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Porous media are anisotropic due to bedding, compaction, and the presence of aligned microcracks
and fractures. Here, it is assumed that the skelésonl not the solid itselfis anisotropic. The
rheological model also includes anisotropic tortuosity and permeability. The poroelastic equations
are based on a transversely isotropic extension of Biot's theory, and the problem is of plane strain
type, i.e., two dimensional, describimgd®— qS propagation. In the high-frequency case, (tveo)
viscodynamic operators are approximated by Zener relaxation functions that allow a closed
differential formulation of Biot's equation of motion. A plane-wave analysis derives expressions for
the slowness, attenuation, and energy velocity vectors, and quality factor for homogeneous
viscoelastic waves. The slow wave shows an anomalous polarization behavior. In particular, when
the medium is strongly anisotropic the polarization is quasishear and the wave presents cuspidal
triangles. Anisotropic tortuosity affects mainly the slow wavefront, and anisotropic permeability
produces strong anisotropic attenuation of the three modes. The diffusive characteristics of the slow
mode are predicted by the plane-wave analysis. As in the single-phase case, it is confirmed that the
phase velocity is the projection of the energy velocity vector onto the propagation direction.
Moreover, some fundamental energy relations, valid for a single-phase medium, are generalized to
two-phase media. Transient propagation is solved with a direct grid method and a time-splitting
integration algorithm, allowing the solution of the stiff part of the differential equations in closed
analytical form. The snapshots show that the three waves are propagative when the fluid is ideal
(zero viscosity. It is confirmed that, when the fluid is viscous, the slow wave becomes diffusive and
appears as a static mode at the source location. The modeling confirms the triplicaspg of the

slow wave and the polarization behavior predicted by the plane analysisl996 Acoustical
Society of America.

PACS numbers: 43.20.Bi, 43.20.Jr, 43.30.Ma, 43.40.Ph

INTRODUCTION to the arrangement of the graifise., the skeleton is aniso-
tropic). An alternative approach to obtain an anisotropic po-
The concepts of porous and fractured media have gaineelastic medium was presented by Nofrissho applied
much attention in recent years. The applications cover a vaBackus theory to a periodically layered system composed of
riety of fields, from physics to geophysics, engineering andsotropic Biot constituents. The effects of anisotropic perme-
soil mechanics, underwater acoustics,*efdn particular, in ability on the kinematics of wave propagation were investi-
the exploration of oil and gas reservoirs, it is important togated in Ben-Menahem and Gibsthand Gelinsky and
predict the preferential directions of fluid flow. These areShapiro'*'? They found that the degree of attenuation and
closely related to the permeability of the medium, and convelocity anisotropy is strongly dependent on the frequency
sequently to the geometric characteristics of the skeletorrange.
That is to say, an anisotropic skeleton implies that perme-  The poroelastic equations of motion combine the consti-
ability is anisotropic and vice versa. For instance, shales argitive relations with the equations of momentum conserva-
naturally bedded and possess intrinsic anisotropy at the mtion and the dynamic Darcy’s law in the framework of Biot’s
croscopic level. Similarly, compaction and the presence ofheory. The theory assumes that the medium is isotropic in
microcracks and fractures make the skeleton anisotropic. the bedding planésay, thex-y plang, and anisotropic in the
The constitutive equations for anisotropic porous mediax-z plane. Then, the stress-strain relations are transversely
were first given by Bidt®> and Biot and Willis® More re-  isotropic, and Darcy’s law is described by two permeability
cently, Thompson and Willlsreformulated the stress-strain constanté® In order to simulate wave propagation in the
equations in terms of measurable quantities, and Badielow- and high-frequency ranges, a time domain formulation
et al® applied these concepts to wave propagation in a transof the viscodynamic operator is introduced. A different re-
versely isotropic seafloofsee also Cousdy This theory, laxation function is assigned to each principal permeability.
used here to describe the medium, assumes that the solibr high frequencies, the formulation requires the introduc-
constituent is isotropic and that the anisotropy is solely duegion of hidden variables that circumvent the convolutional
relations imposed by the time domain approach. The numeri-
aTel:  0039-40-2140345, Fax: +39 40 327307, E-mail: cal solution is computed with a direct grid method based on
carcione@gems755.0gs.trieste. it the Fourier pseudospectral operator. Since the presence of
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the slow compressional wave makes Biot’s differential equa- Cia=Cyat arasM, (7)
tions stiff!* a time splitting time integration algorithm is

