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Ground radar simulation for archaeological
applicationsl

Jos6 M. Carc ione'

Abstract

This work presents a new modelling scheme for the simulation of electromagnetic
radio waves, based on a full-field simulator. Maxwell's equations are modified in
order to include dielectric attenuation processes, such as bound- and free-water
relaxation, ice relaxation and the Maxwell-Wagner effect. The new equations are
obtained by assuming a permittivity relaxation function represented by a generalized

Zener model. The convolution integral introduced by the relaxation formulation

is circumvented by defining new hidden field variables, each corresponding to a

different dielectric relaxation. The equations are solved numerically by using the

Fourier pseudospectral operator for computing the spatial derivatives and a new

time-splitting integration algorithm that circumvents the stiffness of the differential

equations. The program is used to evaluate the georadar electromagnetic response of
a Japanese burial site, in particular, a stone coffin-like structure.

l n t roduc t i on

The applications of ground-penetrating radar (GPR) as an ecological, high-

resolution, non-destructive technique are widely documented. For a good review

and state of the art see, for instance, Owen (1995).

Archaeological applications of electromagnetic (EM) methods include the work by
Frohlich and Lancaster (1986), who used an EM induction meter to survey ancient
Middle Eastern cemeteries, and Imai, Sakayama and I{anemori (1987) who
conducted GPR and resistivity surveys to locate ancient Japanese dwellings, burial
mounds and a distribution of archaeologically significant 'cultural' strata. Other
applications include the search for buried remains of a 16th-century Basque whaling

station on the Labrador coast (Vaughn 1986), the discovery of Roman foundations in
Britain (Stove and Addyman 1989), and the search for graves in cemeteries and
churches (Bevan 1991). More recently, Sternberg and McGill (1995) conducted
successful GPR surveys in archaeological areas of southern Arizona. Integration of
GPR measurements with seismic surveys has been applied by Brizzolari et al. (1992)
to an archaeological site near Rome.
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2 Osservatorio Geofisico Sperimentale, PO Box 2011, Opicina, 34016 Trieste, Italy

O 1996 European Association of Geoscientists & Engineers 871



872 J.M. Carcione

EM numerical simulation in heterogeneous media is essential to validate the
geological interpretations. GPR wave modelling is, in general, one-dimensional in
the literature. Only very recently, Goodman (1994) proposed a two-dimensional
wave-simulation method based on ray-tracing techniques. However, this approach
suffers the disadvantages of ray methods, i.e. the impossibility of modelling the full
wavefield at all frequency ranges (e.g. the complete set of multiples and diffractions),
and the generation of non-uniform dissipative waves at material interfaces.

It is important to model the correct frequency dependence of the permittivity. At
radar frequencies (=50MHz*1GHz), various dielectric dispersion processes occur.
In moist soils, the most important are ionic conductivity and bound-water relaxation.
The relaxation of the water molecule produces an increase in attenuation with
frequency, since the molecules begin to lag the applied field and increase the real
effective conductivity. This phenomenon is well described by a Debye relaxation
peak, having its analogy in the Zener rheological model (also called the standard
linear solid) used in viscoelasticity (e.g. Carcione 1990). Other less important
processes that can be described by Debye mechanisms are the Maxwell-\Tagner
eflect, surface conductivity at low frequencies and the two relaxations of free water at
high frequencies. Moreover, at high frequencies, the response of free charges may lag
the electric field and produce an out-of-phase component, contributing to the real
effective permittivity. These phenomena, i.e. dielectric relaxation and out-of-phase
electric currents) are introduced in Maxwell's equations by means of time-domain
permittivity and conductivity functions.

