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Ground-penetrating radar: Wave theory and numerical
simulation in lossy anisotropic media

José M. Carcione∗

ABSTRACT

Subsurface georadar is a high-resolution technique
based on the propagation of high-frequency radio waves.
Modeling radio waves in a realistic medium requires the
simulation of the complete wavefield and the correct de-
scription of the petrophysical properties, such as conduc-
tivity and dielectric relaxation. Here, the theory is de-
veloped for 2-D transverse magnetic (TM) waves, with a
different relaxation function associated to each principal
permittivity and conductivity component. In this way, the
wave characteristics (e.g., wavefront and attenuation)
are anisotropic and have a general frequency depen-
dence. These characteristics are investigated through a
plane-wave analysis that gives the expressions of measur-
able quantities such as the quality factor and the energy
velocity. The numerical solution for arbitrary heteroge-
neous media is obtained by a grid method that uses a
time-splitting algorithm to circumvent the stiffness of
the differential equations. The modeling correctly repro-
duces the amplitude and the wavefront shape predicted
by the plane-wave analysis for homogeneous media, con-
firming, in this way, both the theoretical analysis and the
numerical algorithm. Finally, the modeling is applied to
the evaluation of the electromagnetic response of con-
taminant pools in a sand aquifer. The results indicate the
degree of resolution (radar frequency) necessary to iden-
tify the pools and the differences between the anisotropic
and isotropic radargrams versus the source-receiver
distance.

INTRODUCTION

The applications of ground-penetrating radar (GPR) as
an ecological, high-resolution nondestructive technique are
widely documented. They include mineral and groundwater ex-
ploration (Davis and Annan, 1989), archaeological investiga-
tions (Imai et al., 1987; Bevan, 1991), monitoring of oil recovery

Manuscript received by the Editor December 28, 1994; revised manuscript received September 28, 1995.∗Osservatorio Geofisico Sperimentale, P.O. Box 2011, 34016 Opicina, Trieste, Italy.
c© 1996 Society of Exploration Geophysicists. All rights reserved.

processes (Witterholt and Kretzschmar, 1984), and engineer-
ing applications (Lau et al., 1992). The similarities between
high-frequency electromagnetic and seismic wave propagation
(Ursin, 1983; Carcione and Cavallini, 1995) allow the applica-
tion of seismic acquisition and data processing techniques to
electromagnetic radar signals (e.g., Fisher et al., 1992).

In particular, forward modeling in heterogeneous media is
essential to validate the geological interpretations. Electro-
magnetic modeling in the hundreds of KHz range (i.e., includ-
ing the displacement currents) has been applied in Greenfield
and Wu (1991) for interpreting field results in disrupted coal
seams. However, GPR wave modeling is, in general, one dimen-
sional in the literature. Only very recently, Goodman (1994)
proposed a 2-D wave simulation method based on ray-tracing
techniques. The modeling is restricted to the isotropic case and
suffers the disadvantages of ray methods, i.e., the impossibil-
ity to model the full wavefield at all frequency ranges (e.g.,
the complete set of multiples and diffractions), and the gener-
ation of nonuniform dissipative waves at material interfaces.
Anisotropy may be found at different scales (Negi and Saraf,
1989): finely stratified layers, compaction, fluid-filled cracks
and fractures give rise to anisotropy in electrical and magnetic
properties. Since the dielectric constant of water is 80, and that
for most dry rocks is in the range 4–8, a set of aligned fluid-filled
fractures may present a high degree of dielectric anisotropy.
Similarly, the presence of mineralized water (high ionic con-
ductivity) in the fractures produces anisotropy in the electri-
cal conductivity. In some cases, like interbedded shales and
sandstones, the longitudinal conductivity can be as far as nine
times the transverse conductivity. Moreover, in most crystalline
solids like rocks, ice, etc., intrinsic anisotropy occurs because
of the preferred arrangement of the atoms and molecules.

Besides the correct description of the anisotropic behav-
ior, it is important to model the frequency dependence of
the permittivity and conductivity tensors. At radar frequencies
(≈50 MHz–1 GHz), various dielectric dispersion processes oc-
cur. In moist soils, the most important are ionic conductivity
and bound-water relaxation (Hasted, 1973, 238). The relax-
ation of the water molecule produces an increase in attenuation

1664



                    

Radargrams in Lossy Anisotropic Media 1665

with frequency, since the molecules begin to lag the applied
field and increase the real effective conductivity. This phe-
nomenon is well described by a Debye relaxation peak (e.g.,
Turner and Siggins, 1994). Other, less important processes that
can be described by Debye mechanisms, are the Maxwell–
Wagner effect and surface conductivity at low frequencies,
and the two relaxations of free water at high frequencies
(Hasted, 1973). Moreover, at high frequencies, the response
of free charges may lag the electric field and produce an out-
of-phase component, contributing to the real effective permit-
tivity (Turner and Siggins, 1994).

In this paper, I present a theory that includes anisotropy
and dissipation, through the use of permittivity and relaxation
tensors in the constitutive relations. By using the acoustic-
electromagnetic-mechanical analogy, a set of standard linear
solid elements describe several dielectric relaxation mecha-
nisms, and a single Kelvin–Voigt element includes the out-of-
phase behavior of the electric conductivity. A different relax-
ation function is associated with each principal permittivity and
each principal conductivity. I assume that the material proper-
ties are invariant along, say, the y-direction. Then, the magnetic
component Hy and the electric components Ex and Ez are un-
coupled from the other three components and the propaga-
tion becomes two dimensional [the transverse magnetic (TM)
mode]. The physics of the wave propagation is illustrated by
probing the medium with a uniform plane wave. The result-
ing time-domain electromagnetic equations are solved with a
direct grid method that computes the spatial derivatives by
using the Fourier pseudospectral method and propagates the
solution in time with a fourth-order Runge–Kutta algorithm.