used. The stiff part is solved analytically, and the nonstiff ~ Css= Css- (8)
part by using a high-order explicit scheme. The resulting

algorithm posseses 4th-order accuracy in time, and “infix., e is mainly caused by the directional arrangement of the

nite” (spectral accuracy in space. _ grains, and not by the anisotropy of the individual grains. In
The paper is organized as follows. Section | presents thﬂwis case, the effective coefficients are givefi by

stress-strain relations. Then, Sec. Il gives the dynamical

The theory assumes that the anisotropy of the porous

equations and Darcy’s law generalized to the anisotropic _, CitCyptCyg
case and including the viscodynamic operator in the time @= T 3K, ' ©)
domain. The low- and high-frequency range time domain
equations are explicitly given in Sec. Il as first-order differ- ag=1- 2Cy5 Cg3 (10)
ential equations in time. In order to obtain a physical insight 3Ks
of the wave processes prior to the numerical solution of th‘?/vhereK is the bulk modulus of the grains.
wave equation, a plane-wave analysis is presented in Sec. IV, 5, Ljndrained teétgives the modulus:
where slowness, attenuation, and energy velocity curves are
. . ' . ; 2
calculated. The numerical solution algorithm is developed in B Ks
Sec. V and, finally, Sec. VI presents the theoretical results D —(2Cy1+Ca3t2C o+ 4C139)/9° (19)

and simulations.

Summarizing, the contributions of the present paper argvhere
the following: (i) recasting Biot differential equations in the D=KJ1+ ¢(KSKF1—1)], (12
time-domain including low- and high-frequency phenomena, . ) )
(i) a plane-wave analysis for poroelastic anisotropic medid!ith K¢ the fluid bulk modulus and the porosity.
based on energy consideratiors)) the use of a splitting _ Then, the stress-_straln rel_atlon are_compleftely deter-
time-integration technique to overcome the stiffness of BiofMiN€d from the following material properties obtained from
equations, andv) the numerical solution of Biot anisotropic €XPeriments: the drained elastic modalj, the solid and

equations by a direct grid method based on a pseudospecttfgl'id quuli Ks andKy, and the poro_sityﬁ. ) ) i
differential operator. To illustrate the role of the various anisotropic coeffi-

cients, consider the isotropic caSdsotropy implies that

4 K—Kp)?
I. STRESS-STRAIN RELATIONS Cl1=Cag=H=Kp+ 3 ut (K= Kum)®

D-K, '
The constitutive equations for an inhomogeneous, trans- RV (19
versely isotropic poroelastic medium under plane strain con- 12713 Ko
ditions are given bYy C11=C3=Kn+2u, crp=Ci3=Ky—2u, (14)
I Txx= Cgl IvxT CL113 I+ a1 M (9,05 + ,0,) + atsll(!l) CES: Css= (L, (15)

a=az=a=1—K /K, 16
athz:Cg?, (7xvx+053 v+ azM(d,0x+d,0,) + d;Ss3, ! 3 mes (18
(20 whereK,, and p are the bulk and shear moduli of the
(drained matrix, respectively, and

Oy Txz= Cgs(azvx+‘9xvz)+&t555- ) 5
K
dp=—a1M dwy,—azM dv,—M(d,0x+d,0,) +d:St, M= > . (17)
(4) D-Kp

In Biot,'® the quantityaM is denoted byC, and the und-
rained bulk modulus i$l —4u/3. Note that the properties of
the fluid enter through the parameter

where 7, 7,,, and 7, are the total stressep, is the fluid
pressure, the’s and theq's are the solid and fluidrelative
to the solid particle velocities, respectivelg;, 1,J=1,...,6
are the undrained elastic componenisjs an elastic modu-
lus, ande;, i1=1,3 are Biot's effective coefficients. More-
over,s;; ands; are the solid and fluid external sources, re-|l. DYNAMICAL EQUATIONS AND DARCY’S LAW
spectively. The conventions are that denotes time

differentiation, and that, and o, are the spatial derivative The dynamical equations describing wave propagation
operators. in heterogeneous porous media were obtained by BiBar