T ime-doma in  Maxwe l l ' s  equa t i ons

In 3D vector notation, Maxwell 's

AR
V x E _ _  ^  t _ M

o t
aT')

V x H : : i + I .
d t

equations are (e.g. Chew 1990)

( 1 )

(2)

(3 )

(4)

and p(x) is the permeability tensor.

where E, B, H and D are the electric intensity, the magnetic flux density, the
magnetic intensity and the electric flux density, respectively, and J and M are the
electric and magnetic current densities, respectively. In general, they depend on
the Cartesian coordinates (rc,1,e) and the time variable r. Equations (1) and (2)
constitute six scalar equations with 12 scalar unknowns, since J and M are known.
The six additional scalar equations are the constitutive relationships, which, for
anisotropic media including dielectric relaxation, can be written as

AF
D : e x * ,

o t

B  :  & . H ,

where e (x, r) is the permittivity relaxation tensor
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The symbol x denotes time convolution, and the dot in the rhs of (4) denotes ordinary
matrix multiplication. Moreover, the electric current density is given b5' the
generalized Ohm's law

,lF
J :  o * = - J ,  ( 5 )- d r

where o(x,t) is the conductivity relaxation tensor andJ. is the contribution of the
sources. The first term of thc rhs of (5) is the conduction current density, and the
convolution accounts for out-of-phase components of the current r,vith respect to
the electric f ield. Substituting the constitutive relationships and the current
density into (1) and (2), and using properties of the convolution. gives

l )H
V r E -  F . i ) ,  M .

V x H : o * o E - r ' " u ' '
u t  

*  
a , ' l J ' '

which corresponds to a s-vstem of six scalar equations in six scalar unknowns.

A I T  A F  i ) H" " 2  " " Y  - . r .  
A , 4

. .  -  
- l r - - t y r \ . .

Ox dz () l

oE, o2E,:  "  *  
1 ;1 r  

"  ; j  - t  . / . ,

0E" t)2 E"
: n -  i * r '  . , , ' I . 7 , " .

0 t  o t -

(6 )

( t )

The  TEM wave  equa t i on

Assume an isotropic medium, propagation in the (x..:)-planc, and that the material
properties are constant with respect to the j i-coordinate. Then, E,, E, and H,,, are
decoupled from E,,, F1' and H.. 

' fhe 
first three fields obey the 

' l 'EM (transverse
electric and magnetic f ields) differential equations,

(8 )

-oHt,
0z

DH,
0x

(e)

( 1 0 )

where e(r) and o(t) are the permittivity and conductivity relaxation functions,
respectively, and trr is the magnetic permeability.

T he r elaxation functions

A realistic description of dielectric relaxation can be obtained by representing the
permittivity with a generalized Dcbye model. 

'l.his 
model accounts for many

relaxation mechanisms that produce an out-clf-phase component of the permittivity,
such as atomic, molecular and volume polarization (I(ing and Smith 1981). ' fhe
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where e0 is the static permittivity, ,\7 and 1 are relaxation times ()7 ( 17) and Z is the
number of Debye relaxation mechanisms; H(r) is the Heaviside function. The
condition )1 {11 makes the relaxation function (11) analogous to the viscoelastic
creep function of a series connection of standard linear solid elements (Casula and
Carcione 1992). The optical or high-frequency permittivity is obtained for r - 0. It
gives

o l ,

, - : l  t  1 {  ( 1 2 )
t t

Note that e- S eu, always. On the other hand, the conductivity components are
represented by a Kelvin-Voigt mechanical model analogue,

o( t )  :  "o ;H1r)  + {6( r )1,  (13)

where o'is the static conductivity, { is a relaxation time and 6(l) is the Dirac
function. The out-of-phase component of the conduction current is quantified by the
relaxation time {.

Introduction o;f the hidden aariables

The TEM equations (8), (9) and (10) could be the basis for a numerical solution
algorithm. However, the numerical evaluation of the convolution integrals is
prohibitive when solving the differential equations with grid methods and explicit
time-evolution techniques. The conductivity terms pose no problems, since the
substitution of the conductivity relaxation components into (9) and (10) does not
involve time convolutions (see (19) below). In order to circumvent the convolutions
due to the permittivity components, a new set of field variables is introduced.