MAXWELL’S EQUATIONS FOR GENERAL
ANISOTROPIC MEDIA

In 3-D vector notation, the Maxwell equations are (e.g.,
Chew, 1990)

∇ × E = −∂B
∂t
+M, (1)

∇ ×H = ∂D
∂t
+ J, (2)

where E,B,H, and D are the electric intensity, the magnetic
flux density, the magnetic intensity, and the electric flux den-
sity, respectively, and J and M are the electric and magnetic
source current densities, respectively. In general, they depend
on (x, y, z), the Cartesian coordinates, and t , the time vari-
able. Equations (1) and (2) constitute six scalar equations with
12 scalar unknowns, since M is known and J can be expressed
in terms of the electric field. The six additional scalar equations
are the constitutive relations, which for anisotropic media in-
cluding dielectric relaxation, can be written as

D =
˜
ε ∗ ∂E

∂t
, (3)

B =
˜
µ •H, (4)

where
˜
ε (x, t) is the permittivity relaxation tensor and

˜
µ (x) is

the permeability tensor. The symbol ∗ denotes time convolu-
tion, and the dot on the right-hand side of equation (4) denotes

ordinary matrix multiplication. Moreover, the electric current
density is given by the generalized Ohm’s law,

J =
˜
σ ∗ ∂E

∂t
+ Js, (5)

where
˜
σ(x, t) is the conductivity relaxation tensor and Js is

the contribution of the sources. The first term on the right-
hand side of equation (5) is the conduction current den-
sity, and the convolution accounts for out-of-phase compo-
nents of the current with respect to the electric field. Substi-
tuting the constitutive relations and the current density into
equations (1) and (2), and using properties of the convolution,
gives

∇ × E = −
˜
µ •

∂H
∂t
+M, (6)

∇ ×H =
˜
σ ∗ ∂E

∂t
+

˜
ε ∗ ∂

2E
∂t2 + Js, (7)

which correspond to a system of six scalar equations in six scalar
unknowns.

THE TM WAVE EQUATION

In general, an anisotropic medium is described by symmet-
ric permittivity and conductivity relaxation tensors that can
be defined by six components. However, there always exists a
coordinate transformation that diagonalizes these symmetric
matrices. This transformation is called the principal system of
the medium and gives the three principal components of these
tensors. In cubic and isotropic media, the principal components
are all equal. In tetragonal and hexagonal materials, two of the
three parameters are equal. In orthorhombic, monoclinic, and
triclinic media, all the three components are unequal.

For the sake of simplicity in the evaluation of the final equa-
tions, I consider that the problem is solved in a Cartesian sys-
tem that coincides with the principal system of the medium.
For completeness, the general equations are given, without
proof, in Appendix A. In the principal system, the permittivity
and conductivity relaxation tensors corresponding to a general
anisotropic medium are

˜
ε =

 ε11 0 0
0 ε22 0
0 0 ε33

 (8)

and

˜
σ =

σ11 0 0
0 σ22 0
0 0 σ33

 , (9)

respectively. The permeability tensor is, for most earth mate-
rials, isotropic. In this case, it is

˜
µ = µ1; here, µ is the scalar

permeability and 1 is the 3× 3 identity matrix.
Now, I assume that the propagation is in the (x, z)-plane,

and that the material properties are constant with respect to
the y-coordinate. Then, Ex , Ez, and Hy are decoupled from
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Ey, Hx , and Hz. The first three fields obey the TM (transverse
magnetic field) differential equations:

∂Ez

∂x
− ∂Ex

∂z
= µ∂Hy

∂t
− My, (10)

−∂Hy

∂z
= σ11 ∗

∂Ex

∂t
+ ε11 ∗

∂2Ex

∂t2 + Jsx, (11)

∂Hy

∂x
= σ33 ∗

∂Ez

∂t
+ ε33 ∗

∂2Ez

∂t2 + Jsz. (12)

The relaxation components

A realistic description of dielectric relaxation can be ob-
tained by representing the principal components with a gener-
alized Debye model. This model accounts for many relaxation
mechanisms that produce an out-of-phase component of the
permittivity, such as atomic, molecular and volume polarization
(King and Smith, 1981). The principal relaxation components
can be expressed as

εi i (t) = ε0
i i

1− 1
Li

Li∑
`=1

(
1− λi i `

τi i `

)
exp(−t/τi i `)

 H(t),

i = 1 or 3, (13)

where ε0
i i is the static permittivity, λi i ` and τi i ` are relaxation

times (λi i ` ≤ τi i `), and Li is the number of Debye relaxation
mechanisms; H(t) is the Heaviside function. Actually, the con-
dition λi i ` ≤ τi i ` makes the relaxation function (13) analo-
gous to the viscoelastic creep function of a series connection
of standard linear solid elements (e.g., Casula and Carcione,
1992). The optical or high-frequency permittivity is obtained
for t→ 0. It gives

ε∞i i =
ε0
i i

Li

Li∑
`=1

λi i `

τi i `
. (14)

Note that ε∞i i ≤ ε0
i i always. On the other hand, the conductiv-

ity components are represented by a Kelvin–Voigt mechanical
model analog (e.g., Casula and Carcione, 1992):

σi i (t) = σ 0
i i [H(t)+ ξi i δ(t)], i = 1 or 3, (15)

where σ 0
i i is the static conductivity, ξi i is a relaxation time, and

δ(t) is the Dirac function. The out-of-phase component of the
conduction current is quantified by the relaxation time ξi i . As
shown later, this choice implies a component of the conduction
current 90◦ out-of-phase with respect to the electric field.