The drained elastic components; are obtained for Plane strain conditions they are

p=0 (jacketed test on a dry sampléhe relations with the Oy Tyt 0,7y =p OV + Pr Iy (18)
undrained components are
0 +0 =p 0v,+ ps 9:Q,, 19
Clljlz Cut aiM, (5) xTxz T 02Tzz— P OtV ' Pt didz | . ( )
" 5 where p=(1—¢)ps+ ¢p; is the composity density, witlpg
C33= Cazt a3M, (6)  andp; the solid and fluid densities.
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On the other hand, it is assumed that the dynamic DarThe range of validity ofY;(w) is defined by the lower limit
cy's law, generalized to the anisotropic case, can be exa; and, for this frequency, the following constraints can be

pressed as imposed:
— 0xP=pt dxTt hr* 10y, (20) ReYi(we)]= 7/ ki, (30)
— 3 P=pi G+ Pa* s, (21 and

where the asterisk denotes time convolution, andi=1,3 IM[Yi(w)]= wcm;, (31

are time-dependent functions such that Biot's viscodynamig, ., satisfy the continuity between the low- and high-

operators for thex andz directions are given by frequency ranges. The operators(Reand Ir-) take real
Yi(w)=7Td], (22 and imaginary parts, respectively. On the other hand, when
w—o, the operatolY; and Biot’s theory loose their physical
meanings, since scattering takes pldttee theory is valid
when the wavelength is large compared to the dimensions of
the pores
P () =m; 8(t) + (9l k) H(1), (23) _Equations(l)—'(4), (18),.(19), (20)', and(21) could be the.

. o o basis for a numerical solution algorithm. However, numerical
wherem; =Tip/ ¢, with T; the tortuosity,7 is the fluid vis-  eyajuation of the convolution integrals is prohibitive when
cosity, x, i=1,3 are the principal components of the global spjying the differential equations with grid methods and ex-
permeability tensor(t) is Dirac’s function, andi(t) is the  pjicit time evolution techniquesthe low-frequency case
Heaviside function. From Eq22), poses no problem, since substitution of ER3) into Egs.

Yi(w)=om + 7lk;, (24) (20 .and(21) does not involye time convolutio]psln order
to circumvent the convolutions due to the high-frequency
wheret=—1. In terms of mechanical models, E@3) rep-  kernels, a new set of field variables is introduced. Consider
resents a Kelvin—Voigt elemeht. Substitution of Eq(23)  the termsy;* 4,q,, in Eqgs. (20) and (21), wherem=1 and
into Egs.(20) and(21) gives Biot's dynamic Darcy’s law in - m=3 denote thex andz coordinates. With the use of convo-

with the operator7 denoting the time Fourier transform. In
the low-frequency rang®, i.e., for frequencies lower than
we=min(w;), wherew;= n/(m;«;),

the low-frequency rang¥. lution properties, this term can be written as
—dyp=ps dwx+ My 3yt (7/k1)0y, (25 Oi
% 0= U A+ U e, 32
—3,p=ps dv,+ Mz 39, +(7/k3)d;. (26) Y1 Hm= 4 G+ ¥ =1 ! 32

In the high-frequency rang@»=w,), the viscodynamic where
operator is strongly influenced by the pore geometry, and a

precise evaluation of its frequency dependence requires an ! = &ir* Om (33
experimental determinatioff.For high frequencies, the time- are hidden variables, with
domain viscodynamic operator is approximated by the fol-
lowing generalized Zener kern&: H(®) Ni —t
: §i|(t):r 1——- exp —|. (34)
1 L \ i 7il il Til
gbi(t):w? 1- T E (1— —") exp(—t/TH)}H(t), Substituting Eq(32) into Egs.(20) and(21) gives
i1=1 il
L1
i=1 or 3, (27) —JxP=pt dwxt waloq{" lﬂg; €1, (39
where ¢ is the relaxed valué¢t—«), \; and 7, are relax-
ation times §,=7,), andL, is the number of Zener ele- and
ments. In general, for a smooth time dependence, two or L3
three elements suffice to get a fairly good approximation, as  —g,p=p; dv,+ /30, + (r/,glzl ey . (36)

in the case of viscoelastic modeling with a nearly constant
quality factorf Since, as it is shown below, each element  1he formulation is completed with the differential equa-
adds a new first-order differential equation, this implies morg;y,5 corresponding to the hidden variables. Time differen-

computer storage and time. - _ _ tiation of Eq.(33) and use of convolution properties yields
The high-frequency limit is obtained far0. It gives
0€;| 1
RSy = — @i+ &i(0)dn, (37)
2=l Y 2L, (28 i
Li =1 7y

where the pairi(;m) corresponds t@lx) or (3,2). The dy-
Equation (22) applied to(27) gives the expression of the namical equations are completely defined in terms of the

high-frequency viscodynamic operator: following parameters: the densitipsandps , the porosityg,
0L the viscosityz, the tortuositiedT; , the permeabilities; , the
N ﬁ 1+ ok constants¢, and the set of relaxation times\(,7),
Yi(w)= : (29)
Li =1 1+LwTi| Izl,...,Li.
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TABLE |. Material properties.

