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Elastodynamics of a non-ideal interface: Application to
crack and fracture scattering
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Abstract. This work introduces a numerical algorithm for solving wave propa-
gation in the presence of an imperfect contact between two isotropic, elastic and
heterogeneous media. Non-ideal interfaces of general type can be modeled as
boundary discontinuities of the displacement u and its first time derivative (the
particle velocity v). The stress field is continuous, and the quantity [xu + (v], where
the brackets denote discontinuities across the interface, is equal to the corresponding
stress component The specific stiffness x introduces frequency dependence and
phase changes in the interface response On the other hand, the specific viscosity ¢
is related to the energy loss. It is shown here that, in the veloc1ty stress formulation
of the wave equation, such a model is described by Maxwell relaxation like functions.
I compute the reflection and transmission coefficients in terms of the corresponding
incident propagation angle and complex moduli, together with the energy dissipated
at the interface. This a.na.lysm characterizes the properties of the non-ideal interface.
The numerical method is based on a domain decomposition technique that assigns
a different mesh to each side of the interface. As stated above, the effects of
the interface on wave propagation are modeled through the boundary conditions
that require a special boundary treatment based on characteristic variables. The
algorithm solves the velocity-stress wave equa.txons and two additional first-order
differential equations (in two-dimensional space) in the displacement discontinuity.

For each mesh, the spatial derivatives normal to the interface are solved by the

Chebyshev method and the spatial derivatives parallel to the interface are com-
puted with the Fourier method. The algorithm allows general material variability.
The modeling is applied to the problems of crack and fracture scattering.

Introduction

In seismology, exploration geophysics, and several
branches of mechanics (e.g., metallurgical defects, adhe-
sive joints, frictional contacts and composite materials),
the problem of non-perfect contact between two media
is of particular interest. Seismological applications in-
clude wave propagation through dry and partially sat-
urated cracks and fractures present in the Earth’s crust
[Pyrak-Nolte et al., 1990}, which may constitute pos-
sible earthquake sources. Sumlarly, in oil exploration
the problem finds applications in hydraulic fracturing,
where a fluid is injected through a borehole to open a
fracture in the direction of least principal stress. Ac-
tive and passive seismic waves are used to monitor the
position and geometry of the fracture [Kleinbery et al.,
1982; Wills et al., 1992]. On the other hand, in mate-
rial science, a suitable model of an imperfect interface is
necessary, since strength and fatigue resistance can be
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degraded by subtle differences between microstructures
of the interface region and the bulk material [Mittal,
1984; Selvadurai and Voyiadjis, 1986; Murty and Ku-
mar, 1991].

Theories that consider imperfect bonding are mainly
based on the displacement discontinuity model at the
interface. Such a model was introduced by Newmark et
al. [1951]. Later, Mindlin [1960] used it for the analysis
of wave coupling in a plate with elastically restrained
edges. Pyrak-Nolte et al. [1990] propose a non-welded
interface model based on the discontinuity of the dis-
placement and the particle velocity across the inter-
face. The stress components are proportional to the
displacement and velocity discontinuities through the
specific stiffnesses and a specific viscosity, respectively.
Displacement discontinuities conserve energy and yield
frequency dependent reflection and transmission coef-
ficients. Recent laboratory measurements [Pyrak-Nolte
et al., 1992; Hsu and Schoenberg, 1993; Pyrak-Nolte
and Nolte, 1995 confirm the predictions of the displace-
ment discontinuity theory. On the other hand, velocity
discontinuities imply an energy loss at the interface and
frequency independent reflection and transmission coef-
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ficients. The specific viscosity accounts for the presence
of a liquid under saturated conditions. The liquid in-
troduces a viscous coupling between the two surfaces
of the fracture [Schoenberg, 1980] and enhances energy
transmission, but at the same time this is reduced by
viscous losses.

A similar model to the previous one is introduced
by Murty and Kumar [1991]. They assume two elas-
tic half-spaces separated by a thin layer modeled by a
Kelvin-Voigt medium representing a lubricant /couplant
(the same model is assumed by Carcione [1996] to study
wave propagation in reservoir environments). In the
limit of small thickness (compared to the wavelength)
and soft layer, they obtain a (frequency domain) dis-
placement discontinuity boundary condition for the tan-
gential component that resembles that of Pyrak-Nolte et
al. [1990]. Other theories assume that the medium can
be represented by a lattice with springs connecting the
nearest neighbors [Paranjape et al., 1987; Hirose and
Kitahara, 1991). Paranjape et al. [1987] introduced a
non-welded contact by making the springs across the
interface sufficiently weaker than the springs inside the
solids. A brief review of different models is given by, for
instance, Martin [1990].

Numerical modeling of wave propagation and scat-
tering through imperfect interfaces is relatively recent.
The following works are based on low-order finite dif-
ferences techniques: Fellinger et al. [1995] simulate the
scattering produced by a crack of finite extent, sub-
ject to stress-free boundary conditions at the interface.
This implies a complete decoupling of the two surfaces
[van der Hijden and Neerhoff, 1984] which corresponds
to zero stiffnesses and zero specific viscosity. Savic and
Ziolkowski [1994] compute fracture scattering with rigid
and complete slip boundary condition. In this case they
set to zero the tangential stress. Coates and Schoenberg
[1995] implement the linear deformation model (dis-
placement discontinuity only) developed by Schoenberg
[1980] and further used by Pyrak-Nolte et al. [1990] to
model fractures. Finally, Gu et al. [1996] use a bound-
ary element method to simulate propagation of inter-
face waves along a fracture modeled as a displacement
discontinuity.