Introduction of the hidden variables

The TM equations (10), (11), and (12) could be the basis for
a numerical solution algorithm. However, the numerical eval-
uation of the convolution integrals is prohibitive when solving
the differential equations with grid methods and explicit time
evolution techniques. The conductivity terms pose no prob-
lems, since the substitution of the conductivity relaxation com-
ponents into equations (11) and (12) does not involve time
convolutions [see equation (21) below]. To circumvent the con-
volutions caused by the permittivity components, a new set of
field variables is introduced.

Let us consider, for instance, the terms εi i ∗ ∂2 Em/∂t2 in
equations (11) and (12), where m= 1(x) when i = 1 and
m= 3(z) when i = 3. Using equations (13) and (14) and con-
volution properties1 yields

εi i ∗ ∂
2Em

∂t2 =
∂2εi i

∂t2 ∗ Em = ε∞i i
∂Em

∂t
+ ε0

i i

Li∑
`=1

φi i `(0)Em

− ε0
i i

Li∑
`=1

1
τi i `

φi i ` ∗ Em, (16)

where

φi i `(t) = H(t)
Li τi i `

(
1− λi i `

τi i `

)
exp(−t/τi i `),

` = 1, . . . , Li . (17)

Defining the hidden field variables

eii ` = − 1
τi i `

φi i ` ∗ Em, ` = 1, . . . , Li , (18)

equation (16) takes the form

εi i ∗ ∂
2Em

∂t2 = ε
∞
i i
∂Em

∂t
+ ε0

i i

8i i Em+
Li∑
`=1

eii `

 , (19)

where

8i i =
Li∑
`=1

φi i `(0). (20)

The hidden variables introduced here are the analog of the
memory variables used in viscoelastic wave simulation to de-
scribe dissipation caused by different relaxation processes (see
Carcione, 1990, 1993). A similar approach, based on a time-
domain permittivity function, was presented in Luebbers et
al., (1990). They use an FDTD formulation to study the effects
of water relaxation on the reflection coefficient at an air-water
interface.

The wave equation

From equation (15), the conductivity terms on the right-hand
side of equations (11) and (12) become

σi i ∗ ∂Em

∂t
= σ 0

i i

(
Em+ ξi i ∂Em

∂t

)
. (21)

Substituting equations (19) and (21) into equations (11) and
(12) gives

−∂Hy

∂z
= σ∞e11Ex + ε∞e11

∂Ex

∂t
+ ε0

11

L1∑
`=1

e11` + Jsx, (22)

and

∂Hy

∂x
= σ∞e33Ez+ ε∞e33

∂Ez

∂t
+ ε0

33

L3∑
`=1

e33`+ Jsz, (23)

where

ε∞eii = ε∞i i + σ 0
i i ξi i (24)

1In particular, given f (t) and g(t), the following relations hold: f ′δ ∗
g = f ′(0)g, and f δ′ ∗ g = f (0)g′ − f ′(0)g.
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and

σ∞eii = σ 0
i i + ε0

i i8i i (25)

are the effective optical permittivity and conductivity compo-
nents, respectively.

The first two terms on the right-hand side of equations (22)
and (23) correspond to the instantaneous response of the
medium, as can be inferred from the relaxation functions (13)
and (15). Note that the terms containing the conductivity relax-
ation time ξi i are in phase with the instantaneous polarization
response. The third terms in each equation involve the relax-
ation processes through the hidden variables.

The wave equation is completed with the differential equa-
tions corresponding to the hidden variables. Time differenti-
ation of equations (18) and the use of convolution properties
yield

∂eii `

∂t
= − 1

τi i `
[eii ` + φi i `(0)Ei ] . (26)

Equations (10), (22), (23), and (26) give the electromagnetic
response of a conducting anisotropic medium with dielectric re-
laxation behavior and out-of-phase conduction currents. These
equations are the basis of the numerical algorithm, described
in the last section, to obtain the field vector [Hy, Ex, Ez, eii `],
i = 1, 3, `= 1, . . . , Li . A similar set of equations, but without
Debye relaxation mechanisms and out-of-phase currents, can
be found in Carcione and Cavallini (1994).

As mentioned before, for completeness, Appendix A con-
tains the wave equation corresponding to an arbitrary coordi-
nate system. The use of this general equation is required when
the Cartesian system where the problem is solved does not co-
incide with the principal system of the medium. In this way, the
material properties can be modeled arbitrarily at any point of
the model space.

When the medium is isotropic and there is no dielectric relax-
ation (λi i = τi i ) and out-of-phase conduction currents (ξi i = 0),
it is φi i `= 0 and e11`= e33`= 0; therefore equations (22) and
(23) become

−∂Hy

∂z
= σEx + ε ∂Ex

∂t
+ Jsx, (27)

and

∂Hy

∂x
= σEz+ ε ∂Ez

∂t
+ Jsz, (28)

where ε≡ ε0= ε∞ and σ ≡ σ 0= σ∞ are the isotropic proper-
ties. Equations (10), (27), and (28) were used by Greenfield
and Wu (1991) to model electromagnetic waves in coal seams.

PLANE-WAVE THEORY

A plane-wave analysis of the kinematic characteristics of
electromagnetic uniform waves in absorbing anisotropic me-
dia can be found, for instance, in Born and Wolf (1975, 708).
They assume a 3-D medium and frequency-independent dielec-
tric and conductivity tensors. The use of relaxation functions to
describe the material properties requires a more general anal-
ysis. This is presented in the next sections together with the
calculation of the energy velocity (related to the ray surface)
and the quality factor of the medium.

