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Abstract 

Wave propagation simulation requires a correct implementation of boundary conditions to avoid numerical instabil- 
ities. Similar problems arc posed by domain decomposition methods where the aim is to find the correct modeling of 
physical phenomena across the interfaces separating the subdomains. The technique described here is based on physical 
grounds since it relies on the fact that the wave equation can be decomposed into incoming and outgoing wave modes at 
the boundary. The result is a modified wave equation for the boundaries which automatically includes the boundary 
condition. The boundary treatment is applied to a realistic problem of ultrasonic wave propagation through a vertical 
interface separating an anelastic solid from an elastic solid at the surface. The results show that the method correctly 
describes the anelastic properties of the Rayleigh wave in the presence of a strong contrast in the material properties. 

I. Introduction 

The solution of a wave propagation problem is determined by the governing PDEs, the initial 
conditions, and the boundary conditions. When solving the problem with grid methods, a direct 
implementation of the boundary conditions may produce instabilities. To avoid this problem 
a boundary treatment based on characteristics developed by Thompson for fluid dynamic prob- 
lems [1] is applied to the modeling algorithm. The wave equation, recast as a first-order hyper- 
bolic system, is decomposed into wave modes describing outgoing and incoming waves at the 
boundaries. The outgoing waves are determined by the solution within the computational volume, 
while the incoming waves depend on the boundary conditions. In this way, a modified wave 
equation is solved at the boundaries of the computational domain. The approach allows the 
simulation of free surface, rigid, non-reflecting, and in general, any arbitrary time-dependent 
boundary condition. 

The boundary treatment is ideal for multipurpose domain decomposition. The interface between 
two subdomains is considered as a physical boundary where continuity of particle velocities and 
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stresses are to be imposed. The method is therefore able to properly simulate solid solid and 
fluid -solid interfaces separating media with different constitutive equations. A detailed application 
of the boundary treatment to domain decomposition can be found in [2]. 

The paper is organized as follows. Section 2 introduces the wave equation in the velocity-stress 
formulation. The constitutive equation includes isotropic media with dissipation. Section 3 outlines 
the boundary treatment, and Section 4 recasts the wave equation as an explicit function of the 
decoupled modes. In Section 5, the method is used to obtain the boundary equations for free 
surface and non-reflecting conditions, which are implemented in Section 6 to solve a realistic 
example simulating the reflection and transmission o fa  Rayleigh wave through a vertical interface 
in the presence of free surface. 

2. The wave equation 

The wave equation is based on the equation of momentum conservation combined with the 
constitutive relations for 2-D isotropic and viscoelastic media [3]; here for simplicity, one 
dissipation mechanism is considered for each wave mode. The boundary treatment requires 
a velocity-stress formulation which takes the following matrix form: 

?v ?v ~'v (2.1) - - - + A . -  + B .  + d = O ,  
~t ~ '.\" ~ 'z  

where 

VT : [ / ' x , / ' : ,  6xx ,  ~z : ,  ~ ... .  d t , O 2 " d 3 ] ,  (2.2a) 

is the vector of unknown variables. 
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In the preceding equations, x = (x,z) are the Cartesian coordinates, v~(x, t) and v,(x, t) are the 
particle velocities, o':,~,[x, t), a::(x, t), and a.,,_(x, t) are the stress components,  the quantity el (x, t) is 
a field variable related to the dilatational wave• and e2(x,t) and e3(x,t) are field variables 
associated with the shear waves, p(x) denotes the density, a n d f ( x ,  t) = tf,,f_.) are the body forces 
per unit volume: £ = (2 + jl)M,l - ]IM,~2, and l~ = ]lMu2 are the high-frequency limit or unrelaxed 
Lame constants, with 2 and I~ the low-frequency limit or relaxed Lame constants, and 
M,,,, = ~'~."r ~''~ where r'~,"r "~ are the material relaxation times: v = i corresponds to the dilata- 

- - ~  .' - - ¢ T  • - - t :  ' - - o "  

tional mode, and v = ~ to the shear modes; finally, 4~, = ( 1 - r ~'~ ."~"q ' r  "~ The anelastic constitut- e: ' - -  r r  ! ,  ¢$  • 

ive equation implicit in this formulation is the standard linear solid rheology. 
Implementation of the boundary conditions along a given direction requires the characteristic 

equation corresponding to (2.1} in that direction. This is described in the next Section. 