Material Property Sandstone Epoxy—glass Unit
Solid bulk modulusKg 80. 40. GPa
density, pg 2500. 1815. kg/rh
Matrix elasticity,c;; 71.8 39.4 GPa
elasticity, ¢4, 3.2 1.
elasticity,c3 1.2 5.8
elasticity, C33 53.4 131
elasticity, Css 26.1 3.
porosity, ¢ 0.2 0.2
permeability, «; 600. 600. mD
permeability,x3 100. 100.
tortuosity, T, 2. 2.
tortuosity, T 3.6 3.6
Fluid bulk modulusK; 25 25 GPa
density, ps 1040. 1040. kg/rh
viscosity, 1. 1. cP

IIl. THE WAVE EQUATIONS

The following is the velocity-stress formulation of the

low- and high-frequency range poroelastic equations.
A. Low-frequency range
Equations(18), (19), (25), and(26) yield

7
U= ﬁ(lji)(axTxx'l' 377x2) _:8(1:5) Ixp+ K_l qx) ) (39

_ n(3 3
v ,= Bgll)(axsz'{' 02T27) — :8(12)

n
dp+ — qz) ’ (39)
K3

n
ath:B(zi)(&xTxx"' 07Txz) — (212) Ixp+ K_l qx) ) (40

3 3
Q.= ﬂ(21)(‘9x7'xz+ 02722 — B<22)

n
I P+ — QZ) ) (41)
K3

where
(i) (i)
11 12 I LU
[ (i) (i) =(pi*—pm;) _ (42)
21 P22 Pt P
The wave equation is completed with Eq¢$)—(4).
B. High-frequency range
Equations(18), (19), (35), and(36) yield
Ly
dux=——1| P+ wolcqx'*' l/’glzl ell) ) (43
L
v ,= — E P+ w§q2+ l/lg;l e3I) ) (44)
1 p | . 0 =
0x=—| (IxTxxt d;Ty) + — P10yt ‘//12 €1l
Pt | Pt =1
(45)
1 p | . 0 L3
010,=— | (OxTxz+ 9,72 + — | 30,7+ '7[}32 €31/ |-
pt | pt =1
(46)
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FIG. 1. Polar representations @) the slowness curves artt) the energy
velocity curves forp=0, corresponding to the sandstone. Only one quarter
of the curves are displayed because of symmetry considerations. The tick-
marks indicate the polarization directions, with the points uniformly
sampled as a function of phase angle. Referringhip the outer curve
corresponds to the fast quasicompressional vegRg then follows the qua-
sishear waveyS and the slow quasicompressional way@, (inner curve.

The opposite order applies to the slowness curves.

The wave equation is completed with Eq$)—(4) and

(37).

IV. PLANE-WAVE THEORY

A general plane-wave solution for the particle velocity
vector

VE[UX:UZ’Qquz]T (47)

V=V, exd t(k-x—wt)], (48

whereV represents a constant complex vector &nd the
wave vector. For homogeneous waves, the wave vector can
be written as

k=K—1a=(k— o) k=Kk, (49

where
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FIG. 2. Slowness, attenuation and energy velocity curves for sandstonghdvhere(a) and(b) show the slownesse&;) and(d) the attenuations, an@)
and(f) the energy velocities. The curves correspond to a frequency of 3730 Hz, which is the central frequency of the source used for the numerical simulation.

k=1,8+1.,& (50) and substituting the plane wavé8) into the stress-strain

lati 1)—(5) yield
defines the propagation direction through the directions <:oEea lons(1)-(5) yields

sinesl, andl,.