Dispersion relation for uniform waves

In the absence of magnetic moments, the time Fourier trans-
form of equation (10) is

∇>2 •E = ιωµHy, (29)

where E= [Ex, Ez]> and∇2= [−∂/∂z, ∂/∂x]>, with the sym-
bol > denoting transpose. Equations (11) and (12), in the ab-
sence of electric current sources, can be written in compact
form as

∇2 Hy = ∂
˜
σ

∂t
∗ E+ ∂ ˜

ε

∂t
∗ ∂E
∂t
, (30)

where, hereafter
˜
ε = diag(ε11, ε33) and

˜
σ = diag(σ11, σ33).

Using the convolution theorem, equation (30) becomes

∇2 Hy= ιω
(

˜
˜
ε− ι

ω
˜
˜
σ
)
•E= ιω

(
˜
ε e− ι

ω ˜
σ e

)
•E,

(31)
where

˜
ε e = Re( ˜

˜
ε )+ 1

ω
Im( ˜

˜
σ ) (32)

and

˜
σ e = Re( ˜

˜
σ )− ω Im( ˜

˜
ε ) (33)

are the real effective permittivity and conductivity (diagonal)
matrices, respectively, where the operators Re(•) and Im(•)
take the real and imaginary part, respectively. The components
of ˜

˜
trep and ˜

˜
σ are

ε̃i i = F
[
∂εi i

∂t

]
= ε0

i i

Li

Li∑
`=1

1+ ιωλi i `

1+ ιωτi i `
(34)

and

σ̃i i = F
[
∂σi i

∂t

]
= σ 0

i i (1+ ιωξi i ), (35)

with the operator F denoting time Fourier transform. Since
λi i ` ≤ τi i ` implies Im(ε̃i i ) ≤ 0, and Re(σ̃i i ) ≥ 0, the two terms
on the right-hand side of equation (33) have the same sign, and
the wave process is always dissipative. The importance of the
effective matrices is that their components are the quantities
that are measured in laboratory experiments; εe produces a cur-
rent out-of-phase with the electric field, while σe produces a
current that varies in phase with the electric field. Note that the
coefficients multiplying the electric field and the time deriva-
tive of the electric field in equations (22) and (23), correspond
to the components of

˜
σ∞e and

˜
ε∞e , respectively.

Multiplying equation (31) from the left by∇>2 • ˜
β , where

˜
β =

(
˜
ε e− ι

ω ˜
σ e

)−1
(36)

is the (effective) dielectric impermeability matrix, and substi-
tuting equation (29), gives(

∇>2 • ˜
β •∇2

)
Hy + µω2 Hy = 0. (37)

The magnetic field associated with a uniform TM plane wave
has the form

H = Hye2, Hy ≡ H0 exp
[−ιkκ̂> • x

]
,

e2 ≡ [0, 1, 0]>,
(38)
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where x= [x, z]>;

k = κ − ια (39)

is the complex wavenumber, where κ and α are the magnitudes
of the real propagation and attenuation vectors, respectively;
H0 is a complex constant, and

κ̂ = [`x, `z]> (40)

defines the propagation (and attenuation) direction through
the direction cosines `x and `z. Since for the plane wave equa-
tion (38) is

∇2 →−ι
˜
K2,

˜
K2 = k[−`z, `x]>, (41)

the substitution of equation (41) into equation (37) gives the
dispersion relation

β33`
2
x + β11`

2
z − µ

(
ω

k

)2
= 0. (42)

Kinematics of the wave propagation

The dispersion relation (42) defines the complex velocity

V ≡ ω

k
=
(
β33`

2
x + β11`

2
z

µ

)1/2

. (43)

The real attenuation and slowness vectors can be expressed in
terms of the complex velocity as

α = −ω Im
(

1
V

)
κ̂ (44)

and

s ≡ κ

ω
κ̂ = Re

(
1
V

)
κ̂, (45)

while the phase velocity is, in magnitude, the reciprocal of the
slowness and, in vector form, is given by

Vp =
[

Re
(

1
V

)]−1
κ̂. (46)

Similar equations were obtained by Carcione (1994) for shear
viscoelastic plane waves in the symmetry plane of a monoclinic
medium.

Umov–Poynting theorem, energy velocity and
quality factor

The energy balance equation for time harmonic fields, in the
absence of magnetic moments and electric currents, is (Booker,
1982; Magid, 1981)

∇ •P− 2iω[(we)AV − (wm)AV]+ (pd)AV = 0, (47)

where P is the complex Umov–Poynting vector defined as

P = 1
2 (E×H∗), (48)

with the asterisk denoting complex conjugation and the sym-
bol × indicating vector product. The real part of the Umov–
Poynting vector gives the average power flow density over a
cycle. The quantities

(we)AV = 1
4 Re

[
(E∗)> •

˜
εe •E

]
(49)

and

(wm)AV = 1
4 Re

[
(H∗)> •

˜
µ •H

]
(50)

are the time-average electric and magnetic energy densities,
and

(pd)AV = 1
2 Re

[
(E∗)> •

˜
σ e •E

]
(51)

is the time-average dissipated power density. The identification
of the energy and power densities in the energy balance equa-
tion is controversial when the wave process is dissipative [see,
for instance, Caviglia and Morro (1992) 55]. Equation (47) is
similar to an energy balance equation obtained in Carcione and
Cavallini (1993) for inhomogeneous viscoelastic plane waves.
The physical interpretation leading to equations (49) and (51) is
that the dielectric relaxation contributes to the dissipation and
the out-of-phase conduction current contributes to the stored
electric energy. Mathematically, the first is in phase with the
power dissipated by the conductivity properties, and the sec-
ond is in phase with the stored electric energy.

For uniform plane waves of the form (38), the Poynting the-
orem (47) becomes

2α> •P+ 2iω[(we)AV − (wm)AV]− (pd)AV = 0. (52)

The Umov–Poynting vector and energy densities for TM waves
are calculated in Appendix B.

