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Porous media are anisotropic due to bedding, compaction, and the presence of aligned microcracks
and fractures. Here, it is assumed that the skeleton~and not the solid itself! is anisotropic. The
rheological model also includes anisotropic tortuosity and permeability. The poroelastic equations
are based on a transversely isotropic extension of Biot’s theory, and the problem is of plane strain
type, i.e., two dimensional, describingqP2qS propagation. In the high-frequency case, the~two!
viscodynamic operators are approximated by Zener relaxation functions that allow a closed
differential formulation of Biot’s equation of motion. A plane-wave analysis derives expressions for
the slowness, attenuation, and energy velocity vectors, and quality factor for homogeneous
viscoelastic waves. The slow wave shows an anomalous polarization behavior. In particular, when
the medium is strongly anisotropic the polarization is quasishear and the wave presents cuspidal
triangles. Anisotropic tortuosity affects mainly the slow wavefront, and anisotropic permeability
produces strong anisotropic attenuation of the three modes. The diffusive characteristics of the slow
mode are predicted by the plane-wave analysis. As in the single-phase case, it is confirmed that the
phase velocity is the projection of the energy velocity vector onto the propagation direction.
Moreover, some fundamental energy relations, valid for a single-phase medium, are generalized to
two-phase media. Transient propagation is solved with a direct grid method and a time-splitting
integration algorithm, allowing the solution of the stiff part of the differential equations in closed
analytical form. The snapshots show that the three waves are propagative when the fluid is ideal
~zero viscosity!. It is confirmed that, when the fluid is viscous, the slow wave becomes diffusive and
appears as a static mode at the source location. The modeling confirms the triplication~cusps! of the
slow wave and the polarization behavior predicted by the plane analysis. ©1996 Acoustical
Society of America.

PACS numbers: 43.20.Bi, 43.20.Jr, 43.30.Ma, 43.40.Ph

INTRODUCTION

The concepts of porous and fractured media have gained
much attention in recent years. The applications cover a va-
riety of fields, from physics to geophysics, engineering and
soil mechanics, underwater acoustics, etc.1–3 In particular, in
the exploration of oil and gas reservoirs, it is important to
predict the preferential directions of fluid flow. These are
closely related to the permeability of the medium, and con-
sequently to the geometric characteristics of the skeleton.
That is to say, an anisotropic skeleton implies that perme-
ability is anisotropic and vice versa. For instance, shales are
naturally bedded and possess intrinsic anisotropy at the mi-
croscopic level. Similarly, compaction and the presence of
microcracks and fractures make the skeleton anisotropic.

The constitutive equations for anisotropic porous media
were first given by Biot4,5 and Biot and Willis.6 More re-
cently, Thompson and Willis7 reformulated the stress-strain
equations in terms of measurable quantities, and Badiey
et al.8 applied these concepts to wave propagation in a trans-
versely isotropic seafloor~see also Coussy3!. This theory,
used here to describe the medium, assumes that the solid
constituent is isotropic and that the anisotropy is solely due

to the arrangement of the grains~i.e., the skeleton is aniso-
tropic!. An alternative approach to obtain an anisotropic po-
roelastic medium was presented by Norris,9 who applied
Backus theory to a periodically layered system composed of
isotropic Biot constituents. The effects of anisotropic perme-
ability on the kinematics of wave propagation were investi-
gated in Ben-Menahem and Gibson,10 and Gelinsky and
Shapiro.11,12 They found that the degree of attenuation and
velocity anisotropy is strongly dependent on the frequency
range.

The poroelastic equations of motion combine the consti-
tutive relations with the equations of momentum conserva-
tion and the dynamic Darcy’s law in the framework of Biot’s
theory. The theory assumes that the medium is isotropic in
the bedding plane~say, thex-y plane!, and anisotropic in the
x-z plane. Then, the stress-strain relations are transversely
isotropic, and Darcy’s law is described by two permeability
constants.13 In order to simulate wave propagation in the
low- and high-frequency ranges, a time domain formulation
of the viscodynamic operator is introduced. A different re-
laxation function is assigned to each principal permeability.
For high frequencies, the formulation requires the introduc-
tion of hidden variables that circumvent the convolutional
relations imposed by the time domain approach. The numeri-
cal solution is computed with a direct grid method based on
the Fourier pseudospectral operator. Since the presence of
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the slow compressional wave makes Biot’s differential equa-
tions stiff,14 a time splitting time integration algorithm is
used. The stiff part is solved analytically, and the nonstiff
part by using a high-order explicit scheme. The resulting
algorithm posseses 4th-order accuracy in time, and ‘‘infi-
nite’’ ~spectral! accuracy in space.