Let us consider, for instance, the term ero A2E,,f Ai in (9) and (10), where ru : 1
and m - 3 are used to denote the r- and e-components of the electric field,
respectively. \X/ith the use of ( 1 1 ) and (12), and convolution properties (in particular,
given /(r) and g(t), the following relationships hold: f 

'5 * g:"f '(O)g, and

f 6' * g:,f(0)s' -"f '(0)c), the convolution terms can be written as

( 1 1 )

, .P-#.  E* = en9! : t
I ' L j

+ e(' \- rb,rc\E* - .o I I d, * E*, (14).  
z _ . ' t \ " t - m  L  _
l : t  l : t  L

where

a r ( r ) : Y  ( t  -  ! )  s x p l - r i r , )  |  : 1 , . . . . r . .
Lrl \  r t /

(  1 s )
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Defining the hidden field variables as

l m \  I
e ) " ' : - - Q t * E * ,  l : | , . . . , L ,  ( 1 6 )

t l

(14) takes the form

o2E- ^ oE- | r' I(  )r "-::J!: 1\ - -z .Y ,u IQE^ + I r j ' ' '  |  .  07)0 t 2  0 r  l ' " ^ ' 4 " ,  I

where

L

o :  I  o 7 1 0 1 .  ( 1 s )
t : 1

The hidden variables introduced here are the analogue of the memory variables used
in viscoelastic wave simulation to describe dissioation due to different relaxation
processes (see Carcione 1990, 1993).

The wave equation

From (13), the conductivity terms in the rhs of (9) and (10) become

o *9!t :  on (e-+ { qp) (re)"  
0 t  

' '  
0 t )

Substituting (17) and (19) into (9) and (10) gives

0H, ,  _  AE*  
* .0  $  o , r t  _L  j_ _ - : o , E ,  + r . + + , "  )  , r ' i ,  l J , *  ( 2 0 )

0 z  
" c - x  '  ' e  

a t  L ' t  '  J s x

and

7 H o  - -  r ,  -  0 E - * . 0 $  
o l " )  |  I

0 -  
-  oe  L?  +  o ,  

A ,  
,  '  

L ' ,  
I  Jsz '  ( 21 )

where

€f : €- + oo€ Q2)

and

oI : oo + eoo e3\

are the effective optical permittivity and conductivity, respectively.
The first two terms on the rhs of (20) and (21) correspond to the instantaneous

response of the medium) as can be inferred from the relaxation functions (11) and
(13). Note that the terms containing the conductivity relaxation time { are in phase
with the instantaneous polarization response. The last term in each equation involves
the relaxation processes through the hidden variables.
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The wave equation is completed with the differential equations corresponding to
the hidden variables. Time differentiation of (16) and the use of convolution
properties yield

or(, '4 1 . r,,r
t: 

--ln'i'" + $tQ)E,,1. (24)

Equations (8), (20), (21) and (24) give the EM response of a conducting medium
with dielectric relaxation behaviour and out-of-phase conduction currents. These
equations are the basis of the numerical algorithm, described in the last section, to
obtain the field vector lHy, E,,8", e!')), i ,m : I or 3. A similar set of equations, but
without Debye relaxations mechanisms and out-of-phase currents, are given by
Carcione and Cavall ini (1994.

P lane -wave  theo ry

In the absence of magnetic moments) the time Fourier transform of (8) is

V]  'E :  iapHy,

where e -  la ,E" ] r  and V2:aAlAz,El7x]r .  Equat ions (9)  and (10) ,

absence of electric current sources, can be written in compact form as

0o 0, aE
V 2 H , :  ^  * E - t ^  * ;

' O I O I O I

Using the convolution theorem, (26) becomes

/ ; \ / i \
V 2 H , :  i , , ' [ i - : a ] E  - i ; [ r "  - - r r " ] E .

\  " u  /  \ '  . ^ r ' )

where

I
e . : j l ( i ) + - 3 ( a )

and

and

o:  r t * l  :  oo l r  -  i ,41.
L d r l

(2s)

in the

(26)

(27)

(28)

o.  :  $ t (o)  -  oS(e)  Q9)

are the real effective permittivity and conductivity, respectively, and the operators
!t( .) and 5(') take the real and imaginary parts, respectively. Moreover,

I I iw),t

| + iurl
(30), - ,lQ:l - 1 $-  " l a r l  L 4 1

( 3 1 )

() 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting,44, 871-888



Ground radar simulation 877

with the operator f denoting time Fourier transform. Since )7 ( 1 implies 5 (e) < 0
and fi(a) ) 0, the two terms on the rhs of (29) have the same sign and the wave
processes are always dissipative. The importance of the effective properties is that
they are measurable quantities; e" produces a current that is out-of-phase rn'ith the
electric field, while o" produces a current that varies in phase with the electric field.