The energy velocity is the ratio between the average
power flow Re(P) and the mean energy density (w)AV =
(we+wm)AV (Chen, 1983). Hence,

Ve = Re(P)
(we+ wm)AV

. (53)

Substitution of the Umov–Poynting vector (B-3) and the en-
ergy densities (B-4) and (B-7) into equation (53), and using the
properties of complex numbers, give

Ve = Vp

µRe(V)

[
`x Re

(
β33

V

)
e1 + `z Re

(
β11

V

)
e3

]
,

(54)

where Vp is the magnitude of the phase velocity defined in
equation (46). The location of the energy defines the wavefront.
Therefore, this is the locus of the tip of the energy velocity
vector at unit propagation time.

The quality factor quantifies, somehow, energy dissipation
in matter from the electric current standpoint. As stated in
Harrington (1961, 28), the quality factor is defined as the mag-
nitude of reactive current density to the magnitude of dissi-
pative current density. In viscoelastodynamics, a common def-
inition of quality factor is twice the ratio between the aver-
age potential energy density and the dissipated energy density.
Accordingly, and using the acoustic-electromagnetic analogy
(Carcione and Cavallini, 1995) the quality factor is defined here
as twice the ratio between the average electric energy to the
density of energy dissipated in one cycle:

Q = 2ω
(we)AV

(pd)AV
, (55)

which from equations (B-7) and (B-8) becomes

Q = Re(V2)
Im(V2)

. (56)
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It can be shown that, for isotropic low loss media, equation
(56) reduces to the quality factor used by Turner and Siggins
(1994).

The concept of quality factor can be considered as a gener-
alization of the concept of Q in circuit theory. Good dielectrics
have high Q values, and conductors have very low Q values.

SIMULATIONS

To illustrate the numerical solution algorithm, I consider the
equations expressed in the principal system with one dielectric
relaxation mechanism. Equations (10), (22), (23), and (26) can
be written in compact matrix form as

∂V
∂t
=

˜
AV+ S, (57)

where

V = [Hy, Ex, Ez, e11, e33]> (58)

is the unknown vector field, S is the source vector, and

˜
A =



0 −µ−1∂z µ−1∂x 0 0

−(ε∞e11

)−1
∂z −

(
ε∞e11

)−1
σ∞e11 0 −(ε∞e11

)−1
ε0

11 0(
ε∞e33

)−1
∂x 0 −(ε∞e33

)−1
σ∞e33 0 −(ε∞e33

)−1
ε0

33

0 −811τ
−1
11 0 −τ−1

11 0

0 0 −833τ
−1
33 0 −τ−1

33


(59)

where ∂x and ∂z denote spatial derivatives.
Equation (57) is solved with a direct grid method that com-

putes the spatial derivatives by using the Fourier pseudospec-
tral method (e.g., Canuto et al., 1988) and propagates the
solution in time with a fourth-order Runge–Kutta algorithm.

a) b)

FIG. 1. (a) Quality factor, (b) attenuation , (c) energy velocity , and (d) snapshot corresponding to an anisotropic conducting medium
with a Debye relaxation mechanism centered at 1 GHz. The curves are given at a frequency of 200 MHz, that is also the source
dominant frequency. Figure 1e and 1f correspond to the same material, but without the Debye relaxation peak. In this case, the
medium is practically lossless.

However, when there is a Debye peak whose central frequency
is much larger than the dominant frequency of the source,
the equations become stiff (Jain, 1984). In this case, a parti-
tion (or splitting) time integrator algorithm is used. The stiff
part is solved analytically and the nonstiff part is solved by the
Runge–Kutta algorithm (see Appendix C), whose stability re-
gion can be found in Canuto et al. (1988, 109). The modeling
significantly improves with this approach. However, a better
technique in terms of numerical stability, such as an implicit
algorithm, should improve its performance further.

A modeling software package, Georadar Electromagnetic
Modeling and Simulation (GEMS), was developed and
designes the geological model, provides the kinematic and dy-
namic properties of each medium, and generates the radar-
grams for a variety of antenna configurations.

Finely stratified sand

The first simulation considers a homogeneous, finely lam-
inated, sandy medium; i.e., the wave characteristics along

the vertical and horizontal directions differ. The material
properties are the following: ε∞11 = 15ε0, ε∞33 = 10ε0, σ 0

11 =
10−3 S/m and σ 0

33 = 3 × 10−3 S/m; there is a Debye mecha-
nism centered at 1 GHz with relaxation times τ11= 0.163 ns,
λ11= 0.155 ns, τ33= 0.257 ns and λ33= 0.098 ns; there are no
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out-of-phase conduction currents (ξi i = 0); the magnetic per-
meability µ has been taken equal to that of vacuum
(µ0= 4π10−7 Hm−1) and ε0 = 8.85 10−12 Fm−1. Figure 1
shows the quality factor (a), the attenuation (b) and the energy
velocity (c) at a frequency of 200 MHz. Note that the behavior
along the x-direction is determined by (33) components, while
(11) components define the wave characteristics along the z-
direction (Born and Wolf, 1975, 675). The dissipation is mainly
caused by the Debye relaxation, which yields a Q factor of less
than 10 along the horizontal axis (the vertical and horizontal
quality factors caused by the conductivity are approximately
160 and 40, respectively). Figure 1e represents the energy ve-
locity without the Debye dissipation mechanism. The main dif-
ference with Figure 1c is the value of the horizontal velocity,

c)

d)

e)

f)

FIG. 1. (Continued.)

because of dispersion caused by the high dissipation. This effect
transforms the medium from negative uniaxial (Figure 1e) into
positive uniaxial (Figure 1c) [see Born and Wolf (1975, 680) for
the definition of positive and negative uniaxial media].

