effects, since they depend only on the instantaneous response of the medium.
This is in agreement with the results obtained by Herrera and Gurtin [13], who found that
the discontinuity surface of the wavefront in a dissipative medium travels with a velocity
related to the unrelaxed part of the relaxation tensor,

V. BOUNDARY CONDITIONS

For simplicity, the transversely isotropic solid is considered. The method requires that
for the interior points a < z < b, Eq. (7) must be solved, while for z = @ and z = b,
Eq. (17) or (38a)—(38h) are used. Those variables .3‘-[, that represent outgoing charac-
teristics are calculated from their definitions in (36a)-(36d) while those that represent
incoming characteristics are specified from the boundary conditions. An explicit derivation
of Eq. (17) is performed here for the free surface boundary conditions to illustrate the
technique in detail. The treatment is also outlined for nonreflecting, Dirichlet and Neumann
boundary conditions, and for a boundary separating two material regions.

A. Free Surface Boundary Conditions

Al the surface of the earth, for instance, force-free boundary conditions hold, Consider
that the surface is normal to the z-direction. This means that the normal stresses are zero
at all times. Thus, the initial conditions at the surface should include .. = .. = 0, say
at z = b = 0. The incoming waves correspond to A; = —cp and Ay = —cg. Then, H,
and J; must be computed from the boundary conditions. From Eqs. (38d) and (38e), ..
and o.. will remain zero at the surface if

2 v,
H, = H, + p%[ i Y P Css) Zt‘u = fﬂZEZI:| (39a)

H, = 3, + ﬂﬂ[rﬁ d‘; + 55 ZEq,v:| (39b)

Substituting H, and H; from Eqgs. (32a) and (32c¢) into (39a) and (39b), and the
results into Egs. (38¢)-(38h), yields

; 1[0 ey, 1 v,
Yy 5 _(ﬂ 4 rfr_\__) i _|:(A"s (” oo il ) I CﬁsZE1r:| + fas (40a)

P\ da 0z pes az ix

: | [do,. der,, 1
Wy, /5 T || imell B (it |, S
) Je) dx dz pop

o £ Ly [
v .
X [e.s(‘—;‘ + c;) +(D = ess) D €y — 55 ) €2z} +f:s (40b)
; I=} =1

0x
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£

i % Ly
; A &y \ vy ( 6‘13) ( r:._«,)
Ty = | & — we ], o= = = ol €2,
o ( T ) rp 2 (D — cs5) IE-IE” o ss;_l 2

i3 33

d'z: =0,

€y = ¢'u(1 = E) al\; - [(D = C-*H)Z €11 = Css Zfz."]

i3 (5} =
€
==y 1= Lievak
Tl
. 3 dv, qbz;
€y = I 4 —) D= Ep — ¢ Eap
2 d’z:( o Ty tas [( ‘H)Z 1 qs.'gi b1
€21 .
- 5 l=1,...,L,
Terl

Css < €34
€y = —duy = zf.w = i R 4%
555 =1 Terl

These are the equations to be used at the free surlace, They further simplify to

l.’(l-m.w] =, P(m'r.f] Je (~ [m't{)

2 pes

. . 1 .

vgneu] e vgm':!} i ﬂ'g';""') :
pep

s lew . 613 .

Gl = gl — 2B e
€33

gl =0,

gl =0,

new) Jold) ()5 1
i = £ Lrlfd}
¢33

E'gm"" _ E:gd“rj + qS J‘(NM}

é3

new) Sold) tﬁz 3

€3 = &3 - q—r.l‘(.”h” ’
€55

(40¢)

(40d)
(40¢)

(40f)

(40g)

(40h)

(41a)
(41h)

(41¢)

(41d)
(41e)

410
(41g)

(41h)

where the superscript (old) indicates the variables given by Eq. (1)—(5), and the superscript
(new) refers to the variables of the left-hand side of Eq. (40b) after modification of the

incoming characteristics.
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B. Nonreflecting Boundary Conditions

Suppose that z = @ = —z; is a nonphysical boundary of the numerical mesh. Then, the
incoming wave must be suppressed to avoid reflected waves, The incoming variables are
H, and ZHi. The first and third components of (16) give the following characteristics

equations:
d | 1 .
- ==+ —0.]|+H
Y |:\/§ (\t_ pcp ff.z):l 1

. L L
| | der,. dvy, ' e
+ —_—— 4 @—I-D—L' EE—.' EE +
2‘ pcp|: 13 i ( 55] 1 Cs5 2 .f

A f=1 f=1

a| |1 1
- m|:\/—§ (v_‘- + p(s- cr_“):l + H;

