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ABSTRACT

Carcione, J.M., 1996. Ground-radar numerical modeling applied to engineering problems. European
Journal of Environmental and Engineering Geophysics, 1: 65-81.

This paper presents two engineering applications of a novel forward-modeling algorithm for
the simulation of georadargrams. The method is based on the solution of the time-domain Maxwell
equations by a direct grid method. The standard TM differential equations are modified in order to
include out-of-phase conduction currents (that contribute to the effective permittivity) and dielectric
altenuation processes, such as free and bound water relaxation. This is achieved by assuming
time-dependent conductivity and permittivity functions that are represented, in terms of analogous
mechamcal models, by a Kelvin-Voigt element and a Zener relaxation function, respectively, The
convolution integral introduced by the relaxation formulation is circumvented by defining new hidden
field variables that correspond to dielectric relaxation processes. The equations are solved
numerically by using the Fourier pseudospectral operator for computing the spatial derivatives, and
a new time-splitting integration algorithm that obviates the stiffness of the differential equations.

The two applications illustrate the potential of the modeling algorithm. In the first simulation,
a radargram corresponding to three cylindrical objects is computed. Since the objects are small
compared with the dominant wavelength of the electromagnetic pulse, they act as secondary sources,
according to Huygens' principle, thus generating typical hyperbolic responses. Despite the small size
of the cylinders, the effects of the material composition can be observed in the amplitude and phase
of the reflected wavefields.

The second model represents an old concrete road overlying a cavity. The different layers
and the cavity, which is 30 cm deep, can be, resolved with a 850 MHz transmitting antenna but not
with a 500 Mhz antenna. Moreover, the influence of the water relaxation phenomenon is analyzed
by considering the cavity filled with salt water, Its presence strongly attenuates the reflections
generated at the bottom of the cavity and at the layers below.
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INTRODUCTION

During the last decade, ground-penetrating radar (GPR) has become an
important shallow subsurface exploration tool [for a recent review see Owen
(1995)]. This high-frequency EM technique is conceptually similar to the
seismic reflection method (Carcione and Cavallini, 1995) and, therefore, many
of the algorithms used in oil exploration can be applied, with minor
modification, to the interpretation of georadargrams. In particular, forward
modeling in heterogeneous media is essential to validate the interpretation. GPR
wave modeling in the literature is, in general. one-dimensional. Only very
recently, has Goodman (1994) proposed a two-dimensional wave simulation
method based on ray-tracing techniques, but his modeling suffers the
disadvantages of asymptotic ray methods.

It is important to model the correct frequency dependence of the
permittivity and the conductivity. At radar frequencies (= 50 MHz - 2 GHz),
various dielectric dispersion processes occur. Fig. 9.1 of Hasted (1973) is a
good illustration of the various contributions to the dielectric loss in moist soils.
The most important are ionic conductivity, bound and free water relaxation, and
the Maxwell-Wagner effect. The relaxation of the water molecule produces an
increase in attenuation with frequency, since the molecules begin to lag the
applied field and increase the real effective conductivity. This phenomenon is
well described by a Debye relaxation peak, having its analogy in the Zener
rheological model used in viscoelasticity (Carcione et al., 1988). Other, less
important processes that can be described by Debye mechanisms are, the
Maxwell-Wagner effect, and surface conductivity at low frequencies. Moreover,
at high frequencies, the response of free charges may lag the electric field and
produce an out-of-phase component, contributing to the real effective
permittivity. These phenomena, i.e., dielectric relaxation and out-of-phase
electric currents, are introduced into the Maxwell equations by means of
time-domain permittivity and conductivity functions.

THE RADAR EQUATIONS

The modeling described in this paper assumes that the propagation is in
the (x,z)-plane, and that the material properties are constant with respect to the
y-coordinate. Then, the electric and magnetic field components E,, E, and H,
are decoupled from E,, H, and H,. The first three fields obey the TM
(Transverse Magnetic) differential equations:

(0E,/0x) — (OE,/dz) = py(dH,/dt) + M, (1)

—dH,/dz = o*(dE,/dt) + €*(3’E,/0t?) + J, , (2)

dH,/dx = o*(dE,/dt) + €*(°E,/0t®) + J, , (3)
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where e(t) and o(t) are the permittivity and conductivity functions, p, is the
free-space magnetic permeability, J and M are the electric and magnefic current
densities respectively, and the symbol * denotes time convolution.