The numerical mesh used to solve equation (57) has
NX = NZ = 135 grid points per side, with a uniform grid spacing
of DX = DZ = 7.5 cm. The field is initiated by a magnetic cur-
rent, [a line source normal to the (x, z)-plane] with a central
frequency of 200 MHz, and is propagated with a time step of
0.05 ns. Figures 1d and 1f represent the snapshots of the mag-
netic field at 50 ns, with and without the Debye relaxation,
respectively. As can be seen, the results of the simulations are
in agreement with the wave characteristics predicted by the
plane-wave analysis.
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A transient analytical solution, without dielectric relaxation,
was obtained by Carcione and Cavallini (1995). Since the
Green’s function is given in the frequency-domain, the solu-
tion can be extended easily to include Debye relaxation mech-
anisms. Figure 2 compares numerical and analytical solutions
at the location (x, z) = (3, 2) m relative to the source position.
The agreement between solutions is virtually perfect.

Dense nonaqueous phase liquids

The second simulation is based on a GPR survey of dense
nonaqueous phase liquids (DNAPLs) carried out by Brewster
and Annan (1994). DNAPLs are common nonwetting ground-
water contaminants, denser than water, that have a very low
dielectric permittivity compared to water. This characteristic
makes them a potential target for the radar. The geological
model is represented in Figure 3, where the DNAPL pools
are indicated by black areas and the lower interface is the
top of a clay aquitard. The material properties are given in
Table 1. The coefficient of anisotropy in the electrical conduc-
tivity (σ 0

33/σ
0
11)1/2 is 1.7 for the sand and 1.4 for shale. They are

in the range given in Negi and Saraf (1989) for typical geological
formations. The anisotropy in the dielectric properties results
from the assumption that the rocks are saturated with fluids and
have a fine laminated structure. The sand is partially saturated
with water, and has horizontal and vertical velocities of 7 and
6 cm/ns, respectively. A Debye relaxation at 1 GHz, together
with the dc conductivity, yields horizontal and vertical quality
factors of approximately 40 and 120, respectively. On the other

FIG. 2. Comparison between numerical and analytical solutions. The source central frequency is 200 MHz and the receiver location
is (x, z) = (3, 2) m relative to the source position.

Table 1. Material properties.

Medium ε∞11 (ε0) ε∞33 (ε0) σ 0
11 (S/m) σ 0

33 (S/m) τ11 (ns) λ11 (ns) τ33 (ns) λ33 (ns)

Air 1 1 0 0 —— —— —— ——
Sand 25 20 10−3 3× 10−3 0.161 0.156 0.165 0.153
DNAPL 13.4 13.4 10−6 10−6 —— —— —— ——
Clay 8 5 0.3 0.6 0.160 0.158 0.161 0.157
ε0 = 8.85 10−12 F m−1; µ = µ0 = 4π 10−7 H m−1.

hand, the pools are isotropic (the velocity is 8 cm/ns) with an
extremely low conductivity, and the clay is highly conductive.

The following numerical experiment simulates a stacked
radargram obtained from the processing of a series of com-
mon “shots” gathers. The number of grid points, grid spacing,
and source central frequency are the same as for the preced-
ing example. The source is a horizontal electrical current (Jsx)
plane wave at the air-sand interface (vertical gridpoint 20 of the
numerical mesh). Figures 4a and 4b represent the radargrams
for the magnetic field, corresponding to the anisotropic and
isotropic cases, respectively. The isotropic case is obtained by
assuming that (11) components are equal to (33) components.
In the interval between 0 and 15 ns, the signal is a combina-
tion of the direct air wave and the direct ground wave, and
the event between 100 and 125 ns is the reflection of the top
of the clay aquitard. Below this event, the signals are proba-
bly multiple reflections originated between the pools and the
surface, since the clay is highly conductive and acts as a bar-
rier for the electromagnetic waves. Within the sand aquifer, the
various reflectors correspond to the DNAPL pools and can be
easily identified in Figure 4a. Only the pools between 1 and
2 m depth might be taken as one, since the signal cannot re-
solve the distance between them. The lower pool can hardly
be seen in Figure 4b, and the others are attenuated and have a
different arrival time with respect to Figure 4a. This is because
ε11 determines the phase velocity along the vertical direction.
Obviously, the spatial extent of the reflectors does not repre-
sent the real dimensions of the pools, since part of the energy
is diffracted at their edges. Note that the presence of the pools
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and the high velocity of the DNAPL produce a fading and a
pull-up of the aquitard reflector.

On the other hand, if one assumes that (33) components are
equal to (11) components, the corresponding radargram will be
similar to that represented in Figure 4a, since the plane-wave
source simulates a zero-offset survey. However, consider a
“common-shot” experiment, with the source and the receivers
located at the air-sand interface. The comparison between the
anisotropic (a) and the isotropic (b) radargrams (magnetic
field) can be appreciated in Figure 5. They almost coincide
for near-offsets, but are different for offsets beyond one me-
ter approximately: the anisotropic dielectric and conductivity
properties have considerably altered the amplitude and arrival
time of the first reflection event.

CONCLUSIONS

Modeling radio waves in a realistic medium involves several
aspects. In the first place, the wave equation should permit the
proper simulation of the complete wave field, i.e., the reflec-
tions (single and multiples), the refractions, and the diffracted
waves. Moreover, in the case of soils and rocks, the petrophysi-
cal and lithological properties play an important role. In partic-
ular, fine layering (anisotropy), ionic conductivity in partially
saturated porous media, and dielectric relaxation processes,
have a significant influence on the attributes (amplitude and
arrival time) of the radar pulses.