Multiplying (27) from the left by pY!, where

. / i Y t, : f , "  J o , )  
( 3 2 )

is the (effective) dielectric impermeability, and substituting (25), gives

LHt +firtuo - o, (33)

where A is the Laplacian operator.
-I'he 

magnetic field associated with a uniform TEM plane wave has the form

H: Hre2,  H,  = H1,exp f - iArcT .  x l ,

whe re  1 :  f x , z ] ' r ,

k - r i , - i a

e2 :  10 ,  1 ,0 ]T

is the complex wavenumber, where n and o are the magnitudes of the real
propagation and attenuation vectors, respectively, Ho is a complex constant, and

," : [t,, t"] ' t '  (36)

defines the propagation (and attenuation) direction through the direction cosines /,
and /.. Since, for the plane wave (34),

Vz  -  - iKz ,  K ,  :  A l -L ,1 , ] t ,  ( 37 )

the substitution of (37) into (33) gives the dispersion relationship

t t'-t\2
{ t - u \ u ) - 0 .

The dispersion relationship defines the complex velocity

The real attenuation and slowness vectors can be expressed in terms of the complex
velocitv as

(34)

r 3 5 i

,  = 1 :

(38)

(3e)

(40)
- /  1 \  ̂

o  _ _Lr- r \V)"

and

. : r o : s f - 1 ) " ,
d  \ v /

(r) 1996 European Association ofGeoscientists & Engineers, Geophysical Prospecting,44, 871-888

(4r)



878 J.M. Carcione

while the phase velocity is, in magnitude, the reciprocal of the slowness and, in vector
form, is given by

Y p : (42)

The energy velocity is the ratio between the average power flow and the mean
energy density. It can be shown that in isotropic lossy media, the energy velocity
equals the phase velocity. Another important quantity is the quality factor. This
quantifiesr somehow, energy dissipation in matter from the electric current
standpoint. As stated by Harrington (1961, p.28), the quality factor is defined as
the ratio of the magnitude of reactive current density to the magnitude of dissipative
current density. In viscoelastodynamics, a common definition of quality factor is
twice the ratio of the average potential energy density to the dissipated energy
density. Accordingly, and using the acoustic-electromagnetic analogy (Carcione and
Cavallini 1995), the quality factor is defined here as twice the ratio of the average
electric energy to the density of energy dissipated in one cycle. It can be shown that
the quality factor is given by

[ " ( ; ) ]  

' '

_  y ( v 2 \
a- -v \ (43)

The concept ofthe quality factor can be considered as a generalization of the concept
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Figure 1. Model representing a coffin-like structure found at the Kofun period (300-700
A.D.) burial mounds in Japan (after Goodman and Nishimura 1993).
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(]routtd radar simulation 879

Figure 2. Sequence of snapshots corresponding to the magnetic field -F1, and the electric-field
component E,. The void is filled with air. The source is a horizontal electric current (plane
wave) and its dominant frequency is 800 MHz.
((l) 1996 European Association of Geoscicntists & Engineers, Geophysical l)rospecting,44, 871-888
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Figure 3. Synthetic radargrams representing (a) the magnetic field F1", (b) the horizontal
electric field 8,, and (c) the vertical electric field -E". The medium filling the coffin is air.

of Q in circuit theory. Good dielectrics have high Q values and conductors have very

low Q values.

Numer i ca l  a l go r i t hm

In order to illustrate the numerical solution algorithm, the equations with one
dielectric relaxation mechanism are considered. Equations (8), (20), (21) and (24) can
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Figure 3. Continued.

be written in compact matrix form as

+ s ,

where

V:  iHr , ,E , ,E , ,e , ,e , fT

is the unknown vector field, and

av
; :  

* V (44)

(4s)

(46)

0
-(.f  )
(.I) '

0

0

M -

where d" and d. denote spatial derivatives.
Equation (44) is solved with a direct grid method that computes the spatial

derivatives by using the Fourier pseudospectral method (e.g. Canuto et al. 1988) and
propagates the solution in time with a fourth-order Runge-Kutta algorithm.
However, when there is a Debye peak whose central frequency is much larger than
the dominant frequency of the source, the equations become stiff (Jain 1984). In this
case) a partition (or splitting) time integrator algorithm is used. 