The paper is organized as follows. Section I presents the
stress-strain relations. Then, Sec. II gives the dynamical
equations and Darcy’s law generalized to the anisotropic
case and including the viscodynamic operator in the time
domain. The low- and high-frequency range time domain
equations are explicitly given in Sec. III as first-order differ-
ential equations in time. In order to obtain a physical insight
of the wave processes prior to the numerical solution of the
wave equation, a plane-wave analysis is presented in Sec. IV,
where slowness, attenuation, and energy velocity curves are
calculated. The numerical solution algorithm is developed in
Sec. V and, finally, Sec. VI presents the theoretical results
and simulations.

Summarizing, the contributions of the present paper are
the following: ~i! recasting Biot differential equations in the
time-domain including low- and high-frequency phenomena,
~ii ! a plane-wave analysis for poroelastic anisotropic media
based on energy considerations,~iv! the use of a splitting
time-integration technique to overcome the stiffness of Biot
equations, and~v! the numerical solution of Biot anisotropic
equations by a direct grid method based on a pseudospectral
differential operator.

I. STRESS-STRAIN RELATIONS

The constitutive equations for an inhomogeneous, trans-
versely isotropic poroelastic medium under plane strain con-
ditions are given by8

] ttxx5c11
u ]xvx1c13

u ]zvz1a1M ~]xqx1]zqz!1] ts11,
~1!

] ttzz5c13
u ]xvx1c33

u ]zvz1a3M ~]xqx1]zqz!1] ts33,
~2!

] ttxz5c55
u ~]zvx1]xvz!1] ts55, ~3!

] tp52a1M ]xvx2a3M ]zvz2M ~]xqx1]zqz!1] tsf ,
(4)

wheretxx , tzz, and txz are the total stresses,p is the fluid
pressure, thev ’s and theq’s are the solid and fluid~relative
to the solid! particle velocities, respectively,cIJ

u , I ,J51,...,6
are the undrained elastic components,M is an elastic modu-
lus, andai , i51,3 are Biot’s effective coefficients. More-
over, sIJ andsf are the solid and fluid external sources, re-
spectively. The conventions are that]t denotes time
differentiation, and that]x and ]z are the spatial derivative
operators.

The drained elastic componentscIJ are obtained for
p50 ~jacketed test on a dry sample!. The relations with the
undrained components are

c11
u 5c111a1

2M , ~5!

c33
u 5c331a3

2M , ~6!

c13
u 5c131a1a3M , ~7!

c55
u 5c55. ~8!

The theory assumes that the anisotropy of the porous
frame is mainly caused by the directional arrangement of the
grains, and not by the anisotropy of the individual grains. In
this case, the effective coefficients are given by8

a1512
c111c121c13

3Ks
, ~9!

a3512
2c131c33
3Ks

, ~10!

whereKs is the bulk modulus of the grains.
An undrained test8 gives the modulusM :

M5
Ks
2

D2~2c111c3312c1214c13!/9
, ~11!

where

D5Ks@11f~KsK f
2121!#, ~12!

with Kf the fluid bulk modulus andf the porosity.
Then, the stress-strain relation are completely deter-

mined from the following material properties obtained from
experiments: the drained elastic modulicIJ , the solid and
fluid moduli Ks andKf , and the porosityf.

To illustrate the role of the various anisotropic coeffi-
cients, consider the isotropic case.15 Isotropy implies that

c11
u 5c33

u 5H5Km1
4

3
m1

~Ks2Km!2

D2Km
,

c12
u 5c13

u 5H22m, ~13!

c115c335Km1 4
3m, c125c135Km2 2

3m, ~14!

c55
u 5c555m, ~15!

a15a35a512Km /Ks , ~16!

where Km and m are the bulk and shear moduli of the
~drained! matrix, respectively, and

M5
Ks
2

D2Km
. ~17!

In Biot,15 the quantityaM is denoted byC, and the und-
rained bulk modulus isH24m/3. Note that the properties of
the fluid enter through the parameterD.

II. DYNAMICAL EQUATIONS AND DARCY’S LAW

The dynamical equations describing wave propagation
in heterogeneous porous media were obtained by Biot.15 For
plane strain conditions they are

]xtxx1]ztxz5r ] tvx1r f ] tqx , ~18!

]xtxz1]ztzz5r ] tvz1r f ] tqz , ~19!

wherer5~12f!rs1fr f is the composity density, withrs
andrf the solid and fluid densities.
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On the other hand, it is assumed that the dynamic Dar-
cy’s law, generalized to the anisotropic case, can be ex-
pressed as

2]xp5r f ] tvx1c1* ] tqx , ~20!