The proposed modeling technique uses a relaxation tensor
formulation of the dielectric and conductivity properties, that

FIG. 3. Geological model representing DNAPL contamination pools (black areas) in a sand aquifer. The sand is anisotropic (finely
laminated) and has a Debye relaxation at 1 GHZ. On the other hand, the DNAPL is isotropic and lossless. The material properties
are given in Table 1.

accounts for anisotropic properties and the various dissipation
mechanisms of the radio frequency band. In particular, the De-
bye relaxations require the introduction of hidden variables
that are solved together with the electric and magnetic fields.
A direct grid method solver, based on the Fourier differen-
tial operator, allows the modeling of the complete wavefield.
The stiffness of the differential equations (caused by the re-
laxation processes) is handled with a time-splitting integration
algorithm.

A plane-wave analysis, based on uniform plane waves, gives
the expressions of measurable quantities, like the quality
factor and the energy velocity, as a function of the frequency
and the propagation direction. The concept of an effective
dielectric impermeability matrix is introduced to properly
define the electric and dissipated energy densities. The theory
and the modeling applied to a finely laminated sandy medium
shows how the material transforms from negative uniaxial to
positive uniaxial when a Debye peak (with a high Q factor)
is introduced. For instance, this may represent the difference
between a dry and a water saturated porous material, since the
latter is affected by the bound water relaxation mechanism.
Another application of the modeling is the computation of
the electromagnetic response (a multichannel array survey) of
dense nonaqueous phase liquids (DNAPL) that contaminate
a sand aquifer. The reflectors corresponding to the DNAPL
pools can be seen clearly because of the permittivity contrast
between the sand and the contaminant. In this way, the model-
ing predicts the potential georadar visibility of contaminants in
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a)

b)

FIG. 4. Plane-wave synthetic radargrams for the magnetic field, corresponding to the (a) anisotropic and (b) isotropic cases. The
latter is obtained by assuming that (11) components are equal to (33) components. The source is a horizontal electric current
(plane-wave) at the air-sand interface (see Figure 2), and has a dominant frequency of 200 MHz.



     

1674 Carcione

a)

b)

FIG. 5. “Common shot” synthetic radargrams for the magnetic field, corresponding to (a) anisotropic and (b) isotropic cases. The
latter is obtained by assuming that (33) components are equal to (11) components. The source is a horizontal electric current applied
at a point of the air-sand interface, and has a dominant frequency of 200 MHz.
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porous soils. Moreover, comparison between the anisotropic
and isotropic radargrams indicate the importance of consider-
ing the anisotropy of the permittivity and conductivity prop-
erties. Future research includes a detailed simulation of the
antenna radiation pattern and extension of the theory and the
modeling technique to the 3-D case.
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APPENDIX A

ELECTROMAGNETIC EQUATIONS IN AN ARBITRARY COORDINATE SYSTEM

In general media, each point of the model space has arbi-
trary anisotropic properties and the propagation of TM waves
requires the introduction of (13) components in addition to
(11) and (33) components.

Denote ε̄i j the permittivity components in the Cartesian sys-
tem where the problem is solved. Then, they can be expressed
in terms of the principal components as[

ε̄11 ε̄13

ε̄13 ε̄33

]
=
[

cos θε − sin θε
sin θε cos θε

]
•

[
ε11 0

0 ε33

]

•

[
cos θε sin θε
− sin θε cos θε

]
, (A-1)

where θε is the angle of rotation and the dot denotes the ordi-
nary matrix product. A similar equation can be written for the
conductivity components σ̄i j and the rotation angle θσ .

Then, it can be shown that the equations corresponding to
equations (22) and (23) are

−∂Hy

∂z
= (σ̄ 0

11 + ε0
11811 cos2 θε + ε0

33833 sin2 θε
)
Ex

+ (ε̄∞11 + σ 0
11ξ11 cos2 θσ + σ 0

33ξ33 sin2 θσ
)∂Ex

∂t

+
[
σ̄ 0

13 +
1
2

sin(2θε)
(
ε0

11811 − ε0
33833

)]
Ez

+
[
ε̄∞13 +

1
2

sin(2θσ )
(
σ 0

11ξ11 − σ 0
33ξ33

)] ∂Ez

∂t

+ ε0
11

L1∑
`=1

[
cos2(θε)e

(x)
11` +

1
2

sin(2θε)e
(z)
11`

]

+ ε0
33

L3∑
`=1

[
sin2(θε)e

(x)
33` −

1
2

sin(2θε)e
(z)
33`

]
+ Jsx, (A-2)
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∂Hy

∂x
=
[
σ̄ 0

13 +
1
2

sin(2θε)
(
ε0

11811 − ε0
33833

)]
Ex

+
[
ε̄∞13 +

1
2

sin(2θσ )
(
σ 0

11ξ11 − σ 0
33ξ33

)] ∂Ex

∂t

+ (σ̄ 0
33 + ε0

33833 cos2 θε + ε0
11811 sin2 θε

)
Ez

+ (ε̄∞33 + σ 0
11ξ11 sin2 θσ + σ 0

33ξ33 cos2 θσ
)∂Ez

∂t

+ ε0
33

L3∑
`=1

[
cos2(θε)e

(z)
33` −

1
2

sin(2θε)e
(x)
33`

]

+ ε0
11

L1∑
`=1

[
sin2 θεe

(z)
11` +

1
2

sin(2θε)e
(x)
11`

]
+ Jsz,

(A-3)

where new hidden variables e(z)
11` and e(x)

33` were introduced. The
new set of hidden variables is defined by e(m)

i i ` = −φi i `∗Em/τi i `,
where m= 1(x) or 3(z), and the corresponding differential
equation is

∂e
(m)
i i `

∂t
= − 1

τi i `

[
e

(m)
i i ` + φi i `(0)Em

]
. (A-4)