Defining the stress vector as —oT=kC-V, (52)

T=[Txx,T22: Txz1 — p]T (51 where
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FIG. 3. Polar representations @) the slowness curves artt) the energy

velocity curves forp=0, corresponding to the epoxy—glass porous medium.

p O pi 0

r-| 0 7 ° e (56)
pi 0 WYi(—w)lw 0
0 ps 0 NYa(—w)lw

Equations(52) and (54) give
r -L-C—FI4 V=0, (57

wherel , denotes the four-dimensional unit matrix. By mak-
ing zero the determinant, E¢57) gives the following dis-
persion relation:

de(I' *.L.C—V?l,)=0, (58
where
V=owl/k (59

is the complex velocity. The eigensystem formed by Egs.
(57) and (58) gives four eigenvalues and the corresponding
eigenvectors. Three of them correspond to the wave modes,
and the fourth equals zero since it can be shown that two
rows of the system matrix are linearly dependent.

The slowness and attenuation vectors can be expressed
in terms of the complex velocity as

s=Re1NV)k (60)
and

a=w Im(1V)k, (62
respectively.

The wavefront is the locus of the end of the energy
velocity vector multiplied by one unit of propagation time,
with the energy velocity defined as the ratio of the average
power flow density(P) to the mean energy densitE).

Only one quarter of the curves are displayed because of symmetry considince this is equal to the sum of the average kinetic and
erations. The tickmarks indicate the polarization directions, with the pointsstrain energy densitiqu> and<W>' the energy velocity is

uniformly sampled as a function of phase angle.

|XCT]_ |chg alMlx alMIZ
|XCL113 |ZC53 le3MIX a3|\/||z

c=| 7 : (53)
[,Cs5  IxCss 0 0

C!]_Mlx a3M|Z MIX Mlz

and zero external forces have been assumed.

On the other hand, for the plane wai48) the dynami-
cal equationg18) and (19) and Darcy’s law(20) and (21)
can be expressed in matrix form as

kL-T=—-owI'-V, (54)
where
I, 0 I, O
0o 1l, I, O
L= 55
0 0 0 Iy (59)
0 0 0 I,

and
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(P

R

(62)
whereP is the Umov—Poynting vector and the operatien
is the averaged value over one cycle of harmonic oscilla-
tions.

Dissipation can also be quantified by the quality factor,
which is defined as

Q=2(W)/(D), (63)

where(D) is the dissipated energy density.

The calculation of the energy balance equation, Umov—
Poynting vector, and energy densities, in terms of the eigen-
system obtained from E¢57), is given in the Appendix. The
energy balance equation, also called the Umov—Poynting
theorem, is

—a'-P= o[ {W)—(T)]— (D). (64)
Moreover, the two fundamental relations
K'-Ve=V, (65)

and
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FIG. 4. Slowness, attenuation and energy velocity curves for the epoxy—glass systep@ndihere(a) and (b) show the slownesseg;) and (d) the
attenuations, an¢e) and(f) the energy velocities. The curves correspond to a frequency of 3135 Hz, which is the central frequency of the source used for the
numerical simulation.

a"-(P)=w(D), (66) similar equations for single-phase anisotropic-viscoelastic
media?’ In particular, Eq(65) means that the phase velocity
where V,=w/« is the phase velocity, are obtained in theis the projection of the energy velocity onto the propagation
Appendix. These are generalizations, to two-phase media, airection.
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(b)

(@)

FIG. 5. Snapshot&ot scaled of the center of mass particle velocity components at 1.56-ms propagation time, (@hanel (b) correspond ta;=0, and(c)
and(d) to »#0. The medium is sandstone. Three events can be observed, tlgPfastive (outer wavefront the qS wave and the slowqP, wave (inner
wavefronj.

V. NUMERICAL SOLUTION ALGORITHM eigenvalues\=tw. (see Carciorfé). When using the Fou-
. . . rier pseudospectral method for computing the spatial deriva-
_ The system of equations describing wave motion can bgyes the wave numbers supported by the numerical mesh
written in matrix form as span fromk=0 to the Nyquist wave numbek=7/Dy,
HW=MW +S, (67) whereDy is the grid spacing. It can be shown that the eigen-
values come in complex conjugate p&itsiVhen the fluid
viscosity is zero, they lie on the imaginary axis, and describe
W=[0y,0;,0x,07> Txx» T2z> Txz, P:€11 €311 " (68)  propagating modes without dissipation. For a viscous fluid,
is the unknown field vectdithe hidden variables only appear w:vglsgz?g 2'32&2?:; f:] :Z?t?g:;rrﬁz is)l?)rvtv :/nv:\a/\(ra]!nla (;ga;;cg_e