2]zp5r f ] tvz1c3* ] tqz , ~21!

where the asterisk denotes time convolution, andci , i51,3
are time-dependent functions such that Biot’s viscodynamic
operators for thex andz directions are given by

Yi~v!5F @] tc i #, ~22!

with the operatorF denoting the time Fourier transform. In
the low-frequency range,16 i.e., for frequencies lower than
vc5min~vi!, wherev i5h/(mik i),

c i~ t !5mid~ t !1~h/k i !H~ t !, ~23!

wheremi5Tir f /f, with Ti the tortuosity,h is the fluid vis-
cosity,ki , i51,3 are the principal components of the global
permeability tensor,d(t) is Dirac’s function, andH(t) is the
Heaviside function. From Eq.~22!,

Yi~v!5ivmi1h/k i , ~24!

wherei5A21. In terms of mechanical models, Eq.~23! rep-
resents a Kelvin–Voigt element.17 Substitution of Eq.~23!
into Eqs.~20! and~21! gives Biot’s dynamic Darcy’s law in
the low-frequency range:16

2]xp5r f ] tvx1m1 ] tqx1~h/k1!qx , ~25!

2]zp5r f ] tvz1m3 ] tqz1~h/k3!qz . ~26!

In the high-frequency range~v>vc!, the viscodynamic
operator is strongly influenced by the pore geometry, and a
precise evaluation of its frequency dependence requires an
experimental determination.18 For high frequencies, the time-
domain viscodynamic operator is approximated by the fol-
lowing generalized Zener kernel:19

c i~ t !5c i
0F12

1

Li
(
l51

Li S 12
l i l

t i l
D exp~2t/t i l !GH~ t !,

i51 or 3, ~27!

whereci
0 is the relaxed value~t→`!, li l and ti l are relax-

ation times (l i l>t i l ), and Li is the number of Zener ele-
ments. In general, for a smooth time dependence, two or
three elements suffice to get a fairly good approximation, as
in the case of viscoelastic modeling with a nearly constant
quality factor.21 Since, as it is shown below, each element
adds a new first-order differential equation, this implies more
computer storage and time.

The high-frequency limit is obtained fort→0. It gives

c i
`5

c i
0

Li
(
l51

Li l i l

t i l
. ~28!

Equation ~22! applied to ~27! gives the expression of the
high-frequency viscodynamic operator:

Yi~v!5
c i
0

Li
(
l51

Li 11ivl i l

11ivt i l
. ~29!

The range of validity ofYi~v! is defined by the lower limit
vc and, for this frequency, the following constraints can be
imposed:

Re@Yi~vc!#5h/k i , ~30!

and

Im@Yi~vc!#5vcmi , ~31!

that satisfy the continuity between the low- and high-
frequency ranges. The operators Re~–! and Im~–! take real
and imaginary parts, respectively. On the other hand, when
v→`, the operatorYi and Biot’s theory loose their physical
meanings, since scattering takes place~the theory is valid
when the wavelength is large compared to the dimensions of
the pores!.

Equations~1!–~4!, ~18!, ~19!, ~20!, and~21! could be the
basis for a numerical solution algorithm. However, numerical
evaluation of the convolution integrals is prohibitive when
solving the differential equations with grid methods and ex-
plicit time evolution techniques~the low-frequency case
poses no problem, since substitution of Eq.~23! into Eqs.
~20! and ~21! does not involve time convolutions!. In order
to circumvent the convolutions due to the high-frequency
kernels, a new set of field variables is introduced. Consider
the termsc i* ] tqm in Eqs. ~20! and ~21!, wherem51 and
m53 denote thex andz coordinates. With the use of convo-
lution properties, this term can be written as

c i* ] tqm5c i
`qm1c i

0(
l51

Li

eil , ~32!

where

eil5j i l * qm ~33!

are hidden variables, with

j i l ~ t !5
H~ t !

Lit i l
S 12

l i l

t i l
DexpS 2t

t i l
D . ~34!

Substituting Eq.~32! into Eqs.~20! and ~21! gives

2]xp5r f ] tvx1c1
`qx1c1

0(
l51

L1

e1l , ~35!

and

2]zp5r f ] tvz1c3
`qz1c3

0(
l51

L3

e3l . ~36!

The formulation is completed with the differential equa-
tions corresponding to the hidden variables. Time differen-
tiation of Eq.~33! and use of convolution properties yields

]eil
]t

52
1

t i l
eil1j i l ~0!qm , ~37!

where the pair (i ,m) corresponds to~1,x! or ~3,z!. The dy-
namical equations are completely defined in terms of the
following parameters: the densitiesrs andrf , the porosityf,
the viscosityh, the tortuositiesTi , the permeabilitieski , the
constantsci

0, and the set of relaxation times (l i l ,t i l ),
l51,...,Li .
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III. THE WAVE EQUATIONS

The following is the velocity-stress formulation of the
low- and high-frequency range poroelastic equations.