3. The  boundary  treatment  

The method used here was recently developed by Thompson [1], and determines an equation for 
?v/'?t at the boundaries where the outgoing and incoming waves are decoupled. Let the boundary 
be normal to the z-direction. Eq. (2.1) can be expressed as 

?v ?v Fv 
- _ ~ +  B ~ - + c _ . = 0 ,  w h c r e c _ = A :  + d .  (3.1) 

[ c  ( "Z ('X 

After diagonalization of matrix B as B = SAS ~, Eq. (3.1) can be written as 

- ? t  + S'jcF + c.  = 0, (3.2) 

where 

,.~ - AS- 1 x- .  (3.3) 
('Z 

A is a diagonal matrix formed with the eigenvalues of B, ).,. = 1 . . . . .  8, therefore ,.~ involves each 
decoupled characteristic wave mode in the z-direction. Eq. (3.2) completely defines ?v/?t at the 
boundaries in terms of the decoupled outgoing and incoming modes. The boundary conditions are 
implemented in the following way. Assume that a ~< z ~< h. For points (x, a), compute ore i (2i < 0 
outgoing waves) from Eq. (3.3), and ~ ;  (2; > 0 incoming waves) from the boundary conditions. 
Similarly, for points (x, b), compute ,-~i (2~ > 0) from Eq. (3.3), and .,,vg, (,;~ < 0) from the boundary 
conditions. Then, solve Eq. (2.1) for the interior region, and Eq. (3.2) at the boundaries. 

Gottlieb et al. [4], developed a similar way of implementing boundary conditions. They define 
the characteristic variables vector, say along the ..--direction, as 

W ~  S 1 v. (3.4) 

such that Eq. (3.2) becomes 

?w ?w 
?t + ~ + S -  1 c. -- 0, where o(¢' = A ~ - .  (3.5) 

('Z 
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It is clear from this equation that w represents decoupled characteristic variables since A is 
a diagonal matrix. This approach requires that those components  of w corresponding to outgoing 
characteristic variables remain unmodified after application of the boundary  conditions, since 
these variables have their behaviour entirely defined by the solution inside the physical region. 
Instead, those components  of w corresponding to incoming characteristic variables are determined 
by the boundary  conditions. In this way, the components  of r, calculated by some scheme using 
interior points, are corrected in order to fulfil the constraints imposed by the boundary  conditions. 
It can be shown that the method in [4], al though using a different formal approach,  gives identical 
results to Thompson ' s  technique. However, the latter has the advantage that the eigenvectors of 
B corresponding to zero eigenvalues need not be calculated. 

4. The boundary equations 

Each non-zero quanti ty in Eq. (3.3) takes the following form: 

, ~ 1 < 2 ) - \  ~ _+-7-:cz + Z p  -- ' 

- ."  

(4.1a) 

(4.1b) 

where Cp = \/'()[ + 2fi)/p and cs = \."/L"P are the unrelaxed compressional  and shear wave vel- 
ocities, and Zp = pep, Zs = pCs are the unrelaxed impedances of the medium. The numbers  in 
parentheses correspond to the minus sign. 