A realistic description of the permittivity is obtained by using a Debye
model, also called Zener or standard linear solid model (Zener, 1948). This
model accounts for many relaxation mechanisms, producing an out-of-phase
component of the permittivity that contributes to the effective conductivity. For
instance. one dielectric relaxation process is described by

e(t) = €[l — (1=N7) exp(—t/7)] HO) (4)

where ¢ is the static permittivity, N\ and 7 are relaxation times (A < 7), and
H(t) is the Heaviside function. The optical or high-frequency permittivity is
obtained for t - 0: €= = (M7)€® (note that €= < ¢€°).

In contrast. the conductivity components are represented by a Kelvin
Voigt mechanical model analogue:

o(t) = o’[H() + £6(D] (5)

where o' is the static conductivity, £ is a relaxation time, and 6 (t) is the Dirac
function. The out-of-phase component of the conduction current is quantified by
the relaxation time £.

The TM equations (1), (2) and (3) could provide the basis for a numerical
solution algorithm, however, the numerical evaluation of the convolution
integrals is impractical when solving the differential equations with grid methods
and explicit time-evolution techniques. The conductivity terms pose no
problems, since the substitution of the conductivity function (5) into Maxwell’s
equations does not involve time convolutions, as can be easily verified.
However, in order to circumvent the convolutions due to the permittivity
function. two new (hidden) field variables e, and e, are introduced. These are
the analogues of the memory variables used in viscoelastic wave simulations to
model dissipation from different attenuation mechanisms. Substituting the
permittivity (4) and the conductivity (5) into equations (2) and (3), and
following Carcione et al. (1988) yields

_8H,/3z = 0.E, + € BE/) + e+ I, (6)

aH,/dx = oE, + €. (0E,/31) + €%e; + T, (7)
where

€ = € +0'k (8
and

6, = & + % ©
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are the effective optical permittivity and conductivity, respectively, with ¢ =
(1—=N/7)/7. The third term of the right hand side in each equation involves the
relaxation process through the corresponding hidden variable.

The radar equations are completed with the differential equations of the
hidden variables:

where i = 1 and i = 3 correspond to x and z, respectively.

Equations (1), (6) (7) and (10) are the basis of the numerical algorithm
used to obtain the field vector [H,, E,, E,, ¢;, e;]. A similar set of equations,
but without Debye relaxation mechanisms and out-of-phase conduction currents,
was solved by Carcione and Cavallini (1994).

The radar equations are solved with a direct grid method that computes
the spatial derivatives using the Fourier pseudospectral method (Carcione and
Cavallini, 1994) and propagates the solution in time with an explicit fourth-order
Runge-Kutta algorithm. However, when there is a Debye peak whose central
frequency is much larger than the dominant frequency of the source, the
equations become stiff. In this case, a partition (or splitting) time integrator
algorithm is used. The stiff part is solved analytically and the non-stiff part is
solved with the Runge-Kutta algorithm. Details of this partition algorithm can
be found in Carcione and Quiroga-Goode (1995), where Biot's poroelastic
equations are solved.

BURIED CYLINDERS IN GRAVEL SAND

For this example, whose model is represented in Fig. 1, three cylindrical
objects are buried in gravel. There are no dielectric relaxations and out-of-phase
currents (A = 7 and £ = 0, respectively), hence ¢’ = ¢* = e and ¢° = 0. The
electromagnetic properties of the different materials are as follows:

Gravel sand: ¢ = 10.5 ¢;,, ¢ = 0.001 mho/m;
Sand: € = 8 ¢y, 0 = 0.0001 mho/m;

Clay: ¢ = 7 ¢y, 0 = 0.01 mho/m;

Plastic cylinder: € = 4 ¢, ¢ = 0.0001 mho/m;
Metal cylinder: € = €, ¢ = 0.1 mho/m;

Tree trunk: € = 5 ¢, 0 = 0.001 mho/m,

where, in each case, ¢, is the free-space dielectric constant. The numerical
experiment simulates a stacked radargram obtained from the processing of a
series of common ‘shot” gathers (zero-offset profile). The source is an horizontal
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electric current with a Ricker-type wavelet (e.g., Carcione and Cavallini, 1995)
and a central frequency of 300 MHz. The wavefield is propagated with a time
step of 0.05 ns and the receivers are located at the same level as the source.