A. Low-frequency range

Equations~18!, ~19!, ~25!, and~26! yield

] tvx5b11
~1!~]xtxx1]ztxz!2b12

~1!S ]xp1
h

k1
qxD , ~38!

] tvz5b11
~3!~]xtxz1]ztzz!2b12

~3!S ]zp1
h

k3
qzD , ~39!

] tqx5b21
~1!~]xtxx1]ztxz!2b22

~1!S ]xp1
h

k1
qxD , ~40!

] tqz5b21
~3!~]xtxz1]ztzz!2b22

~3!S ]zp1
h

k3
qzD , ~41!

where

Fb11
~ i ! b12

~ i !

b21
~ i ! b22

~ i !G5~r f
22rmi !

21F2mi r f

r f 2rG . ~42!

The wave equation is completed with Eqs.~1!–~4!.

B. High-frequency range

Equations~18!, ~19!, ~35!, and~36! yield

] tvx52
1

r f
S ]xp1c1

`qx1c1
0(
l51

L1

e1l D , ~43!

] tvz52
1

r f
S ]zp1c3

`qz1c3
0(
l51

L3

e3l D , ~44!

] tqx5
1

r f
F ~]xtxx1]ztxz!1

r

r f
S c1

`qx1c1
0(
l51

L1

e1l D G ,
~45!

] tqz5
1

r f
F ~]xtxz1]ztzz!1

r

r f
S c3

`qz1c3
0(
l51

L3

e3l D G .
~46!

The wave equation is completed with Eqs.~1!–~4! and
~37!.

IV. PLANE-WAVE THEORY

A general plane-wave solution for the particle velocity
vector

V[@vx ,vz ,qx ,qz#
T ~47!

is

V5V0 exp@i~k–x2vt !#, ~48!

whereV0 represents a constant complex vector andk is the
wave vector. For homogeneous waves, the wave vector can
be written as

k[k2ia5~k2ia!k̂[kk̂, ~49!

where

FIG. 1. Polar representations of~a! the slowness curves and~b! the energy
velocity curves forh50, corresponding to the sandstone. Only one quarter
of the curves are displayed because of symmetry considerations. The tick-
marks indicate the polarization directions, with the points uniformly
sampled as a function of phase angle. Referring to~b!, the outer curve
corresponds to the fast quasicompressional waveqP1; then follows the qua-
sishear waveqS and the slow quasicompressional waveqP2 ~inner curve!.
The opposite order applies to the slowness curves.

TABLE I. Material properties.

Material Property Sandstone Epoxy–glass Unit

Solid bulk modulus,Ks 80. 40. GPa
density,rs 2500. 1815. kg/m3

Matrix elasticity,c11 71.8 39.4 GPa
elasticity,c12 3.2 1. •••
elasticity,c13 1.2 5.8 •••
elasticity,c33 53.4 13.1 •••
elasticity,c55 26.1 3. •••
porosity,f 0.2 0.2
permeability,k1 600. 600. mD
permeability,k3 100. 100. •••
tortuosity,T1 2. 2.
tortuosity,T3 3.6 3.6

Fluid bulk modulus,Kf 2.5 2.5 GPa
density,rf 1040. 1040. kg/m3

viscosity,h 1. 1. cP
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k̂5 l xêx1 l zêz ~50!

defines the propagation direction through the directions co-
sinesl x and l z .

Defining the stress vector as

T[@txx ,tzz,txz ,2p#T ~51!

and substituting the plane wave~48! into the stress-strain
relations~1!–~5! yields

2vT5kC–V, ~52!

where

FIG. 2. Slowness, attenuation and energy velocity curves for sandstone andhÞ0, where~a! and~b! show the slownesses,~c! and~d! the attenuations, and~e!
and~f! the energy velocities. The curves correspond to a frequency of 3730 Hz, which is the central frequency of the source used for the numerical simulation.
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C5F l xc11
u l zc13

u a1Ml x a1Ml z

l xc13
u l zc33

u a3Ml x a3Ml z

l zc55
u l xc55

u 0 0

a1Ml x a3Ml z Ml x Ml z

G ~53!

and zero external forces have been assumed.
On the other hand, for the plane wave~48! the dynami-

cal equations~18! and ~19! and Darcy’s law~20! and ~21!
can be expressed in matrix form as

kL–T52vG–V, ~54!

where

L5F l x 0 l z 0

0 l z l x 0

0 0 0 l x

0 0 0 l z

G ~55!

and

G5F r 0 r f 0

0 r 0 r f

r f 0 iY1~2v!/v 0

0 r f 0 iY3~2v!/v

G . ~56!