APPENDIX B

UMOV–POYNTING VECTOR AND ENERGY DENSITIES

In the 2-D TM notation, the Umov–Poynting vector (48)
takes the following form

P = 1
2

[−Ez

Ex

]
Hy
∗. (B-1)

From equations (31) and (41), and substituting the imperme-
ability matrix (36), the electric field can be written as

E = −Hy

ω
(
˜
β •K2). (B-2)

By substituting (B-2) into (B-1), the mean power flow density
becomes

<(P) = 1
2
|H0|2 exp(−2α> • x)

×Re
[

1
V

(β33`xe1 + β11`ze3)
]
, (B-3)

where equations (38), (41), and (42) have been used.
From equations (50) and (38), the TM magnetic energy den-

sity is

(wm)AV = 1
4µ|H0|2 exp

(−2α> • x
)
. (B-4)

On the other hand, from equations (49) and (B-2), the elec-
tric energy density is

(we)AV = 1
4
|H0|2
ω2 exp(−2α> • x)

×Re
[(

K2
∗)> •

˜
β∗ •

˜
εe •

˜
β •K2], (B-5)

where the fact that
˜
β is a symmetric matrix has been used.

Taking into account that
˜
εe=Re(

˜
β−1), it is easy to show that

˜
β∗ •

˜
εe •

˜
β=Re(

˜
β). Then,

(we)AV = 1
4
|H0|2
ω2 exp(−2α> • x) Re

[(
K2
∗)> •

˜
β •K2

]
,

(B-6)
or, using equations (41) and (42),

(we)AV = 1
4
µ|H0|2 exp(−2

˜
α> • x)

Re(V2)
|V |2 . (B-7)

Following the same steps used to obtain the electric energy
density, and noting that

˜
σe = −ωIm(

˜
β−1) and

˜
β∗ •

˜
σe •

˜
β =

ω Im(
˜
β), the dissipated power density is

(pd)AV = 1
2
µω|H0|2 exp(−2

˜
α> • x)

Im(V2)
|V |2 . (B-8)

APPENDIX C

TIME INTEGRATION FOR STIFF ELECTROMAGNETIC EQUATIONS

Assume an electromagnetic wave traveling in the x-direction
with the magnetic and electric fields polarized in the y- and z-
directions, respectively. When using the Fourier pseudospectral
method, the wavenumbers κ supported by the numerical mesh
span from zero to the Nyquist wavenumber π/DX , where DX
is the grid spacing. In the wavenumber domain, the eigenval-
ues γ = iω (ω complex) of matrix A satisfy the characteristic
equation det(

˜
A− γ I) = 0, or

γ

[(
γ + σ

∞
e

ε∞e

)(
γ + 1

τ

)
− 8ε0

τε∞e

]
+
(
γ + 1

τ

)
κ2

µε∞e
= 0,

(C-1)
where σ∞e = σ 0+ ε08 and ε∞e = ε∞+ σ 0ξ . When λ = τ and
σ∞e = 0, γ =±ıVpκ , where Vp= 1/

√
ε∞e µ is the phase velocity.

In this case, the eigenvalues lie in the imaginary axis. On the
other hand, the general solution of equation (C-1) gives a static

mode corresponding to a real and negative eigenvalue γs, and
two propagating modes lying close to the imaginary axis, corre-
sponding to the other eigenvalues. When the central frequency
of a Debye peak is much larger than the dominant frequency
of the source, γs ≈ −1/λ, and its magnitude is much larger
than the eigenvalues corresponding to the propagating modes.
To have numerical stability, the domain of convergence of the
time integration scheme should include the static eigenvalue.
For instance, an explicit fourth-order Runge-Kutta method re-
quires dtλs > −2.78, implying a very small time step dt. Then,
the method is restricted by numerical stability rather than
by accuracy. The presence of this large eigenvalue, together
with small eigenvalues, indicates that the problem is stiff (Jain,
1984, 72).

The system of electromagnetic equations can be partitioned
into two sets of differential equations, one stiff and the other
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nonstiff. Consider for simplicity of equation (57), correspond-
ing to (11) components. The stiff part is

∂Ex

∂t
= − ε

0
11
ε∞e11

e11, (C-2)

∂e11

∂t
= − 1

τ11
[e11 +811Ex] . (C-3)

Now, assume that the solution at time ndt is En
x , en

11 and
∂en

11/∂t = −(en
11 + 811 En

x )/τ11. The solution at an interme-
diate time, labeled by an asterisk, can be obtained in analytical
form. It yields

e∗11 = Aexp(λ1t)+ B exp(λ2t), (C-4)

E∗x = En
x −

ε0
11
ε∞e11

{
A

λ1
[exp(λ1)− 1]+ B

λ2
[exp(λ2)− 1]

}
,

(C-5)

where

λ1 = −
(
τ−1

11 +1
)
/2, λ2 = −

(
τ−1

11 −1
)
/2, (C-6)

with

1 = 1
τ11

[
1+ 4

(
ε0

11 − ε∞11
ε∞e11

)]1/2

, (C-7)

and

A = − 1
1

(
∂en

11
∂t
− en

11λ2

)
, B = 1

1

(
∂en

11
∂t
− en

11λ1

)
.

(C-8)

Similar equations are obtained for the (33) component. The
intermediate vector

V∗ = [Hn
y , E∗x, E∗z , e∗11, e

∗
33
]> (C-9)

is the input for an explicit fourth-order Runge-Kutta algorithm
that solves the nonstiff part of equation (57), to give the solu-
tion at time (n+ 1) dt. A similar partition algorithm for solving
Biot’s poroelastic equations was developed by Carcione and
Quiroga-Goode (1994).