In this work I introduce a convolutional model to ac-
count for displacement and particle velocity disconti-
nuities at the interface. The imperfect bonding is de-
scribed by four parameters: the normal and tangen-
tial specific stiffnesses and viscosities. The stiffnesses
account for frequency dependent and phase change ef-
fects, and the viscosities allow for damping in the inter-
face response. The elastodynamic equations are given
in the velocity-stress formulation and the time convo-
lutions are circumvented by introducing two first-order
differential equations in the normal and tangential dis-
placement discontinuities. A plane wave analysis gives
the expressions of the reflection and transmission coef-
ficients and the energy loss at the interface. The nu-
merical algorithm is based on a domain decomposition
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technique [Carcione, 1991], where the implementation
of the boundary conditions require a special treatment
based on characteristic variables [Carcione, 1994].

Then, the governing equations are solved by a grid
method that uses the Chebyshev differential operator
normal to interface and uses the Fourier differential op-
erator in the direction parallel to the interface.

Interface Model

Consider a planar interface in an elastic and isotropic
homogeneous medium. That is, the material on both
sides of the interface is the same. The non-ideal char-
acteristics of the interface are modeled through the
boundary conditions between the two half-spaces. If
the displacement and stress field are continuous across
the interface (ideal or welded contact), the reflection
coefficient is zero and the interface cannot be detected.
On the other hand, if the half-spaces are in non-ideal
contact, reflected waves with appreciable amplitude can
exist and the transmitted waves will be attenuated and
low-pass filtered.

Assume the two-dimensional case and refer to the up-
per and lower half-spaces with the labels I and II, re-
spectively, with z increasing toward the upper medium.
The model proposed here is based on the discontinuity
of the displacement and particle velocity fields, and con-
tinuity of stress across the interface. Then, the bound-
ary conditions for a wave impinging on the interface
(z=0) are

[ve] = (v2)ir — (v2)r =¥z % -a‘g—;z, 1)
[v:] = (va)rr — (v2)r = * %‘-:—5, )
(022)1 = (022)11, 3)
(022)1 = (022) 11, 4)

where ¢ is the time variable, v, and v, are the particle
velocity components, o, and o,, are the stress com-
ponents, and 1, and 1, are relaxation-like functions of
Maxwell type [Christensen, 1982] governing the tan-
gential and normal coupling properties of the interface.
The asterisk denotes time convolution. The relaxation
functions can be expressed as

¥i(t) = 1 exp(—t/n)H({L), 7= &, i==zorz (5)
G Ki
where H(t) is the Heaviside function, £;(z) and &, (z)
are specific stiffnesses, and {;(z) and {,(z) are specific
viscosities. They have dimensions of stiffness and vis-
cosity per unit length, respectively. The interface ex-
hibits time dependent mechanical properties through
the relaxation functions %;, and, as in a viscoelastic
material, implying energy dissipation.
In the frequency domain, equations (1) and (2) can
be compactly rewritten as
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[v;] = Mio0i,, i=zorz, (6)
where o
iy W
Miw) =7 ( at ) T ki w )

is a specific complex modulus having dimensions of ad-
mittance (reciprocal of impedance) and w is the angular
frequency. The operator F performs the time Fourier
transform and ¢ = 4/—1. As is shown below, a simi-
lar model, based on combined displacement and veloc-
ity discontinuities, was developed by Pyrak-Nolte et al.
[1990], where they introduce a single parameter (1) to
describe the viscous coupling between the two surfaces
of a fracture.

The characteristics of the medium are completed with
the constitutive relations. Stresses and particle veloci-
ties are related by the following equations:

30’,1 28’03 a’Uz
P =it (Zp® - 2Zs) (8
aa'zz _ _ 2 avz 261);
5 = (Zp® - 225 ) +Zp 5 9)
80z, 2 (Ov:  Oug
pat—h(%+3ﬂ, (10)

where Zp(z, z) and Zs(z, z) are the compressional and
shear impedances, respectively, and p(z, z) is the mate-
rial density.

In appendices A and B the reflection and transmis-
sion coefficients for incident SH and P — SV waves,
respectively, are derived. In addition, the energy loss
at the interface is obtained.

Boundary Conditions in Differential
Form

The boundary equations (1) and (2) could be im-
plemented in a numerical solution algorithm. However,
the evaluation of the convolution integrals is prohibitive
when solving the differential equations with grid meth-
ods. In order to circumvent the convolutions, we recast
the boundary conditions in differential form. From (1)
and (2), and using convolution properties,

_ 0
[’Ui] Y *¥0iz. (11)
Using (5) and after some calculation,
1
[vi] = ¥:(0)0iz — —%i * 0z (12)

Since [v;] = 8[u;]/8t, with u; is the displacement field,
it can be inferred from (11) that
[wi] = i x 0. (13)

Then, (12) becomes
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Alternatively, this equation can be written as
Kifwi] + Glvi] = 01z, (15)

which is equivalent to (17) of Pyrak-Nolte et al. [1990],
where (; = 7. Note that x; = 0 gives the displacement
discontinuity model, and ¢; = 0 gives the particle veloc-
ity discontinuity model. On the other hand, if {; = oo
(see equation (14)), the model gives the ideal (welded)
interface. As shown in the next section, (14) for i = z
and i = z must be solved simultaneously with the equa-
tions of momentum conservation.