Equations~52! and ~54! give

S G21
–L–C2

v2

k2
I4D –V50, ~57!

whereI4 denotes the four-dimensional unit matrix. By mak-
ing zero the determinant, Eq.~57! gives the following dis-
persion relation:

det~G21
–L–C2V2I4!50, ~58!

where

V5v/k ~59!

is the complex velocity. The eigensystem formed by Eqs.
~57! and ~58! gives four eigenvalues and the corresponding
eigenvectors. Three of them correspond to the wave modes,
and the fourth equals zero since it can be shown that two
rows of the system matrix are linearly dependent.

The slowness and attenuation vectors can be expressed
in terms of the complex velocity as

s5Re~1/V!k̂ ~60!

and

a5v Im~1/V!k̂, ~61!

respectively.
The wavefront is the locus of the end of the energy

velocity vector multiplied by one unit of propagation time,
with the energy velocity defined as the ratio of the average
power flow density^P& to the mean energy densitŷE&.
Since this is equal to the sum of the average kinetic and
strain energy densitieŝT& and ^W&, the energy velocity is

Ve5
^P&

^T1W&
, ~62!

whereP is the Umov–Poynting vector and the operation^–&
is the averaged value over one cycle of harmonic oscilla-
tions.

Dissipation can also be quantified by the quality factor,
which is defined as

Q52^W&/^D&, ~63!

where^D& is the dissipated energy density.
The calculation of the energy balance equation, Umov–

Poynting vector, and energy densities, in terms of the eigen-
system obtained from Eq.~57!, is given in the Appendix. The
energy balance equation, also called the Umov–Poynting
theorem, is

2aT
–P5iv@^W&2^T&#2v^D&. ~64!

Moreover, the two fundamental relations

k̂T
–Ve5Vp ~65!

and

FIG. 3. Polar representations of~a! the slowness curves and~b! the energy
velocity curves forh50, corresponding to the epoxy–glass porous medium.
Only one quarter of the curves are displayed because of symmetry consid-
erations. The tickmarks indicate the polarization directions, with the points
uniformly sampled as a function of phase angle.
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aT
–^P&5v^D&, ~66!

where Vp5v/k is the phase velocity, are obtained in the
Appendix. These are generalizations, to two-phase media, of

similar equations for single-phase anisotropic-viscoelastic
media.20 In particular, Eq.~65! means that the phase velocity
is the projection of the energy velocity onto the propagation
direction.

FIG. 4. Slowness, attenuation and energy velocity curves for the epoxy–glass system andhÞ0, where~a! and ~b! show the slownesses,~c! and ~d! the
attenuations, and~e! and~f! the energy velocities. The curves correspond to a frequency of 3135 Hz, which is the central frequency of the source used for the
numerical simulation.
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V. NUMERICAL SOLUTION ALGORITHM

The system of equations describing wave motion can be
written in matrix form as

] tW5MW1S, ~67!

where

W5@vx ,vz ,qx ,qz ,txx ,tzz,txz ,p,e1l ,e3l #
T ~68!

is the unknown field vector~the hidden variables only appear
in the high-frequency case!, M is the propagation matrix,
which contains the spatial derivatives and material proper-
ties, and

S5] t@0,0,0,0,s11,s33,s55,sf ,0,0#
T ~69!

is the source vector.
Consider the 1-D version of Eq.~67! with S50. The

plane wave

W5W0 exp@i~vCt2kx!#, ~70!

wherevC is the complex frequency andk is the wave num-
ber, is a solution and gives an eigenvalue equation for the

eigenvaluesl5ivC ~see Carcione21!. When using the Fou-
rier pseudospectral method for computing the spatial deriva-
tives, the wave numbers supported by the numerical mesh
span from k50 to the Nyquist wave numberk5p/DX ,
whereDX is the grid spacing. It can be shown that the eigen-
values come in complex conjugate pairs.22 When the fluid
viscosity is zero, they lie on the imaginary axis, and describe
propagating modes without dissipation. For a viscous fluid,
the eigenvalues have a negative real part meaning that the
waves are attenuated, in particular the slow wave. More pre-
cisely, the largest negative eigenvalue corresponds to the
slow wave fork50:

ls
~1!52~h/k1!b22

~1! . ~71!