-fhe 
stiff part is

solved analytically and the non-stiff part is solved by an explicit Runge-Kutta
algorithm (see Appendix). The modell ing improves significantly with this

l!) 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting,44, 871-888
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882 J.M Carcione

M a g n e t i c  l e d

Figure 4. Sequence of snapshots corresponding to the magnetic field H, and the electric-fleld
component .E,. The void is filled with salt water.
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Ground radar simulation 883

approach. However, a better technique in terms of numerical stability, such as an
implicit algorithm, should further improve its performance. A modelling software
package, GEMS (Georadar Electomagnetic Modelling and Simulation), has been
developed, which designs the geological model, provides the kinematic and dynamic
properties of each medium, and generates the radargrams for a variety of antenna
configurations.

Example:  Japanese bur ia l  s i te

The simulation is based on a study conducted by Goodman and Nishimura (1993)
which used the GPR method to survey protected burial mounds in Japan. One
particular burial style, belonging to the Kofun period (300-700 A.D.), is shown in
Fig. I, where a cross-section of a stone coffin is represented (the dots correspond to
gridpoints of the numerical mesh). The soil and the coffin have a dielectric constant
of 16ee and 4es, respectively, where eo : 8.85 10-12 F/m. The magnetic permeabil ity
p has been taken equal to that of a vacuum (po:4n 10 'H/m). A first simulation
considers the coffin filled with air. The numerical mesh has Nx : llz : 135 grid-
points per side, with a uniform grid spacing of Dt : Dz - 2 cm. Absorbing strips of
length 18 gridpoints are used at the boundaries of the mesh to eliminate wrap-around
effects produced by the Fourier differential operator. The field is initiated at grid-
point 40 by a horizontal electric current with a central frequency of 800 MHz, and
is propagated with a time step of 0.02ns. The receivers are located at the same level
of the source. The experiment simulates a stacked radargram obtained from the
processing of a series of common-'shot'gathers. Figure 2 shows a series of snapshots
corresponding to the magnetic field 11, and the electric-field component Er. At 8 ns
the field has penetrated the coffin; there is a reflection from the top and a transmitted
wave that has a longer wavelength due to the difference in phase velocities. The
snapshots at 12 and 16ns indicate that three reflections, generated by the top and
bottom of the coffin, are the principal events. In fact, they can be appreciated in the
synthetic radargrams shown in Fig. 3, where (a) is the magnetic field F1o, (b) is
the electric-field component E, and (c) is the electric-field component E". Between
the reflections, a complicated interference pattern is produced by reverberations
inside the coffin. A similar radargram was computed by Goodman (1994) using
ray-tracing methods.

The second simulation considers that the void is filled with salt water. For this, it is
assumed that o0 : 3 x 10 3 mho/m, and that there is a dielectric relaxation centred
a t  l G H z .  d e f i n e d  b y  r ' : 4 . 3 t s . r - O . 6 7 n s  a n d  ̂ -  3 . 1 5  r  1 0 - 2 n s .  T h i s g i v e s  a
static dielectric constant e' '  : 77 .l6eo, a quality factor of 1.6 and a phase velocity of
3.8cmins at 800MHz. Figure 4 shows a sequence of snapshots and Fig.5 displays
the corresponding radargrams. The high dissipation produced by the salt water
has eliminated the reflection coming from the bottom of the coffin. Moreover, as
can be appreciated in Fig. 4, there is practically no energy transmission below rhe
obiect .

a!) 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting,44, 871-888
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Figure 5. Synthetic radargrams representing
electric field -8,, and (c) the vertical electric field

(b)

(a) the magnetic fleld Hr, (b) the horizontal
E". The medium filling the coffin is salt water.