On the other hand. Eq. (3.2) can be expressed in components  as 

1 ~ .... 1 
i'.,. - - -  + .-(J¢'~3 + ,E",,,) +. / [ , ,  (4.2a) 

p ~.\ \ , _  

I d a , .  1 
t". - - + ----=(~'~ + ~ 2 )  +f_- ,  (4.2b) 

p ?x  v., 2 
A 

dt'~ 1 2 
6 .... = ( ~ + 2 f i ) - ~ - ~ +  ~ - - ( , , ' ~ - . ~ 2 ) + ( 2 + I ~ ) # ,  + I L k 2 .  {4.2c) 

, x  \ / 2  cp 

.,- ¢~l' ~ Z p  

<x x,,.. 2 

?z'. Zs 
~.x-: = fi -z -z -4-- ~ (,kfff 3 -- ,~¢t¢~4) 4- 1103, 

CX \/'2 

#l = 4'1L?~-x + .. ( , ~ l  - . , '%) _(1), x,..2 cp ~.,., 

(4.2e) 

(4.2f) 
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/;2 = 4~2 + 1 ('Xe2 - "~',) _(2), 
• ~,,' 2 Cp t , r  

(4.2g) 

= ,-=~- + ~ (o,~3 - ,~4) _(2)" (4.2h) 
LCX ~,," 2 Cs % J 

These equa t ions  are used at the boundar ies  normal  to the z-direction, where the quanti t ies  o~i 
represent ing incoming variables are calculated from the b o u n d a r y  condit ions.  

5. Boundary conditions 

5.1. Free sulface boundary condition 

At a free surface the force-free b o u n d a r y  condi t ions  imply that  the normal  stresses are zero at all 
times. Thus,  the initial condi t ions  at thc surface should  include a_.= = a:,. = 0, say at z = b = 0. The 
incoming waves  co r re spond  to ).2 = - cp and 2,, = - Cs. Then,  ,-"f"J2 and 0-'¢'4 must  be c o m p u t e d  
from the b o u n d a r y  condi t ions.  F rom Eqs., (4.2d) and (4.2e), a_._. and G= will remain zero at the 
surface if: 

.xq  = . ~ ,  + ~ -  >7 ?~- + 6 + . )0 ,  - .02  . (5.1a) 

"'~ &'z ] 
°~4" = ogre3 q'- ~--~,~[ ]) 'V- q'- '/1~;3 " U X  (5.1b) 

Subst i tu t ing ~ . t  and o'~ 3 from Eqs. (4.1)in (5.1a) and (5.1b), and the results into Eqs. (4.2a-h), yields 
the b o u n d a r y  equa t ions  for the free surface: 

I 8.!~,d ) , . T w ) =  ~,!o,~) + ~ ._. , 
(5.2a) 

l ~ . ( o ld )  /.(.n~w) = [;(old) _]_ 0 . .  . 
2 7 ~ p  - -  15.2b) 

D 
~(ne~) • (old) _ _ / "  .~.(old) 
- ~  = ° ~ x  (;7 + 2 ~ ) ~ ' - ~  ' (5 .2c)  

6"[2= e'l = O, 15.2d) 

•(new) O~ .,--- = (5.2e) 

G.ew, /;(?,d) '~, -(o,d, 
/. + 2/~ 

(5.2f) 
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4>2 
2 + ^ - : :  , (5.2g) 

/. + 2fi 

.;<,+,, i~(om) ~)5 . ,,,,,) 
3 = 3 a.,: . (5.2h) II 

where the superscript  (old) indicates the variables given by Eq. (2.1), and the superscript  (new) refers 
to the variables of the left-hand side of Eqs. (4.2a h). 

5.2. Non-reflecting boumtarv conditions 

Suppose  that z = a = - zo is a b o u n d a r y  of the numerical  mesh. Since this is not a physical 
boundary ,  the incoming wave must  be suppressed to avoid reflections. The incoming variables are 
+~t and ~J3. The first and third c o m p o n e n t s  of(3.5) give the following characterist ics equat ions  for 

w~ = (r: + r~,:.."Zp),..',,.."2 and w3 = (c.~ + cL,.:/Zs)/v"2: 

{ [ ]}  ?u' 1 1 1 7 6 , _  1 .-- ? v ,  
- g ~ - + , / ( ' l  + - - : =  " - +  ..... z-a - - = + ( 2 + I L I o l  -flOE +.l~- = 0 ,  (5.3a) 