In order to have numerical stability, the domain of conver-
gence of the time integration scheme should include this ei-
genvalue. For instance, an explicit 4th-order Runge–Kutta
method14 requires dtls

(1).22.78, implying a very small
time stepdt. Then, the method is restricted by stability rather
than by accuracy. The presence of this large eigenvalue, to-
gether with small eigenvalues, indicates that the problem is

FIG. 5. Snapshots~not scaled! of the center of mass particle velocity components at 1.56-ms propagation time, where~a! and~b! correspond toh50, and~c!
and ~d! to hÞ0. The medium is sandstone. Three events can be observed, the fastqP1 wave ~outer wavefront!, theqSwave and the slowqP2 wave ~inner
wavefront!.
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stiff.14 In other words, the eigenvalues have negative real
parts and differ greatly in magnitude. In stiff problems, the
solution to be computed is slowly varying but perturbations
exist that are rapidly damped. In this case, the perturbation is
the slow wave, which, in the presence of fluid viscosity,
presents a diffusive character.

As mentioned above, the spatial derivatives are calcu-
lated with the Fourier method by using the FFT.23 This ap-
proximation is infinitely accurate for bandlimited periodic
functions with cutoff spatial wave numbers which are
smaller than the cutoff wave numbers of the mesh. The sta-
bility problem posed by the eigenvaluels

(1) can be solved if
an A-stable method14 is used, implying stability in the open
left-half-plane. Alternatively, the solution can be obtained
with a partition method.22 For instance, consider the low-
frequency poroelastic equations. The system can be parti-
tioned into two set of differential equations, one stiff and the
other nonstiff, such that they can be treated by two different
methods, one implicit and the other explicit, respectively. In
the case of Eqs.~38!–~41!, the stiff equations

] tvx52
h

k1
b12

~1!qx , ~72!

] tvz52
h

k3
b12

~3!qz , ~73!

] tqx52
h

k1
b22

~1!qx , ~74!

] tqz52
h

k3
b22

~3!qz , ~75!

can be solved analytically, giving

vx*5vx
n1

b12
~1!

b22
~1! @exp~ls

~1! dt!21#qx
n,

vz*5vz
n1

b12
~3!

b22
~3! @exp~ls

~3! dt!21#qz
n, ~76!

qx*5exp~ls
~1! dt!qx

n, qz*5exp~ls
~3! dt!qz

n, ~77!

wherels
( i )52(h/k i)b22

( i ). Note that, whenh50, is v*5vn

andq*5qn, giving the purely elastic problem.
The intermediate vector

W*5@vx* ,vz* ,qx* ,qz* ,txx
n ,tzz

n txz
n ,pn#T ~78!

is the input for an explicit high-order scheme that solves Eq.
~67! with h50 to giveWn11. The method uses the following
4th-order Runge–Kutta algorithm:14

Wn115W*1
dt

6
~D112D212D31D4!, ~79!

where

D15MW *1Sn, ~80!

D25M SW*1
dt

2
D1D1Sn11/2, ~81!

D35M SW*1
dt

2
D2D1Sn11/2, ~82!

D45M ~W*1dtD3!1Sn11. ~83!

The advantage of the partition method is that the time step is
determined by the algorithm that solves the nonstiff equa-
tions. The following section considers wave propagation in
the sonic band where the low-frequency Biot theory applies.
The high-frequency Biot equations will be considered in a
future work.

VI. THEORETICAL RESULTS AND SIMULATIONS

Two materials, whose properties are given in Table I,
are considered. The values of the first column correspond to
a brine saturated sandstone and the values between parenthe-
sis refer to a strong anisotropic medium, whose matrix is
formed with alternating layers of epoxy and glass.24 The
characteristic frequencyvc for the x direction is 25 500 Hz.

The theoretical results are obtained from the plane-wave
analysis carried out in Sec. IV and the Appendix, in particu-
lar from the expressions of the slowness, attenuation and
energy velocity curves given by Eqs.~60!, ~61!, and ~62!,
respectively. Figure 1 shows polar representations of~a! the
slowness curves and~b! the energy velocity curves forh50,
corresponding to the sandstone. Only one quarter of the
curves are displayed because of symmetry considerations.
The tickmarks indicate the polarization directions, with the
points uniformly sampled as a function of phase angle. Since
a receiver detects the motion of the bulk material, the plotted
polarization is the center of mass particle velocity vector

b5v1~r f /r!q ~84!

introduced by Sahay.25 Referring to Fig. 1~b!, the outer curve
corresponds to the fast quasicompressional wave, denoted
hereafter byqP1; then follow the quasishear waveqS and
the slow quasicompressional waveqP2 ~the opposite order
applies to the slowness curves!. Whenh50, there is no dis-
sipation and the curves are frequency independent. As can be
seen in Fig. 1~b!, qP1 polarizations are practically normal to
the energy velocity curves~or wavefront, if multiplied by 1

FIG. 6. Snapshot of theqz particle velocity component for sandstone and
hÞ0. The static slow wave can be observed at the source location.
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s!, in contrast withqP2 polarizations, which depart substan-
tially from the normal.