in the high-frequency cageM is the propagation matrix, cisely, the largest negative eigenvalue corresponds to the

which contains the spatial derivatives and material Propers| s wave fork=0:

where

ties, and
1) _ 1
$=3,0,0,0,08;1,533,S55,51,0,0]" (69) N == (0l k1) BE (72)
is the source vector. In order to have numerical stability, the domain of conver-
Consider the 1-D version of Eq67) with S=0. The gence of the time integration scheme should include this ei-
plane wave genvalue. For instance, an explicit 4th-order Runge—Kutta
W=W, extf «(wct—kx)], (70) method* requires dtA{ 2.78, implying a very small

time stepdt. Then, the method is restricted by stability rather
wherewc is the complex frequency ardis the wave num- than by accuracy. The presence of this large eigenvalue, to-
ber, is a solution and gives an eigenvalue equation for thgether with small eigenvalues, indicates that the problem is
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9 O™ =exr()\(sl> doa,", q* =exp()\(53) dnaq,", (77)
wherex=—(7/x;) BY). Note that, wheny=0, isv* ="
andqg* =q", giving the purely elastic problem.

The intermediate vector

/// \\\ W*=[0,*,0,%,0x* 0%, 75x To7x2, P"TT (78)
is the input for an explicit high-order scheme that solves Eqg.
(67) with =0 to giveW"*. The method uses the following

\\ // 4th-order Runge—Kutta algorithf:

dt
" g Wn+l:W*+E(Al+2A2+2A3+A4), (79)
-
z where
AleW*‘i‘Sn, (80)
X
dt +1/2
. . AZZM W*+_A1 +Sn y (81)
FIG. 6. Snapshot of thg, particle velocity component for sandstone and 2
7n#0. The static slow wave can be observed at the source location.
dt
Ag=M|W*+ = 4, | +8"17, (82

stiff.2* In other words, the eigenvalues have negative real
parts and differ greatly in magnitude. In stiff problems, the A,=M(W*+dtAg)+ S (83

SO!UtIOﬂ to be computed is slowly varying but perturbat!ons__l_he advantage of the partition method is that the time step is
exist that are rap|dly_ da”_‘ped- In this case, the p_ertu_rbatu_)n '‘Jetermined by the algorithm that solves the nonstiff equa-
the slow wave, which, in the presence of fluid VIScosny'tions. The following section considers wave propagation in

presents a diffusive character. . . .
. . L th ni nd where the low-fr ncy Biot theory applies.
As mentioned above, the spatial derivatives are calcu- e sonic band where the low-frequency Bio y app

lated with the Fourier method by using the FETThis ap- The high-frequency Biot equations will be considered in a

proximation is infinitely accurate for bandlimited periodic future work.

functions with cutoff spatial wave numbers which are

smaller than the cutoff wave numbers of the mesh. The sta\-”' THEORETICAL RESULTS AND SIMULATIONS
bility problem posed by the eigenvala&” can be solved if Two materials, whose properties are given in Table |,
an A-stable methdd is used, implying stability in the open are considered. The values of the first column correspond to
left-half-plane. Alternatively, the solution can be obtaineda brine saturated sandstone and the values between parenthe-
with a partition method?® For instance, consider the low- sis refer to a strong anisotropic medium, whose matrix is
frequency poroelastic equations. The system can be partiermed with alternating layers of epoxy and gld$sThe
tioned into two set of differential equations, one stiff and thecharacteristic frequency, for the x direction is 25 500 Hz.
other nonstiff, such that they can be treated by two different  The theoretical results are obtained from the plane-wave
methods, one implicit and the other explicit, respectively. Inanalysis carried out in Sec. IV and the Appendix, in particu-

the case of Eq9438)—(41), the stiff equations lar from the expressions of the slowness, attenuation and
energy velocity curves given by Eq&0), (61), and (62),
Avy=— a BYay, (72)  respectively. Figure 1 shows polar representation@othe
K1 slowness curves arth) the energy velocity curves faj=0,

7 corresponding to the sandstone. Only one quarter of the
v ,=— — B(lz)qz, (73 curves are displayed because of symmetry considerations.
K3 The tickmarks indicate the polarization directions, with the
7 points uniformly sampled as a function of phase angle. Since
%=~ B3 Ay (74 areceiver detects the motion of the bulk material, the plotted
! polarization is the center of mass particle velocity vector