"") p ( ' . \  p{ 'p ( X  

- " . . . . .  f ly - :  + +.11, = 0. (5.3b) ?t + ,It'~ + \ . ~  t) ?.v + pcs~, +x t~O.+ 

These equa t ions  contain  the time derivatives of the ampl i tudes  of the incoming characteris t ic  
waves w~ and w 3. Imposing  constant  ampl i tudes  in time to this modes  is equivalent  to suppressing 
them. This yields the expressions for af~ and 0~3 from the preceding equat ions,  while ,~2 and ,-"fa 
are c o m p u t e d  from (4.1). Then, subst i tut ing ,11,¢ in Eqs. (4.2a--h) gives at the non-reflecting 
boundary :  

i'!'Pe'+) = ~(/,!'''d) - zsl 6(.,,)d)), (5.4a) 

z,(.+,+) 1 ( i -<om)'~ 
= 2 ~-(,,ld) _ __ (5.4b) 

: z Z p  u : :  ) ,  

), 
(~{ne',,,') : ¢~(old) (Oz:;(°Id) .01_ / p / ; l o l d )  }. (5.4c) 

.,x " .... 2(,7 + 2/~) " -+ 

(5.4d) 

l (old) d!~: ~+)= ~(6.,:,. - ---s ~ , 7  ,-(,,m),,. (5.4e) 

4>I (6(°m) + Z),i "(°m)) (5.4f) 
i ; ' F " )  = - 2(2 + 2 i) 
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4'2 ,, 
_ 7 ,~Coldl~ (5.4g) 

e~.~w,.. = g.~o,d,3 4'22~ (~. ~d, + Zsi.~o,d,)x • (5.4h) 

These are two particular cases of boundary  condit ions that will be used in the example of the 
following subsection, a l though general t ime-dependent  boundary  condit ions can be easily intro- 
duced by the present technique, for instance, rigid boundary  conditions, source implementat ion 
through stress boundary  conditions, etc. 

6. Example 

This example shows the performance of the method to implement  free surface and non-reflecting 
boundary  conditions. The problem simulates the reflection and transmission of an ultrasonic 
Rayleigh wave through a vertical interface. The model is displayed in Fig. 1 together with the 
material properties, corresponding to the low-frequency limit wave velocities, and quality factors at 
the angular  frequency of to = 690 kHz. The quality factor quantifies the amount  of energy 
dissipation, the lower its value the higher the dissipation, thus, one should expect a t tenuat ion of the 
Rayleigh wave only in the left half-space. The bulk and shear quality factors can be expressed in 
terms of the relaxation times as Q,. = (1 + ~2rtcv)l"~"))/(r~rv) - r~v))to. The values of the relaxation 

_~2~ 1.360 Its. ~i~ _~2~ = 1.5 Its, ,~t~ 1.427 Its, and ~,, times in the left-half space are r,  = ~ , ,  = = 

g 
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Fig. 1. Model  of the vertical interface perpendicular  to the free surface. The medium on the left side is anelastic while the 
medium on the right side is purely elastic. The source is a vertical load with a central  frequency of e) o = 690 kHz. 
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The modeling algori thm consists in the calculation of the spatial derivatives, incorporat ion of the 
boundary  conditions, and time integration. Pseudospectral  methods are used to compute  the 
spatial derivatives. In the horizontal direction, the Fourier method is used, then, in this direction 
the sampling points are equally distributed. However, this method is not appropriate  for the 
vertical direction since it cannot handle the free surface boundary  condit ion properly (this 
condit ion implies that the wavefield is not periodic along the vertical direction). Thus, m this 
direction, the modified Chebychev pseudospectral  method is used. The method is non-periodic and 
provides high accuracy and resolution at the surface. However, when solving the problem with an 
explicit time marching algorithm, the conventional  Chebychev differential operator  requires time 
steps of the order O ( N  2), where N is the number  of grid points. A new algorithm, developed by 
Kosloffand TaI-Ezer [5] and Tal-Ezer [6], based oll a coordinate  t ransformation allows time steps 
of order O ( N - 1 )  which are those required also by the Fourier method.  