Slowness, attenuation and energy velocity curves for
sandstone andhÞ0 are represented in Fig. 2, where~a! and
~b! show the slownesses,~c! and~d! the attenuations, and~e!
and ~f! the energy velocities. The curves are frequency de-
pendent and correspond to a frequency of 3730 Hz, which is
the central frequency of the source used for the numerical
simulation. TheqP2 mode presents a diffusive behavior, as
can be deduced from the low propagation velocity and very
high attenuation, compared to the other waves. The dissipa-
tion of the three modes is strongly anisotropic, with theqP1
and qS modes showing opposite behaviors. Moreover, the
qP2 wavefront is more anisotropic and has a more anoma-
lous polarization behavior compared to the elastic case~h
50!.

Figure 3 shows polar representations of~a! the slowness
curves and~b! the energy velocity curves of the three waves,
for h50, corresponding to the synthetic material. The propa-
gation is very anisotropic, with theqP2 presenting a quasis-
hear behavior, as can be inferred from the polarizations.

Moreover, this wave shows triplication~cusps! in the hori-
zontal direction. The curves forhÞ0 and a frequency of
3135 Hz are displayed in Fig. 4, where~a! and~b! show the
slownesses,~c! and ~d! the attenuations, and~e! and ~f! the
energy velocities. In particular, note the mixed quasicom-
pressional and quasishear features of theqP2 cuspidal tri-
angles. Anisotropic tortuosity does not have a major influ-
ence on theqP1 andqSwaves, but significantly affects the
slow wavefront. This is explained by the fact that the phase
velocity of the slow wave is~approximately! inversely pro-
portional to the square root of the tortuosity. The exact in-
verse proportionality is satisfied for isotropic media and
when the fluid bulk modulus is much lower than that of the
solid skeleton.1 In addition, differential permeability en-
hances the anisotropic behavior of theqP2 mode, as can be
inferred from a comparison of Figs. 3~b! and 4~f!.

The numerical mesh for simulating transient propagation
hasNX5NZ5375 points, with a grid spacingDX5DZ55
cm, and a source central frequency of 3730 Hz for the sand-
stone and 3135 Hz for the epoxy–glass material. The source
is a fluid volume injection (sf) plus a vertical force~s33!,

FIG. 7. Snapshots~not scaled! of the center of mass particle velocity components at 1.8-ms propagation time, where~a! and~b! correspond toh50, and~c!
and~d! to hÞ0. The medium is epoxy–glass. Three events can be observed, the fastqP1 wave~outer wavefront!, theqSwave and the slowqP2 wave~inner
wavefront!.
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applied to the drained skeleton, and the wave field is propa-
gated with a time step of 3ms.

Figure 5 gives snapshots~not scaled! of the center of
mass particle velocity components at 1.56-ms propagation
time, where~a! and~b! correspond toh50, and~c! and~d! to
hÞ0. The medium is sandstone. Three events can be ob-
served, the fastqP1 wave ~outer wavefront!, the qS wave
and the slowqP2 wave~inner wavefront!. The radiation pat-
tern of this wave differs from that of the fast compressional
wave in the horizontal direction, where there is substantial
horizontal motion. When the fluid is viscous, the slow wave
becomes diffusive and the snapshots resemble those of a
single-phase medium. However, a plot of, for instance, theqz
component~Fig. 6!, indicates the presence of the static~dif-
fusive! slow mode at the source location. This phenomenon
is stronger in the fluid phase.22

The snapshots corresponding to the epoxy–glass porous
medium are represented in Fig. 7, where~a! and ~b! corre-
spond toh50, and~c! and~d! to hÞ0. The propagation time
is 1.8 ms. The cuspidal triangles of theqS andqP2 waves
can be clearly appreciated. Moreover, Fig. 7~a! and~b! con-
firm the results of Fig. 3~b!, that, at approximately 45 deg,
the polarization of theqP2 wave is almost horizontal.
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APPENDIX: ENERGY BALANCE, UMOV–POYNTING
VECTOR AND ENERGY DENSITIES

The derivation of the energy balance equation or
Umov–Poynting theorem is straightforward when using
complex notation. The same procedure given in Carcione
and Cavallini20 for single-phase media is used here. The
strain vector corresponding to the plane wave~48! is

E52
k

v
LT
–V. ~A1!

This vector, with the notation given in Biot,15 is equal to
E5[ex ,ez ,gy ,2z] T. The dot product of the complex conju-
gate of Eq.~A1! with TT gives

2k*TT
–LT

–V*5vTT
–E* . ~A2!