Domain Decomposition and
Boundary Treatment

The interface model is implemented in numerical
modeling by using a domain decomposition technique.
Carcione [1991] and Tessmer et al. [1992] applied the
method to model elastic waves across a welded interface
between two elastic half-spaces and across an interface
separating an acoustic layer from an elastic medium
(where v, need not be continuous). The boundary
treatment is based on characteristics representing one-
way waves propagating with the phase velocity of the
medium. The wave equation is decomposed into out-
going and incoming wave modes perpendicular to the
interface separating the two half-spaces. The outgoing
waves are determined by the solution inside the corre-
sponding half-space, while the incoming waves are cal-
culated from the boundary conditions.

The dynamic elastic solution makes use of the equa-
tions of momentum conservation:

ov, 1 005z 00z,
Bt ( Oz + 0z ) + fa (16)
a’Uz — aazz 0o,
e ( 5z T 0z )”z’ (17)

where f; and f, are the body forces. These equations
together with the stress-velocity relations (8), (9), and
(10), yield the velocity-stress formulation:

ov ov 6v
E—As;'*‘ 'a—-+f (18)
where
V= ['Uz; V2,022,022, azz]Ta (19)
0 0 1 00
; 0 0 00 1
A== Zp? 0 000 , (20)
Pl (zp?2-225® 0 0 0 0O
0 Zs: 0 0 0
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10 0 010
B==-| 0 (Zp*-2Zs*) 0 0 0O , (21)
Pl o Zp? 000
Zs? 0 000
f= [fz: fzaoa O’O]T- (22)

Most explicit time integration schemes compute the op-

eration Mv = (v)°ld where
0 9
M= AE; + Ba— (23)

The vector (v)0 is then updated by the boundary
treatment to give a new vector (v)"®" that takes into
account the boundary conditions.

The one-dimensional characteristic variables, perpen-
dicular to the interface, can be obtained from the eigen-
vectors of matrix B [Carcione, 1991; Tessmer et al.,

1992].
Th
ey are P+ =v, + 2, (24)
Zp
— Uzz
P =uv, 75 (25)
+ = Jzz
St=v+ 22, (26)
- =y, - T2
ST =v, 7o 27
R = Zp%0,, — (Zp® — 2Z5%)0.,. (28)

The first and second characteristics describe one-way
compressional waves, while the third and fourth charac-
teristics correspond to the shear wave. The last charac-
teristic is convected toward the boundary with zero nor-
mal phase velocity. The incoming characteristics in side
I are (P*)y and (S*)s, while in side IT they are (P~ )y
and (S~)rr. These quantities are computed from the
boundary conditions at the interface, and the outgo-
ing characteristics are left unchanged. The boundary
equations can be obtained by imposing

(P = (P )°‘d (29)
(R)new — (R)Old (31)
(PHIEV = (P19, (32)
(SHEY = (5H9, (33)
(R)new (R)Old (34)

These equations and the boundary conditions (1)-(4),
which relate updated (new) variables, imply

Y {ZS [(” )94 + L:']
+Zs(v, )Od (02 )Old
+(Z5'/25)(022)814 },

(Uz )new =

(35)
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(v,)2EV - { zp' [(vz)old + 1%]
+Zp(v:)§M - (0,.)1d (36)
+(2p'/ZP) (0.9},
(022)PV = (0, z)Ild + gZ—Pzzs [(0.2)0eW
"'(Uzz) I ],
(37)
(0::)0% = z_pz-rpz_p {ZP [(v )old (v, )old
+(a.")old + (Uzz)OId
(38)
(02:)PEV = 'ZT{-SZ_S’ {Zs [('v,)Old (Uz)?ld + I%:_]_
+(a")old + (a")old}
(39)
(vz)new (vz)1 v+ __[(au)new — Kg[ug]], (40)
(I = (v)7V + —[(Uzz)new - Ko[u.]], (41)
(O'zz)??w = (O'zz)OId + —'LTS—Z:?Z 2[(t’J’zz)new
"(o'zz)II I
_ (42)
("'252)}11(3 (UZZ)Hewv (43)
(032)}1? (a.u)new’ (44)
where

-1
ve(k2)
45)

In the limit ¢; = o0, Zp' = Zp, Zs' — Zs, the bound-
ary equations for a welded contact are obtained [Car-
cione, 1991; Tessmer et al., 1992).

As the specific stiffnesses and viscosities tend to zero,
Zp' = 0, Zs' — 0, the solution gives the free surface
boundary equations [Carcione, 1994; Tessmer et al.,
1992). More complex, but similar, equations can be
obtained when dissimilar media are separated by the
interface.

The velocity-stress equation (18) and the boundary
conditions (14) are solved by a fourth-order Runge-
Kutta time integration algorithm. The spatial deriva-
tives, this is, the operation with M on the field vari-
ables, are computed by using the Fourier method in the
horizontal direction, and the Chebyshev method in the
vertical directions, where non-periodic boundary condi-
tions are required. More details about the numerical
technique are given by, for instance, Carcione [1992,
1994].

The procedure here is as follows: after an operation
with M, the field variables are updated by using (35)-
(45); then, (14) for i = z and ¢ = z is solved.