The numerical mesh has Ny = N, = 135 grid points per side, with a
uniform grid spacing of Dy = D, = 7.5 c¢m. In order to avoid wraparound
caused by the Fourier differential operator, absorbing strips of length 18 grid
points are used at the sides of the mesh (Kosloff and Kosloff, 1986). Fig. 2
represents a series of snapshots corresponding to the magnetic field H, (left) and
horizontal electric field E, (right). At 20 ns the downgoing field has reached the
cylinders, and the upgoing field is attenuated in the absorbing region. The
snapshots at 30 and 40 ns show the diffraction of the incident plane wave by the
cylinders (cylindrical wavefronts) which generates the hyperbolic-type reflection
patterns in the radargrams displayed in Fig. 3. Note the different amplitude and
phase behaviour of the reflection generated at the metal cylinder compared to
the responses of the other cylinders. This figure can be compared with a similar
published radargram obtained by Goodman (1994) using ray-tracing techniques.

distance (m)

0 1 2 3 4 5 6 7
0
1 [Gravel sand]
C
&=
g, [Vetal
-3

Fig. 1. Model representing three buried cylinders in gravel sand.
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Magnetic field t=10ns Electric tield t=10ns

Hy t=20ns Ex t= 20 ns

t=30ns Ex 1=30ns
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Fig. 2. Sequence of snapshots corresponding to the magnetic field H, (left) and the electric field
component E, (right) for the model represented in Fig. 1. The source is a horizontal electric current
(plane wave) and its dominant frequency is 300 MHz.
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Fig. 3. Synthetic radargrams of the magnetic field H, (a), and the horizontal electric field E, (b).
The model is given in Fig. 1 and the snapshots in Fig. 2.
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Fig. 3c. Synthetic radargram of the vertical electric field E,. The model is given in Fig. 1 and the
snapshots in Fig. 2.

ROAD BED WITH CAVITY

The model, introduced by Goodman (1994), represents an old concrete
road that has been resurfaced (see Fig. 4). Some of the material properties are
taken from Lau et al. (1992) who conducted the field experiment. Within this
paper, a series of simulations are performed at different radar frequencies and
material properties. The aim in performing the simulations is to analyze the
radar resolution and the influence that realistic conductivity and permittivity
functions have on the radargrams.

The electromagnetic properties are the following:

Asphaltic concrete: ¢ = 3.8 ¢, 0 = 0.02 mho/m;
Portland concrete: € = 5.3 €, 0" = 0.03 mho/m, £ = 0.148 ns;
Asphalt: ¢ = 5.1 ¢;, 0 = 0.002 mho/m;
Void materials: air, e = ¢,, ¢ = 0.; salt water, € = 4.3 ¢,

¢ = 0.003 mho/m, A = 0.0375 ns, 7 = 0.67 ns;
Limerock: € = 5.8 ¢y, 0 = 0.3 mho/m.



GROUND-RADAR NUMERICAL MODELING 73

distance (m)
0 1 2

sphaltic concrete
- j Portland cuncrale[

depth (m)

Fig. 4. Model representing a resurfaced roadbed containing a cavity.

The first simulation considers that the material in the cavity is air, and
that §£ = 0 in the overlying Portland concrete. In this case, ¢” is taken equal to
5.8 €,. which equals ¢, when ¢ # 0. The field is initiated by an horizontal
electric current with a central frequency of 1.2 GHz, and is propagated with a
time step of 0.02 ns. The numerical mesh has Ny = N, = 135 grid points per
side, with a uniform grid spacing of Dy = D, = 2 cm. Fig. 5 represents the H,
radargram produced by a transmission antenna located above the road, and
receivers distributed over the surface. The first and second reflection hyperbolae
correspond to the bottom of the asphaltic and Portland concrete layers,
respectively. The hyperbola corresponding to the base of the asphalt layer
interferes with the response generated by the bottom of the cavity (at around
7.5ns), a response that has longer wavelength and shorter traveltime.

Fig. 6 shows the magnetic field radargram for different antennae
frequencies: (a) 1.2 GHz, (b) 850 MHz, and (¢) 500 MHz. The media are
lossless (o0 = 0, £ = 0 and A = 7) and the simulation represents a zero-offset
reflection profile (plane wave). Since the wave propagation process is linear,
radargrams for different antennae frequencies are obtained with a single
simulation by considering a space-time spike as perturbation and then
performing the time convolution with the source time function. The reflection
generated by the base of the Portland concrete layer (6 ns) is enhanced over the
void region due to the high material contrast between the layer and the air.
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Fig. 5. Synthetic radargram of the magnetic field H, corresponding to the roadbed model in the
lossless case and the void filled with air. The source is a horizontal electric current (point source)
and its dominant frequency 1s 1.2 GHz.
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Fig. 6a. Magnetic field radargram for the antennae dominant frequency 1.2 GHz. The model is
represented in Fig. 4, the media are lossless, the void is filled with air and the source is a horizontal
electric current (plane wave).
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Fig. 6. Magnetic field radargrams for different antennae dominant frequencies: (b) 850 MHz and
(c) 500 MHz. The model is represented in Fig. 4, the media are lossless, the void is filled with air
and the source 1s a horizontal electric current (plane wave).
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Moreover, the phase reversal observed by Goodman (1994) can be seen in the
reflection generated from the upper part of the void. The responses from the
bottom of the cavity, and the corresponding side reflections arrive at
approximately 7.7 ns. The events from 9.5 to 12.5 ns correspond to the
interference between the multiple reflection inside the cavity and the wave
generated at the bottom of the lower asphalt layer. Fig. 6b still allows the
identification of the single layers and the cavity, however this is not possible in
Fig. 6¢c where the resolving power has substantially decreased.