30,=— - B, (75 b=vF(pilp)g 84
3 introduced by Saha$. Referring to Fig. 1b), the outer curve
can be solved analytically, giving corresponds to the fast quasicompressional wave, denoted
B(l) hereafter byqP,; then follow the quasishear wavgS and
v, =v, M+ % [exp()\(sl) dt)—1]q,", the slow quasicompressional wagé, (the opposite order
22 applies to the slowness curyesVhen =0, there is no dis-
(3) sipation and the curves are frequency independent. As can be
v, =u, N+ % [exp A dt)—1]q,", (76)  seenin Fig. (), qu polarizations are pr'actical'ly .normal to
B the energy velocity curve®r wavefront, if multiplied by 1
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(a) (b)

()

FIG. 7. Snapshot&ot scalegl of the center of mass particle velocity components at 1.8-ms propagation time, (gherel (b) correspond tay=0, and(c)
and(d) to »#0. The medium is epoxy—glass. Three events can be observed, tigPfastive (outer wavefront, the qSwave and the slow P, wave (inner
wavefronj.

s), in contrast withq P, polarizations, which depart substan- Moreover, this wave shows triplicatiofgusps in the hori-
tially from the normal. zontal direction. The curves fop#0 and a frequency of

Slowness, attenuation and energy velocity curves fo8135 Hz are displayed in Fig. 4, whef@ and (b) show the
sandstone angj#0 are represented in Fig. 2, whei@® and  slownesses(c) and (d) the attenuations, an@) and (f) the
(b) show the slownesse&;) and(d) the attenuations, an@) energy velocities. In particular, note the mixed quasicom-
and (f) the energy velocities. The curves are frequency depressional and quasishear features of g cuspidal tri-
pendent and correspond to a frequency of 3730 Hz, which iangles. Anisotropic tortuosity does not have a major influ-
the central frequency of the source used for the numericatnce on theyP, andgS waves, but significantly affects the
simulation. ThegqP, mode presents a diffusive behavior, asslow wavefront. This is explained by the fact that the phase
can be deduced from the low propagation velocity and veryelocity of the slow wave igapproximately inversely pro-
high attenuation, compared to the other waves. The dissipgortional to the square root of the tortuosity. The exact in-
tion of the three modes is strongly anisotropic, with ¢/,  verse proportionality is satisfied for isotropic media and
and qS modes showing opposite behaviors. Moreover, thevhen the fluid bulk modulus is much lower than that of the
qP, wavefront is more anisotropic and has a more anomasolid skeletor!. In addition, differential permeability en-
lous polarization behavior compared to the elastic dase hances the anisotropic behavior of B, mode, as can be
=0). inferred from a comparison of Figs(l8 and 4f).

Figure 3 shows polar representationg®&fthe slowness The numerical mesh for simulating transient propagation
curves andb) the energy velocity curves of the three waves,has Ny=N,=375 points, with a grid spacin®y=D,=5
for =0, corresponding to the synthetic material. The propa<m, and a source central frequency of 3730 Hz for the sand-
gation is very anisotropic, with thgP, presenting a quasis- stone and 3135 Hz for the epoxy—glass material. The source
hear behavior, as can be inferred from the polarizationsis a fluid volume injection ;) plus a vertical force(ssy),
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applied to the drained skeleton, and the wave field is propa-

gated with a time step of as.

Figure 5 gives snapshotsot scaled of the center of
mass particle velocity components at 1.56-ms propagatio
time, wherea) and(b) correspond ta;=0, and(c) and(d) to
7n#0. The medium is sandstone. Three events can be o
served, the fastjP; wave (outer wavefront the gS wave
and the slowg P, wave (inner wavefront The radiation pat-
tern of this wave differs from that of the fast compressiona
wave in the horizontal direction, where there is substanti
horizontal motion. When the fluid is viscous, the slow wave
becomes diffusive and the snapshots resemble those of
single-phase medium. However, a plot of, for instancegthe
componeni{Fig. 6), indicates the presence of the stdtif-

fusive) slow mode at the source location. This phenomenon

is stronger in the fluid phasg.