CARCIONE: CRACK AND FRACTURE SCATTERING

Simulations
Crack Scattering

This example considers a crack in a homogeneous
medium bounded by a free surface. The medium is
a Poisson solid with compressional and shear velocities
¢cp = Zp/p = 2000 m/s and cs = Zs/p = 1155 m/s,
respectively, and density p = 2 g/cm3. The crack is at
14.6 cm from the surface and is 14.4 cm in length (see
Figure 3). A distributed vertical load with a Ricker
wavelet time history of central frequency fo = 110 kHz
is applied at the surface. The problem is solved in the
ultrasonic range, but since I consider only particle ve-
locity discontinuities, the results can be scaled to any
frequency range.

The calculations use two meshes with N, = 375 and
N, = 81 each, and a horizontal grid spacing D, = 2 mm.
The vertical load is applied from grid point 132 to grid
point 242 and has a length of 22 cm. The upper bound-
ary of the model (mesh 1) has stress-free conditions, and
the lower boundary (mesh 2) has open radiation condi-
tions. At the sides, absorbing strips of length 18 grid
points are used in order to eliminate wraparound ef-
fects caused by the Fourier operator. The details about
the differential operators used to compute the spatial
derivatives are given by, for instance, Carcione [1992].
The solution is propagated to 0.14 ms with a time step
of 0.1 us, by using a fourth-order Runge-Kutta integra-
tion scheme. Before introducing the crack properties
I investigate the influence that the specific viscosities
have on the reflection coefficients and energy loss (the
equations can be found in Appendix B). Figure 1 rep-
resents the normal incidence reflection coefficient Rpp
versus the normalized specific viscosity (;/Zp, with
kK, = 0. As can be seen, the limit {, — 0 gives the
complete decoupled case, and the limit {; — oo gives
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Figure 1. Normal incidence (# = 0) reflection coeffi-
cient Rpp versus normalized specific viscosity ¢,/Zp.
Only the particle velocity discontinuity (k, = 0) has
been considered. As {; — 0, complete decoupling (free
surface condition) is obtained. As {, — oo, the contact
is welded.
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Normalized energy loss
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Figure 2. Normalized energy loss €, at 8 = 0 versus

normalized specific viscosity {;/Zp. A P incident wave

and particle velocity discontinuity (x, = 0) have been

considered. The maximum dissipation occurs for ¢, =

Zp/[2.

the welded interface, since Rpp — 0. The normalized
energy loss for an incident compressional wave is repre-
sented in Figure 2. The maximum dissipation occurs for
¢; = Zp/2. Similar plots and conclusions are obtained
for an incident SV wave, for which the maximum loss
occurs when {, = Zs/2. It can be shown that, for any
incident angle and values of the specific stiffnesses, there
is no energy loss when ¢, — 0 and {, — oo.

I consider two cases, both with k, = k, = 0. In
the first case, {; = Zs/2 and {, = Zp/2. These val-
ues give normal incidence reflection coefficients Rpp =
Rss = 0.5 (see Figure 1) and produce a dissipation
equal to 50 % of the incident energy. Figures 3 and
4 show three snapshots of the v, and v, components,
respectively. For visual reasons, the scales of the am-
plitudes in the snapshots are not the same. Indeed, the
maximum amplitudes at 1 ms and 1.4 ms, for instance,
are 0.78 and 0.65 relative to the maximum amplitude at
0.65 ms. The leading pulse is the compressional wave,
which is followed by the shear wave. The planar fronts
connecting the shear and compressional waves are the
shear head waves, and, at the surface, the shear waves
are followed by the Rayleigh pulses originating at the
load edges. It is clear how the crack tips act as sec-
ondary sources, producing body waves. At the crack
surface, the compressional wave is reflected and trans-
mitted, and half of the energy is dissipated.

The second case has {; = {, = 0, hence the crack
surface satisfies stress-free boundary conditions. Figure
5 represents three snapshots of the particle velocity v,.
In this case, the amplitudes are scaled with respect to
the maximum amplitude at 0.65 ms. The differences
from Figure 4 are that the energy is conserved and there
is no transmission through the crack (see snapshot at
1 ms). Moreover, two Rayleigh waves, traveling along
the crack plane, can be appreciated in the last picture.
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Vx-component

Figure 3. Vertical surface load radiation and crack
scattering. The snapshots show the v, component at
different propagation times, with R, Rayleigh wave;
P, compressional wave; S, shear wave; hS, head shear
wave; and dP and dS, compressional and shear waves
diffracted by the crack tips, respectively. The size of the
model is 75 x 30 cm, and the source central frequency
is 110 kHz. The specific stiffnesses and viscosities of the
crack are k; = K, =0, and {; = Zs/2 and {; = Zp/2,
respectively. These values give normal incidence reflec-
tion coefficients Rpp = Rss = 0.5 and produce a dissi-
pation equal to 50 % of the incident energy.