1 lday, | . av. 2 !
1 el vereey — + f | = 4
ﬁ[ﬂ ax m.-.s.-(m ax oo I‘-‘.w) J.\:| 0, (42b)

with the left eigenvectors from (34a)-(34b). These equations contain the time derivatives
of the amplitudes of the incoming characteristic waves. Imposing constant amplitudes in
time is equivalent to suppressing the incoming waves. This can be done by choosing

=10, (42a)

{

| {100y . 1 "ﬂ IV,
.?'[1':"-'7.‘;)(—;?" lm ( (D — css) EEH‘H%EQ.’}"’!‘
- (43a)
L[ 100, t [, av, &
Ho= = —| — | pii—= + ¢ 5 + f. |,
P AN e hf By T o ;_' €3 b
(43h)

while 7, and H, are computed from Eq. (36b) and (36d), respectively. Since the method
is based on one-dimensional characteristics (perpendicular to the boundary), non-normal
incident waves may not be completely eliminated.

C. Time-Dependent Boundary Conditions

For Dirichlet boundary conditions, the particle velocities may have an arbitrary variation
with time. Assuming that v, = w(7) and v. = w(1) at z = b, with initial data v,(t = 0) =
u(0) and v. = w(0), the incoming variables are chosen so that

Hy = —3H, + J'(w - '”;-"-'- - ) (44a)
o

My = -3 + 2(:; - 2 f) (44b)
podx

according to Eqs. (38a) and (38b). The outgoing variables H, and H; are computed from
Eqs. (36a) and (36b), respectively. A special case are the rigid boundary conditions, where
the particle velocities are zero at all times, i.e., u(t) = w(t) = 0.
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Another possibility is to have stress or Neumann boundary conditions, for instance, the
normal stresses, or.. = f(7) and .. = g(7). From Eqgs. (38d) and (38e), these conditions
apply if

\/5 ')\’.,_- L) Ly g
.9'[2 = H] = temitlincn F|:§ r,' + ([) = (.'55) Z €|y — Cs5 Z €y =~ .f . (45&)
fm]

pop ax =
V2|, v, < .
Hy=Hy+ —=| bss—= +css > ey — 8 |- (45b)
pCs dx =

For example, in exploration geophysics, the source is practically located at the surface.
A vertical source function can be introduced as a boundary condition by taking f(7) as
the source time history, and g(r) = 0.

D. Boundary Separating Two Physical Regions

This situation may occur when solving a problem by domain decomposition. Then, at
the interface separating the subdomains, the appropriate boundary conditions must be
implemented. The present method suggests a way to handle this problem. One can impose
continuity of v, and choose the incoming variables of one region equal to the outgoing
variables of the other region, and vice versa. This approach should give similar results to
the characteristic weighting proposed in [14].

A characteristic approach can be used at a physical boundary separating two regions.
For instance, at the interface between a solid and a fluid, the normal particle velocity
and normal stress components are continuous when crossing the interface; in a solid-solid
boundary, both horizontal and vertical particle velocity components and normal stress are
continuous,

VI. NUMERICAL SCHEME

A typical problem in exploration geophysics is wave propagation in the presence of free
surface boundary conditions. A seismic reflection survey uses an explosion, close to the
surface, and records the earth response at receivers located on the surface. The solution is
discretized in time as well as in space. The modeling algorithm consists of the calculation
of the spatial derivatives, incorporation of the boundary conditions, and time integration.

A. Computation of the Spatial Derivatives

Spectral methods can be used to compute the spatial derivatives in Eq. (7). For instance,
in the horizontal direction, the Fourier pseudospectral method is convenient, since it is
efficient in terms of the number of grid points per wavelength. However, this method is
not appropriate for the vertical direction since it cannot handle the recording configuration
mentioned before, with source and receivers close to the free surface. In the vertical
direction, Chebychev differentiation can be used [9]. The method is nonperiodic and
provides high accuracy and high resolution at the surface. When solving the problem
with an explicit time marching algorithm, Chebychev methods require time steps of order
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O(N~?%), where N is the number of grid points, A new algorithm, developed by Kosloff and
Tal-Ezer [15], based on a coordinate transformation, allows time steps of order O(N '),
which are those required also by the Fourier pseudospectral method,

B. Time Integration

An efficient time integration algorithm is the fourth-order Runge—Kutta method (e.g.,
[14]). Let the spatial derivative operations in Eq. (7) be abbreviated to
9

dz

If d¢ is the time step, the solution v"*' at time (# + 1) d¢ is obtained in terms of the
solution v" at time ndf as

)
M=A—+B (46)
dx

I
vl =y — = dt(A; + 24, + 244 + Ay, (47a)
where

A, = My" + d", (47b)