Conc lus ions

The present modelling technique uses a time-dependent formulation of the dielectric
and conductivity properties, which accounts for the various dissipation mechanisms
of the radio-frequency band. In particular, the Debye relaxations require the
introduction of hidden variables that are solved together with the electric and
magnetic fields. A plane-wave analysis, based on uniform plane waves, gives the

t.O 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting,44, 871-888
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Vertical electric field

Figure 5. Continued.

expressions of measurable quantities, such as the quality factor and the phase and
energy velocities, as a function of the frequency. The numerical modelling is based
on the Fourier differential operator) and allows the calculation of the complete
wavefield in arbitrarily inhomogeneous media. The stiffness of the differential
equations (caused by the relaxation processes) is handled with a time-splitt ing
integration algorithm.

A numerical simulation of a burial site shows how the modell ing can be used as an
interpretation tool. The nature of the wavefield can be determined by computing
snapshots at any propagation time. In this way, the reflections observed in the
radargram can bc easily interpreted.
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Append i x
T ime  i n teg ra t i on  f o r  s t i f f  e l ec t romagne t i c  equa t i ons

Assume an electromagnetic wave travelling in the x-direction with the magnetic and
electric f ields polarized in the y- and z-directions, respectively. When using the
Fourier pseudospectral method, the wavenumbers r. supported by the numerical
mesh span from zero to the Nyquist wavenumber rf Dy, where D,y is the grid
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spacing. In the wavenumber domain, the eigenvalues 7 : io (cu complex) of matrix

w h e r e  o ?  - o 0  + e o i D  a n d  6 I : e - + o o € . W h e n  ) : r  a n d  a I : 0 ,  1 : l i V p r c ,
where Vp:ll\/7{1t" is the phase velocity. In this case, the eigenvalues l ie on the
imaginary axis. On the other hand, the general solution of (A1) gives a static
mode corresponding to a real and negative eigenvalue )", and two propagating

modes lying close to the imaginary axis, corresponding to the other eigenvalues.
When the central frequency of a Debye peak is much larger than the dominant
frequency of the source, ,\. = -1/,\, and its magnitude is much larger than the
eigenvalues corresponding to the propagating modes. In order to have numerical
stability, the domain of convergence of the time-integration scheme should include
the static eigenvalue. For instance, an explicit 4th-order Runge-Kutta method
requires dt), > -2.78, implying a very small time step dl. In this case) the method is
restricted by numerical stability rather than by accuracy. The presence of this large
eigenvalue, together with small eigenvalues, indicates that the problem is stiff (Jain

1984,  p.72) .
The system of electromagnetic equations can be partitioned into two sets of

differential equations, one stiff and the other non-stiff. Consider, for instance (20)
and (24). The stiff part is

M satisfy the characteristic equation,

' [ ( ' .s) ( ' .)-#] .( ' .) L-0,

o
oE, €

-  -  r . , .
dt rS

3 p l
= :  - :  [e "  +  OE" l .
d t  r " '

e ' i :  Aexp ( . \ 1 r )  *  Bexp ( )2 r ) ,

.  t "  ( A  B  lE; :  EI '-  
T t i  fexp()1) -  1l  - t  

1 fexn()z) -  l  l i '

where

) ,  -  - ( r  1 + @ ) l Z ,  ) , r :  - ( r  t  - O ) l Z ,

with

e  : 1  [  *  o ( ' o  
- ' -  

) l ' " .
r l  \  r . o  / )

( 4 1 )

(^2)

(A3)

Now, assume that the solution at time ndt is E!, ei and }eil0t : -(ri + AEi) lr.The
solution at an intermediate time, labelled by an asterisk, can be obtained in analytical
form. It vields

(,{4)

(As)

(A6)

(A7)
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and

(48)

Similar equations are obtained for the z-component. The intermediate vector,

V. : lH;,E;,E:,oi,. i l ' r ' ,  (A9)

is the input for an explicit fourth-order Runge-I(utta algorithm that solves the
non-stiff part of (44), to give the solution at time (n + l)dt. A similar partition

algorithm for solving Biot's poroelastic equations was developed by Carcione and

Quiroga-Goode (1995).
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