Fracture Scattering

In this numerical experiment I study the seismic re-
sponse of an infinite (ideal) fracture to a point source.
The model structure is displayed in Figure 8. Its size is
6.7 km (horizontal distance) by 3 km (depth), and the
fracture is situated at 1.46 km from the Earth’s surface.
The source is a vertical impulse of central frequency fo
= 11 Hz, located in the left well at approximately 730
m from the surface. The medium velocities, mesh sizes
and boundary conditions are the same as the previous
example, and the horizontal grid spacing is D, = 20 m.
The solution is propagated to 3 s with a time step of
1 ms, by using a fourth-order Runge-Kutta integration
scheme.
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I consider two different fractures. The first has {; =
Zs/2 and (, = Zp/2 and zero specific stiffnesses. Fig-
ure 6 represents the reflection and transmission coeffi-
cients for an incident compressional wave versus the in-
cidence angle (equation (B9)). The energy loss is shown
in Figure 7 (equation (B19)). As can be seen, the dis-
sipated energy is nearly 50 % up to 80°. A snapshot of
the v, components is represented in Figure 8, where the
propagation time is 1 s. The first wavefront that has
crossed the fracture plane is the transmitted compres-
sional wave, and the stronger pulse is the shear wave.
Figure 9 displays two synthetic seismograms. Figure
9a is a surface seismic line, where the first receiver is
located to the left of the source well, 1.48 km away,
and the last receiver is located to the right of the same
well, 3.72 km away. The first two hyperbolae are the
direct compressional (apex at 0.36 s) and shear (0.63
s) waves. Then follow the hyperbolas corresponding to
the reflected P wave (1.1 s), and reflected S wave (1.8
s). Other weaker events are the converted SP (1.4 s)
and PS (1.65 s). Figure 9b is a vertical seismic profile
recorded in the right well, where the first receiver is on

Figure 4. Vertical surface load radiation and crack
scattering. The snapshots show the v, component at
differents propagation times. See caption of Figure 3
for more details.
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Vz-component t=0.65ms

t=1ms

i i

Figure 5. Vertical surface load radiation and crack
scattering. The snapshots show the v, component at
differents propagation times. The size of the model is
75 x 30 cm, and the source central frequency is 110
kHz. The specific stiffnesses and viscosities of the crack
are k; = Kk, = 0, and (; = (, = 0, respectively. These
values yield a complete decoupling of the crack surfaces.
See caption of Figure 3 for the identification of the dif-

ferent waves.

the surface and the last receiver is approximately at 3
km from the surface. The fracture plane coincides with
the middle receiver. The most prominent event is the
shear wave that arrives at approximately 1.7 s at the re-
ceiver located at the fracture. There, part of the energy
is dissipated and the rest. is reflected and transmitted.
The nature of the other events can be interpreted from
Figure 8.

The second fracture model has the following param-
eters: k; = wfols, k; = wfoZp, { = Zs/100 and
¢: = Zp/100. The model is practically based on the
discontinuity of the displacement field. Figure 10 repre-
sents the reflection and transmission coefficients for an
incident compressional wave versus the incidence angle.
In this case, the energy loss is nearly 2 % of the incident
energy. That the energy is practically conserved across
the fracture can be inferred by comparing Figures 8 and
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Reflection and Transmission coefficients

. PP
0.5
PP
0.25- RPS
b TPS
O-G Illl||Ill]lllI|I|Il]llll]lIIl]III]]IIID||lII[

0 10 20 30 40 50 60 70 80 90
Incident Angle (degrees)

Figure 6. Reflection and transmission coefficients ver-
sus incident angle @ for a fracture defined by the fol-
lowing specific stiffnesses and viscosities: £z = K; = 0,
(: = Zs/2,and {, = Zp/2.

11, which represent a snapshot of the v, component at
1s. In fact, the transmitted signal is stronger in Figure
11. Moreover, the corresponding seismograms, repre-
sented in Figures 12, show that the reflected P and S
(Figure 12a) waves have a different phase compared to
the same events in Figure 9a. This phenomenon is in
agreement with the properties of the displacement dis-
continuity model.

Conclusions

A general linear model of an imperfect interface be-
tween two elastic bodies can be obtained by imposing
boundary discontinuities to the displacement and par-
ticle velocity fields. This model can be expressed as a
particle velocity discontinuity equal to a Maxwell relax-
ation function convolved with the corresponding stress
component. The P — SV wave propagation problem

Normalized Energy Loss
o
«

o
)
T

o
o

L N L O L L B 0 L LU |
0 10 20 30 40 50 60 70 80 90
Incident Angle (degrees)

Figure 7. Normalized energy loss €),.¢ versus incident
angle @ for a fracture defined by the %llowing specific
stiffnesses and viscosities: k; = k, =0, {; = Zs/2, and
¢ = ZP/ 2.
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TN

Figure 8. Snapshot of the v, component at 1 s, with
P, compressional wave, S, shear wave, tP, transmitted
compressional wave and tS, transmitted shear wave.
The model size is 6.7 km (horizontal distance) by 3
km (depth). The source is a vertical impulse of cen-
tral frequency fo= 11 Hz, located in the left well at
approximately 730 m from the surface. The fracture
parameters are given in the caption of Figure 6.

requires two specific stiffnesses and two specific viscosi-

ties, which ‘define the properties of the non-ideal con-

tact. The ratio viscosity to stiffness defines a relaxation
time that can be associated to the response of the in-
terface. Different choices of interface parameters give
rise to the different conditions, from welded contact
to stress-free boundary condition. The model allows
frequency dependent reflection and transmission coefli-
cients, phase changes, and energy dissipation.

The numerical method for solving wave propagation
uses a domain decomposition technique that assigns a
different mesh to each side of the interface. The use
of the Chebyshev differential operator, to compute the
spatial derivatives normal to the interface, allows the
imposition of general boundary conditions. In particu-
lar, a boundary treatment, based on characteristic vari-

ables, implements the interface model in the velocity- -

stress formulation of the wave equation.