Ay = M(v" + %’A.) + ', (47c)

eli ek
Ay = M[v" + ?9.2 +d"" 7, (47d)
Ay = M(V" + dtAy) + 4", (47e)

As mentioned before, a favorable stability condition is achieved with df = O(N ™),

C. Boundary Conditions

At the free surface, the boundary conditions are applied as in Section V, whereas for
the bottom boundary, nonreflecting conditions are implemented. Since for nonvertical
incidence, the incoming waves may not be eliminated completely, an absorbing strip is
added to improve efficiency [16]. Similar absorbing regions are placed along the boundaries
in the horizontal direction to avoid wraparound caused by the periodic properties of the
Fourier method. The boundary conditions are automatically implemented when solving
Eqs. (47a)—(47e) with the appropriate operator M obtained from Eq. (17) or (38a)—(38e).

D. Resulis

Firstly, the nonreflecting condition is tested at an upper boundary. In this example, the
medium is elastic with compressional and shear wave velocities of 3000 m/s and 2000 m/s,
respectively. The source has a central frequency of 25 Hz, and it is located at 200 m
from the upper boundary. The effectiveness of the boundary conditions, and nonreflecting
boundary conditions, respectively. As can be seen in Fig. 1(b), the reflected body waves
(incoming waves) have been eliminated almost completely. Residual reflections can be
eliminated by including absorbing strips.

The second example simulates a seismic reflection survey over a homogeneous half-
space (actually, it is equivalent to Lamb’s problem). The low-frequency limit compres-
sional and shear wave velocities are taken as Vp = 2000 m/s and Vg = 1155 m/s,
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FIG. 1. Comparison between vertical component snapshots at 1 = 0.18 s propagating time: (a)
free surface boundary condition and (b) nonreflecting boundary condition.

respectively, corresponding to a Poisson solid; the density is p = 1 kg/m?, Two sets
of relaxation times are used, such that the quality factors are nearly constant over
the exploration seismic band. The quality factors for P and § waves turn out to be
Qp = 30, Q4 = 20, respectively.

The computation uses a grid size of N, = 135 and N, = 81, with uniform grid
spacing DX = 20 m in the horizontal direction, and a largest vertical grid spacing
of DZ = 20m. A vertical point force is applied at grid point 20 at a depth of
1.8 m. The source is a shifted zero-phase Ricker wavelet with a central frequency of




TIME-DEPENDENT BOUNDARY CONDITIONS FOR ... 787

Il Hz, and high-cutoff frequency of 22 Hz. The P and S phase velocities are 2052 m/s
and 1200 m/s, respectively, at the central frequency of the source. These values indicate
that significant dispersion is expected, with the anelastic wavefields traveling faster than
the low-frequency elastic wavefields, The numerical solution is propagated to 2 s with a
lime step of | ms.

The seismic response is recorded at the same dept as the source position. Figure 2
compares elastic and anelastic seismograms with (a) horizontal components, and (b)
vertical components. As can be appreciated, the compressional wave loses amplitude with
time due to geometrical spreading, while the Rayleigh wave keeps the same amplitude
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FIG. 2. Comparison hetween elastic and anelastic seismograms recorded at the surface of the
carth: (a) horizontal components and (b; next page) vertical components.
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(b)

since it is confined to the surface. On the contrary, in the anelastic medium, the atenuation
and velocity dispersion affect the surface wave considerably. Note that the seismogram
is free from reflected events coming from the bottom, where a nonreflecting boundary
condition and absorbing strip have been implemented. The performance of the method
is better illustrated in Fig. 3, which compares elastic (a) and anelastic (b) snapshots of
the horizontal components at 0.75 s and 1.25 s propagation times. The P and § waves
hit the bottom boundary with a wide range of incidence angles, but no artificial reflected
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FIG. 3. Comparison between elastic and anelastic snapshots of the horizontal component at
different propagation times, where (a) is elastic and (b; next page) is viscoelastic.

Vil. CONCLUSIONS

Decoupling the wave equation into outgoing and incoming waves at a boundary al-
lows a correct implementation of boundary conditions. Despite the complexity of the
anisotropic—viscoelastic wave equation due to the presence of memory variables, a closed
expression of the correct wave equation at the boundaries is obtained. The analysis
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includes the simplest case, the isotropic—elastic, and more complex rheologies up to the
general anisotropic—viscoelastic case. Future work involves extension into 3-D, testing
of the different boundary conditions for different rheologies, and applications to practical
problems.
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the GEOSCIENCE project. The author wishes to thank Fabio Cavallini for his many
sugpgestions during the course of the research,
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