l h e  N: sampling points are defined by 

Zi = ,q(~i), si = c o s ( n i . ' N z ) ,  i = 0 . . . . .  Nz - i, (6.1) 

wherc t~i a r e  the Gauss--Lobato collocation points, and g({) is a grid stretching function that 
stretches the super fine Chebychev grid near the free surface in order to have a min imum grid size 
D.  = O ( N z  1), thus requiring a less severe stability condition. The stretching function used in this 
problem is 

,q(~) = _ iPl_l . .Zarcsin( 2 p ~ + q  ) \ \ . , , .q2 _ 4p ' (6.2j 

where p = 0.5:~ . 2 ( f l - 2  + 1) - 1 and q = 0 .5~  2( f l  2 _ 1). Values o f ~  = 0.06N z, and fl = 2 are 
used for this example. Fig. 2 represents the conventional  and modified Chebychev grids R)r 
Nz = 20, respectively. In particular, the density of grid points at the lower boundary  has been 
reduced considerably since a line grid is not necessary there. 

The vertical derivatives are calculated by the chain rule, 

d l  d / d (  
dz d~ dz (6.3t 

The partial derivative d(/dz is obtained analytically from (6.2), and the derivative of f with respect 
to ~." at the ith sampling point is computed  via a variant of the fast Fourier transform (FFT} for the 
cosine transform [7]. 

The solution is propagated in time by using a fourth-order Runge-Kut ta  method (e.g. [8]). The 
time integration scheme computes  operations of the type My in every step, where 

? ? 
M = A v-  + By- .  (6.4) 

( 'X ('Z 

within the computat ional  volume as can be seen from Eq. (2.1). Different spatial operators  M, and 
M2 are used at the upper and lower boundaries which introduce the free surface and non-reflecting 
condit ions according to Eqs. (5.2) and (5.4), respectively. Since for non-vertical incidence, the 
incoming waves are not eliminated completely, an absorbing strip is used at the lower boundary  
[9]. This combined approach practically removes non-physical reflections from the boundaries of 
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Chebychev grid 
free surface 
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I 

Fig. 2. Chebychev and modified Chebychev grids in the vertical direction. The stretching overcomes the severe stability 
condition imposed by the conventional Chebychev grid due to the very fine sampling at the boundaries. The Fourier 

method is used to compute the horizontal derivatives, and therefore the sampling points are equidistant. 

the model.  Similar absorbing regions are placed along the vertical boundar ies  to avoid wrapa round  
caused by the periodic properties of the Four ier  method.  

For  the example, the calculat ions use a grid size of Nx = 135 and Nz = 81 with uniform grid 
spacing Dx = 2 m m  in the horizontal  direction, and a largest vertical grid spacing of D= = 2 mm. 
A vertical impact  whose ampl i tude  spectrum peaks at 690 kHz, where dissipation is max imum,  is 
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Fig. 3. Comparison b¢twccn clastic and an¢lastic r., timc historics rccordcd at the frcc surface. It is clear how the 
boundary trcatmcnt properly simulates the bchaviour of the ultrasonic Rayleish wave at both sides of the interface. 
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applied at the source position. The solution is propagated up to a maximum time of 0.2 ms in time 
steps of 0.1 Its required by the time-integration scheme. 

This example is a good test of the effectiveness of the boundary conditions by observing the 
properties of the Rayleigh wave at both sides of the vertical interface. Fig. 3 shows t,x recorded 
along the free surface. The figure compares the elastic and the anelastic time histories where 
P denotes the compressional wave, R is the Rayleigh wave, and RP is the converted Rayleigh to 
compressional wave. The latter originates from the collision of the Rayleigh wave with the vertical 
interface located at approximately 10 cm from the source. It is clear how the incident R surface 
wave is dissipated in the left side of the interface (up to approximately 0.1 ms travel time), and keeps 
its amplitude after crossing the interface since the medium is elastic there. On the other hand, the 
reflected Rayleigh wave attenuates almost completely after 0.2 ms propagating time. 
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