The modeling is applied to the problem of wave scat-
tering by a crack and calculation of the seismic response
of a fracture crossing two wells. The examples show
how the modeling algorithm correctly simulates the in-
fluence of the non-ideal interface on the different waves,
in particular, tip difractions, interface waves, partial
reflection and transmission, and energy dissipation. A
more precise validation of the algorithm requires the
crosschecking with other modeling techniques, as, for in-
stance, finite differencing and boundary element meth-
ods (BEM) methods.

Appendix A: Reflection and
Transmission Coefficients for SH Waves

The simplicity of the SH case permits a detailed
treatment of the reflection and transmission coefficients
and provides some insight into the nature of energy loss
in the more cumbersome P — SV problem. I assume an
interface separating two dissimilar materials of shear
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impedances Zsr and Zgsrr. The theory, corresponding
to a specific stiffness x, and a specific viscosity (;, sat-
isfies the following boundary conditions:

LT
R, (ol
§ i il
S

B
e
il iy

Figure 9. Synthetic seismograms corresponding to the
numerical experiment shown in Figure 8. A surface seis-
mogram is represented in Figure 9a. The first receiver is
located to the left of the source well, 1.48 km away, and
the last receiver is located to the right of the same well,
3.72 km away. The direct and reflected events are indi-
cated in the figure. A vertical seismic profile is shown
in Figure 9b. The first receiver is on the surface and the
last receiver is at approximately 3 km from the surface.
In this case, SS represents the transmitted shear wave
(tS in Figure 8).
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Figure 10. Reflection and transmission coefficients

versus incident angle 0 for a fracture defined by the fol-
lowing specific stiffnesses and viscosities: K, = 7foZs
and k, = wfoZp, and {; = Zs/100 and ¢, = Zp/100,
where fo is the source central frequency.

and u, is the displacement field. The relaxation func-
tion v, has the same form given in (5) with i = y.
In half-space I, the field is

(uy)r = expltksr(zsinf + 2 cosb)]

+Rexp[tksr(zsin 6 — zcosf)], (A9)

where ksy is the wavenumber and R is the reflection
coefficient. In half-space II, the displacement field is

(uy)rr = T explaksrr(zsiné + z cosd)], (A5)
where T is the transmission coefficient and

6 = arcsin|(ksr/ksir) sin 4],

according to Snell’s law. For clarity, the factor exp(—wt)

has been omitted in (A4) and (AS5).

Considering that v, = —wu,, the reflection and
transmission coefficients are obtained by substituting
the displacements into the boundary conditions. This
gives

ey M s e
where

Y;r = Zsrcos8, Yir = Zsyrcosd, (A7)

Z(w) = YY1 My(-w), (A8)

and the relation ksy(rryZsr(rr) = pw has been used.
Since w

My(w) = PR

(A9)
the reflection and transmission coefficients are frequency
independent for £, = 0 and, moreover, there are no
phase changes. In this case, when {;; = 0, R — 1 and
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T — 0, and the free surface condition is obtained; when
¢y 00, R—= 0and T — 1, giving an ideal welded
interface.

In a completely welded interface, the normal compo-
nent of the mean energy flux is continuous across the
plane separating the two media [Borcherdt, 1977).

This is a consequence of the boundary conditions that
impose continuity of normal stress and particle veloc-
ity. The normal component of the mean energy flux is
proportional to the real part of oy,v; [e.g., Carcione
and Cavalini, 1993, where an asterisk denotes complex
conjugate. Since the media are elastic, the interfer-
ence terms between different waves vanish, and only
the fluxes corresponding to each single beam need be
considered. After normalizing with respect to the inci-
dent wave, the reflected and transmitted energy fluxes
are

reflected wave — |R|?, (A10)

Y,
transmitted wave — %|Tl2. (A11)
1

The energy loss at the interface is obtained by sub-
stracting the reflected and transmitted energies from
the incident energy. The normalized dissipated energy

) Yur
Yy
Substituting the reflection and transmission coefficients
the energy loss becomes

€loss = 1 — IR — =T (A12)

- 4Y11ZR
loss = (Y1 + Y11 + Zg)? + 22’

where Zg and Zy are the real and imaginary parts of
Z, given by

(A13)

_ WYY
b
K2 + w22

_ we 1Yy

Zgr = =y
2 2.2
Ky +w C,,

1 (A14)

Figure 11. Snapshot of the v, component at 1 s.
The model size is 6.7 km (horizontal distance) by 3
km (depth). The source is a vertical impulse of cen--
tral frequency fo= 11 Hz, located in the left well at
approximately 730 m from the surface. The fracture
parameters are given in the caption of Figure 10. See
caption of Figure 8 for the identification of the different
waves.
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Figure 12. Synthetic seismograms corresponding to
the numerical experiment shown in Figure 11. Figures
12a and 12b represent a surface seismogram and a ver-
tical seismic profile, respectively, whose spatial configu-
rations and wave identification are given in the caption
of Figure 9.

E )
Il

Ifr,=0,2; =0, Zr = Y;Y1I/{,, and the energy
loss is frequency independent. When {, —+ 0 (complete
decoupling) and ¢, — oo (welded contact), there is no
energy dissipation.