The snapshots corresponding to the epoxy—glass porous

medium are represented in Fig. 7, whéag and (b) corre-
spond tor=0, and(c) and(d) to »#0. The propagation time
is 1.8 ms. The cuspidal triangles of tkks and g P, waves
can be clearly appreciated. Moreover, Fi¢gp)7and(b) con-
firm the results of Fig. ®), that, at approximately 45 deg,
the polarization of the P, wave is almost horizontal.
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APPENDIX: ENERGY BALANCE, UMOV-POYNTING
VECTOR AND ENERGY DENSITIES

4" -P=w(TT-E* +V*T.T".V). (A7)

It can be easily shown, from Eq$52) and (Al), that the
HuantityTT-E* is always real, even when+0.
The significance of Eq(A7) becomes clear when one

6§cognizes that each of its terms has a precise physical mean-

ing on a time-average basis. When using complex notation
for plane waves, the field variables are obtained as the real

jpart of the corresponding complex field. For two field vari-
afiblesA and B of dimensionn, the time average of their

scalar product over a cycle of peridd=2x/w is given by®

a

(Re(AT)-Re(B))= } RA(AT-B*). (A8)

Then, the time average of the real Umov—Poynting vector

Txx Txz —P 0
-R ‘Re(V) (A9)
Txz T2z O -
is
(P)=Re(P), (A10)
which gives the average power flow.
The time average of the strain energy density
W=3ReT")-ReE) (A11)
is
(W)=3T"-E*, (A12)

since, as stated abovE| -E* is a real quantity.
Similarly, the average kinetic and dissipated energy den-
sities are given by

The derivation of the energy balance equation or

Umov—Poynting theorem is straightforward when using  (T)=7 R&(VT-T-V*) (A13)
complex notation. The same procedure given in Carciongnq

and Cavallin?® for single-phase media is used here. The

strain vector corresponding to the plane w&48) is (Dy=7 Im(VT-T'-V*), (Al14)

k
E=——LT.V. (A1)
w

This vector, with the notation given in Bidt,is equal to
E=[es.e,,vy,— ]". The dot product of the complex conju-
gate of Eq.(Al) with TT gives

—k*TT.LT.V* =T '-E*. (A2)
On the other hand, the dot product-ef/*T with Eq. (54) is
—kV*T.L-T=wV*T.T-V. (A3)

The left-hand sides of Eq$A2) and (A3) contain the com-
plex Umov—Poynting vector

1 -p 0

2| 7y, 0 -p
In fact, by virtue of Eq.(49), Egs.(A2) and(A3) become

2k*T.P=wTT-E* (A5)
and

2kT-P=wV*T.T-V, (AB)

respectively. Adding(A5) and (A6), and using Eq.(49),
yields

T T
P v % (Ad)

Tzz
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respectively. EquationfAl4) represents the energy loss per
unit volume of the bulk due to the fluid viscosity.

Substituting Eqs(A10) and (A12)—(A14) into the real
part of Eq.(A7) gives

KT-<P>:w(<W>+<T>)Ew<E>, (A15)
where
(E)y=(T+W) (Alo6)

is the mean energy density. Defining the energy velocity as
in Eq. (62), Eq. (A15) gives

K'-Ve=V,, (A17)

whereV,=wl« is the phase velocity. The relatigAl7), as
in a single-phase mediuf,means that the phase velocity is
simply the projection of the energy velocity onto the propa-
gation direction.

On the other hand, substracting E45) from (A6) and
using (49) yields the energy balance equation

—a"-P=10[(W)—(T)]— (D). (A18)
Taking the real part 0fA18) yields
a"-(P)=w(D). (A19)
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This equation is the generalization of a similar relation for 0. CoussyMechanics of Porous Continu@Viley, Chichester, 1995

viscoelastic single-phase medfh,stating that the time-
average dissipated energy can be obtained as the projectiq"(O
of the average power flow density onto the attenuation direc-

tion.

The Umov-Poynting vectofA10) can be expressed in

terms of the eigenvectord and complex velocitie®/ ob-

tained from Eqgs.(57) and (58), respectively. Defining the

matrices
1 0 0O 0 010
0 010 0 1 00
Yi=lg 0 0 1| @ YTy o o of
0 0 0O 0O 0 0 1
(A20)
the average power flow can be written as
(P)=—3 Re{[&(Uy-T)T+8&,(U3-T)T]-V*}. (A21)
Then, substitution of the constitutive EG2) gives
(P)=31Re[V VT.CT.[g U] +&U]-V*}. (A22)
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