In order to show the influence of the conductivity, Fig. 7 represents the
radargrams with ¢ # 0, without out-of-phase conduction currents (¢ = 0) and
dielectric relaxation (A = 7). Fig. 7a should be compared with Fig. 6a that has
the same amplitude gain. As can be seen, the conductivity has considerably
attenuated the wavefield. Increasing the amplitude by a factor 5.6 (Fig. 7b)
restores the similarity to the lossless case.

Finally, consider the case where the void is filled with salt water and that
£ # 0in the Portland concrete layer. The high attenuation properties of the salt
water are modelled by a Debye relaxation peak centered at 1 GHz, defined by
€” = 4.3 ¢, 7 = 0.67 ns, and A\ = 0.0375 ns. This gives a static dielectric
constant ¢’ = 77.16 ¢,, a quality factor of 0.5 and a velocity of 9 cm/ns at 1.2
GHz. It can be shown, by a plane wave analysis of the TM equations, that the
impermeability of the salt water is

B = [ — (i/w)d”]! , (11)
where
¢ = [A+iwN/(1+iwn)]e® (12)

with w the anguiar frequency. Then, the quality factor and phase velocity can
be calculated as

Q = Re(V3)/Im(V?) (13)
and
V, = [Re(1/V)]" | (14)

respectively, where
V = (Blpy)" (15)

is the complex velocity and the operators Re and Im take the real and imaginary
parts, respectively. The frequency dependence of the dissipation (inverse of the
quality factor Q) and phase velocity are represented in Figs. 8a and 8b,
respectively. At low frequencies, the ionic conductivity dominates and the
regime is diffusive (non-propagative). Alternatively, at radar frequencies, the
presence of the Debye peak produces high dissipation in the cavity, as can be
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Fig. 7. Magnetic field radargrams as in Fig. 6a but including the conductivity properties. (a) has the
same amplitude gain applied to the radargram shown in Fig. 6, and (b) has a gain factor of 5.6.
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Fig. 8. Dissipation factor (a) and phase velocity (b) versus frequency, corresponding to salt water.
A Debye relaxation peak is centered at 1 GHz.
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appreciated in Fig. 9, which shows snapshots for the void filled with (a) air and
(b) salt water. In the radargram (see Fig. 10), the high attenuation has
eliminated the reflections corresponding to the bottom of the cavity and the
asphalt layer below the void (compare with Fig. 7b).

Hy

(b)

Fig. 9. Snapshots corresponding to roadbed model. In (a) the cavity is filled with air and in (b) with
salt water. The source is a horizontal electric current (plane wave) and its dominant frequency is 1.2
GHz.
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Fig. 10. Magnetic field radargram corresponding to Fig, 9b,

CONCLUSIONS

The correct description of the petrophysical and lithological properties
play an important role when modeling radio waves in near-surface layers. In
particular, ionic conductivity and dielectric relaxation processes have a
significant influence on the attributes (amplitude and arrival time) of the radar
pulses.

The proposed modeling technique uses a time-dependent formulation of
the dielectric and conductivity properties, that accounts for the various
dissipation mechanisms present in the radio-frequency band. In particular, the
Debye relaxations require the introduction of hidden variables that are computed
together with the electric and magnetic fields. The algorithm is based on the
Fourier differential operator, and allows the calculation of the complete
wavefield in arbitrarily inhomogeneous media.

Two applications show how the modeling can be used as an interpretation
tool. The nature of the wavefield can be determined by computing snapshots at
any propagation time. In this way, the reflections observed in the radargram can
be easily interpreted.
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Future research includes a detailed simulation of the antenma radiation
pattern and extension of the theory and the modeling technique to the 3-D case.
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