If k, = 0, the maximum loss is obtained for

YiYrr

“= Vv (A15)

At normal incidence and equal lower and upper media,
this gives {;, = Zs/2, and a (normalized) energy loss
€loss = 0.9, that is, half of the normally incident energy
is dissipated at the interface.
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Appendix B: Reflection and
Transmission Coefficients for P - SV
Waves

Consider an interface separating two half-spaces with
equal material properties, where the boundary condi-
tions are given by (1)-(4). Application of Snell’s law
indicates that the transmitted angle is equal to the in-
cident angle and that

kpsinf = kssina,

where kp and kg are the wavenumbers of the compres-
sional and shear waves, and 6 and a are the respec-
tive associated angles. The boundary conditions do not
influence the emergence angles of the transmitted and
reflected waves.

In terms of the dilatational and shear potentials ¢
and 1, the displacements are given by

_o¢_% _o¢ %%
Y5 "0z T8 o (B

and the stress components by [Pilant, 1979].

_Z3(, 0% ¢y &y
) (26:c(’)z i 6z2) » (B2)
_Zp (09 9%\ _2Z% (& _9y
27 p \0x2 ' 922 p \0z2 020z)°

(B3)

I consider a compressional wave incident from half-
space I. Then, the incident and reflected potentials are

@0 = exp[ikp(z sin 0 + z cos 6)], (B4)
®r = Rpp exp[tkp(z sin 6 — z cos )], (B5)
Yr = Rps expltks(zsina — z cos a)]. (B6)

On the other hand, in half-space II, the transmitted
potentials are

¢r = Tpp exp[tkp(z sin 6 + z cos 6)), (B7)
Y1 = Tpsexp[tks(zsina + zcos a)]. (B8)
Considering that v, = —wu, and v, = —wu,, the
solution for an inci_dent P wayve is
Sa (1 + 2’715_}3;09) Ca + VzC2a —8a Ca
—Y2C2a — Cp 80 + Vz82a —Cy —89
2‘5—;8«160 C2a 2;—15,31,@9 —C2a
—C2q S2a C2a S2a
Rpp —8a (1 - 272%00)
Rps _ Y2C2a — Co
X Tpp - 2%—}%8060 ’ (BQ)
TPS Con
where
Yz = Zst(—w), Y = ZpMz(—w), (B].O)

and the following relations have been used:
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Zpkp = pw, (Bll)
pu=2%  pr=2Zp-2Z%. (B12)

The abbreviations s, = sine€ and ¢ = cose are used in
equation (B9).

The reflection and transmission coefficients for a P
wave at normal incidence are

Zsks = pw,

9 -1
Rpp = — (1 + —) (B13)
=(1+2)"
Tpp = (1 + 2 ) ) (B14)

respectively. If ¢, = 0, the coefficients given by Pyrak-
Nolte et al. [1990] are obtained. If, moreover, kK, — 0,
Rpp = —1 and Tpp — 0, and the free surface condition
is obtained; when {, =& o0, Rpp — 0 and Tpp — 1,
giving the solution for a welded contact. On the other
hand, it can be seen that {(, = 0 and &, = wZp/2 gives
|R|? = 1/2. The characteristic frequency wp = 2k, /Zp
defines the transition from the apparently perfect in-
terface to the apparently delaminated one [Nagy and
Adler, 1990]. The reflection and transmission coeffi-
cients corresponding to an incident SV wave can be
obtained in the same way as for the incident P wave.
In particular, the normal incident coefficients Rgs and
Tss have the same form as (B13) and (B14) but sub-
stituting v, by 7.

Following the same procedure to obtain the energy
flow in the SH case, we get the following normalized
energies for an incident P wave:

reflected P wave = |Rpp/|?, (B15)
tan
reflected S wave — E—IRpslz, (B16)
tana
transmitted P wave = |Tpp|?, (B17)
0
transmitted S wave — tﬂ—'lTpsP. (B18)
tan a

Hence the normalized energy loss is

tan @
O (IRpsP + |Tps[?).

tan a
(B19)
It can be easily shown that the amount of dissipated
energy at normal incidence is

€loss =1 — |Rpp|* - |Tpp|? ~

€ _ 4’7:R
loss 2+ 1.r)? + ’Yfr’

where the subindices R and I denote real and imagi-
nary parts, respectively. If x, = 0, the maximum loss
is obtained for {; = Zp/2. Similarly, if k; = 0, the
maximum loss for an incident SV wave occurs when
$ = Zs/2.

Acknowledgments. This work was funded in part by
AGIP S.p.A. and the European Commission in the frame-
work of the JOULE programme, sub-programme Advanced
Fuel Technologies. Thanks to Giorgio Padoan for helping
with the word processing.

(B20)

28,187

References

Borcherdt, R. D., Reflection and refraction of type-II S
waves in elastic and anelastic media, Bull. Seismol. Soc.
Am., 67, 43-67, 1977.

Carcione, J. M., Domain decomposition for wave propaga-
tion problems, J. Sci. Comput., 6, 453-472, 1991.

Carcione, J. M., Modeling anelastic singular surface waves
in the Earth, Geophysics, 57, 781-792, 1992.

Carcione, J. M., Time-dependent boundary conditions for
the 2-D linear anisotropic-viscoelastic wave equation, Nu-
mer. Methods Part. Diff. Equations, 10, 772-791, 1994.

Carcione, J. M., Plane-layered models for the analysis of
wave propagation in reservoir environments, Geophys.
Prospect., 44, 3-26, 1996.