On the other hand, the dot product of2V*T with Eq. ~54! is

2kV* T–L–T5vV* T–G–V. ~A3!

The left-hand sides of Eqs.~A2! and ~A3! contain the com-
plex Umov–Poynting vector

P52
1

2 F txx txz 2p 0

txz tzz 0 2pG–V* . ~A4!

In fact, by virtue of Eq.~49!, Eqs.~A2! and ~A3! become

2k* T–P5vTT
–E* ~A5!

and

2kT–P5vV* T–G–V, ~A6!

respectively. Adding~A5! and ~A6!, and using Eq.~49!,
yields

4kT
–P5v~TT

–E*1V* T–G–V!. ~A7!

It can be easily shown, from Eqs.~52! and ~A1!, that the
quantityTT

–E* is always real, even whenhÞ0.
The significance of Eq.~A7! becomes clear when one

recognizes that each of its terms has a precise physical mean-
ing on a time-average basis. When using complex notation
for plane waves, the field variables are obtained as the real
part of the corresponding complex field. For two field vari-
ablesA and B of dimensionn, the time average of their
scalar product over a cycle of periodT52p/v is given by26

^Re~AT!–Re~B!&5 1
2 Re~A

T
–B* !. ~A8!

Then, the time average of the real Umov–Poynting vector

2ReF txx txz 2p 0

txz tzz 0 2pG–Re~V! ~A9!

is

^P&5Re~P!, ~A10!

which gives the average power flow.
The time average of the strain energy density

W5 1
2 Re~T

T!–Re~E! ~A11!

is

^W&5 1
4T

T
–E* , ~A12!

since, as stated above,TT
–E* is a real quantity.

Similarly, the average kinetic and dissipated energy den-
sities are given by

^T&5 1
4 Re~V

T
–G–V* ! ~A13!

and

^D&5 1
4 Im~VT

–G–V* !, ~A14!

respectively. Equation~A14! represents the energy loss per
unit volume of the bulk due to the fluid viscosity.

Substituting Eqs.~A10! and ~A12!–~A14! into the real
part of Eq.~A7! gives

kT
–^P&5v~^W&1^T&![v^E&, ~A15!

where

^E&5^T1W& ~A16!

is the mean energy density. Defining the energy velocity as
in Eq. ~62!, Eq. ~A15! gives

k̂T
–Ve5Vp , ~A17!

whereVp5v/k is the phase velocity. The relation~A17!, as
in a single-phase medium,20 means that the phase velocity is
simply the projection of the energy velocity onto the propa-
gation direction.

On the other hand, substracting Eq.~A5! from ~A6! and
using ~49! yields the energy balance equation

2aT
–P5iv@^W&2^T&#2v^D&. ~A18!

Taking the real part of~A18! yields

aT
–^P&5v^D&. ~A19!
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This equation is the generalization of a similar relation for
viscoelastic single-phase media,20 stating that the time-
average dissipated energy can be obtained as the projection
of the average power flow density onto the attenuation direc-
tion.

The Umov–Poynting vector~A10! can be expressed in
terms of the eigenvectorsV and complex velocitiesV ob-
tained from Eqs.~57! and ~58!, respectively. Defining the
matrices

U15F 1 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

G and U35F 0 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1

G ,
~A20!

the average power flow can be written as

^P&52 1
2 Re$@ êx~U1–T!T1êz~U3–T!T#–V* %. ~A21!

Then, substitution of the constitutive Eq.~52! gives

^P&5 1
2 Re$V

21VT
–CT

–@ êxU1
T1êzU3

T#–V* %. ~A22!

The average strain energy density can be further simpli-
fied. Substituting Eq.~A1! into Eq. ~A12! and using the
stress-strain relation~52! yields

^W&5 1
4uVu22VT

–CT
–LT

–V* . ~A23!

Rewriting Eq.~A23! as

^W&5 1
4uVu22~G–G21

–L–C–V!T–V* , ~A24!

and using~57!, yields

^W&5 1
4uVu22V2VT

–G–V* , ~A25!

where the fact thatG is a symmetrix matrix has been used.
Equation~A25! is formally similar to the strain energy den-
sity in single-phase anisotropic-viscoelastic media, where
^W&5 1

4rsuVu22V2uVu2 ~see Carcione and Cavallini27!. In the
single-phase medium, every particle velocity component is
equally weighted by the density. Note that, whenh50, V is
real and the average strain energy density equals the average
kinetic energy~A13!.

From Eqs.~A13! and ~A23!, the mean energy density
~A16! becomes

^E&5
1

4
ReF S 11

V2

uVu2DVT
–G–V* G . ~A26!
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