Carcione, J. M., and F. Cavallini, Energy balance and funda-
mental relations in anisotropic-viscoelastic media, Wave
Motion, 18, 11-20, 1993.

Christensen, R. M., Theory of Viscoelasticity, An Introduc-
tion, Academic, San Diego, Calif., 1982. ‘

Coates, R. T., and M. Schoenberg, Finite difference mod-
eling of faults and fractures, Geophysics, 60, 1514-1526,
1995.

Fellinger, P., R. Marklein, K. J. Langenberg and S. Kla-
holz, Numerical modeling of elastic wave propagation and
scattering with EFIT - elastodynamic finite integration
technique, Wave Motion, 21, 47-66, 1995.

Gu, B., K. T. Nihei, L. R. Myer and L. J. Pyrak-Nolte,
Fracture interface waves, J. Geophys. Res. 101, 827-835,
1996.

Hirose, S., and M. Kitahara, Scattering of elastic wave by a
crack with spring-mass contact, Int. J. Numer. Methods
Eng., 31, 789-801, 1991.

Hsu, C. J., and M. Schoenberg, Elastic waves through a sim-
ulated fractured medium, Geophysics, 58, 964-977, 1993.

Kleinberg, R. L., E. Y. Chow, T. J. Plona, M. Orton, and W.
J. Canady, Sensitivity and reliability of fracture detection
techniques for borehole application, J. Pet. Technol. 34,
657-663, 1982.

Martin, P. A., Thin interface layers, adhesives, approxi-
mations and analysis, in Elastic Waves and Ultrasonic
Nondestructive Evaluations, edited by S. K. Datta, J. D.
Achenbach, and Y. S. Rajapakse, pp. 217-222, Elsevier
Sci., New York, 1990.

Mindlin, R. D., Waves and vibrations in isotropic elastic
planes, in Structural Mechanics, edited by J. W. Goodier
and W. J. Hoff, p. 199, Pergamon, Tarrytown, N. Y., 1960.

Mittal, K. L. (Ed.), Adhesive Joints, Plenum, New York
(1984).

Murty, G. S., and V. Kumar, Elastic wave propagation with
kinematic discontinuity along a non-ideal interface be-
tween two isotropic elastic half-spaces, J. Nondestr. Eval.,
10, 39-53 (1991).

Nagy, P. B., and L. Adler, New ultrasonic techniques to eval-
uate interfaces, in Elastic Waves and Ultrasonic Nonde-
structive Evaluations, edited by S. K. Datta, J. D. Achen-
bach, and Y. S. Rajapakse, pp. 229-239, Elsevier Sci., New
York, 1990.

Newmark, N. M., C. P. Siess, and I. M. Viest, Test and
analysis of composite beams with incomplete interaction,
Proc. Soc. Ezp. Stress Anal., 9, 75-92, 1951.

Paranjape, B. V., N. Arimitsu, and E. S. Krebes, Reflection
and transmission of ultrasound from a planar interface, J.
Appl. Phys., 61, 888-894, 1987.

Pilant, W. L., Elastic Waves in the Earth, Elsevier, New
York, 1979.

Pyrak-Nolte, L. J., and D. D. Nolte, Wavelet analysis of
velocity dispersion of elastic interface waves propagating
along a fracture, Geophys. Res. Lett., 22, 1329-1332, 1995.



CARCIONE: CRACK AND FRACTURE SCATTERING

Pyrak-Nolte, L. J., L. R. Myer, and N. G. W. Cook, Trans-
mission of seismic waves across single natural fractures,
J. Geophys. Res., 95, 8617-8638, 1990.

Pyrak-Nolte, L. J., J. Xu, and G. M. Haley, Elastic inter-
face waves propagating in a fracture, Phys. Rev. Leit., 68,
3653-3659, 1992.

Savic, M., and A. M. Ziolkowski, " Numerical modeling of
elastodynamic radiation and scattering”, in 64th Ann.
Internat. Mtg., Soc. Expl. Geophys., Ezpanded Abstracts,
pp. 1294-1297, SEG, Tulsa, 1994.

Schoenberg, M., Elastic wave behavior across linear slip in-
terfaces, J. Acoust. Soc. Am., 68, 1516-1521, 1980.

Selvadurai, A. P. S., and G. Z. Voyiadjis (Eds.), Mechanics
of Material Interfaces, Elsevier, new York, 1986.

Tessmer, E., D. Kessler, D. Kosloff, and A. Behle, Multi-
domain Chebyshev-Fourier method for the solution of the
equations of motion of dynamic elasticity, J. Comput.
Phys., 100, 355-363, 1992.

28,188

van der Hijden,J. H. M. T., and F. L. Neerhoff, Scattering
of elastic waves by a plane crack of finite width, J. Appl.
Mech., 51, 646-651, 1984.

Wills, P. B., D. C. DeMartini, H. J. Vinegar, J. Shlyapober-
sky, W. F. Deeg, J. C. Woerpel, C. E. Fix, G. G. Sorrells ,
and R. G. Adair, Active and passive seismic imaging of a
hydraulic fracture in diatomite, Leading Edge, 11, 15-22,
1992.

J. M. Carcione, Osservatorio Geofisico Sperimentale, P.O. Box
2011 Opicina, 34016 Trieste, Italy. (Fax +39 40 327307; e-mail:
carcione@gems755.0gs.trieste.it)

(Received November 8, 1995; revised May 20, 1996;
accepted August 30, 1996.)



