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Abstract

This work analyses the performance of a two-dimensional Chebyshev differential operator for solving the elastic
wave equation. The technique aliows the implementation of non-periodic boundary conditions at the four bound-
aries of the numerical mesh. which requires a special treatment of these conditions based on one-dimensional
characteristics. In addition, spatial grid adaptation by appropriate one-dimensional coordinate mappings allows a
more accurate modeling of complex media. and reduction of the computational cost by controlling the minimum
grid spacing. The examples illustrate the ability of the method to simulate Rayleigh waves around a corner and
adapt the mesh to the model geometry. In addition, a domain decomposition example shows how the boundary
treatment handles wave propagation from one mesh to another mesh.

1. Introduction

The use of spectral differential operators for solving the wave ¢quation is an important tool in geo-
physical problems. Several works are based on the Fourier-Chebyshev operator. In particular, the articles
by Kosloff et al. [1] and Tessmer et al. [2] treated the elastic wave equation in Cartesian coordinates, and
Kessler and Kosioff [3] solved the acoustic wave equation in cylindrical coordinates by using the Cheby-
shev method in the radial direction and the Fourier method in the azimuthal direction. Carcione {4]
simulated anclastic Rayleigh waves by means of the same operator. These works, which use the Fourier
method in one of the directions. are restricted to periodic boundary conditions in that direction.

In a relatively recent asticle, Raggio [5] introd. sed a 2D pseudospectral Chebyshev scheme to mode!
wave propagation in inhomogeneous acoustic media. This scheme suffers from two major disadvantages.
In the first place, the grid points are restricted to the Gauss-Lobatto collocation points, and secondly, as
Raggio points out. the clustering of the Chebyshev points near the interval end points greatly restricts
the time step of the time integration scheme.

In this work, we extend the modeling scheme from the acoustic to the elastic rheology. We use a
mapping transfermation for each Cartesian coordinate which circumvents the severe stability condition
of the integration method and distributes grid points in arbitrary locations. The 2D physical domain
is discretized at a set of points obtained from a 2D Chebyshev grid (computational domain) after
application of two 1D mapping transformations to cach Cartesian coordinate. As mentioned above,
the need of these transformations comes from the fact that the Gauss-Lobatto collocation points are
very densely distributed at the end points of the mesh, and therefore impose a very restrictive stability
condition on the time integration scheme. with time steps of the order O(N~2) where N is the number
of grid points along each Cartesian direction. By stretching the mesh we increase the grid spacing and
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use time steps of the order O(N ') [6]. Furthermore, these transformations can be used for spatial grid
adaptation [7, 8] in the sense that the collocation points can be redistributed and properly concentrated in
regions with steep velocity gradients, fine layering, complex interface geometrics and physical boundary
conditions like the surface of the Earth. For instance, an interface defined in a coarse grid may introduce
considerable errors into the computed reflection and transmission coefficients due to the presence of
Gibbs oscillations between collocation points {7]. Raggio [5] found that this error is proportional to the
square of the grid spacing.

Unlike the Fourier method, the Chebyshev pseudospectral method facilitates the implementation of
general boundary conditions at the four boundaries of the mesh. For instance, in Lamb's problem [9].
the upper Ucundary satisfies traction-free boundary conditions, and the other boundaries satisfy open
radiation corditions. However, solutions computed by a direct implementation of the boundary con-
ditions are strongly unstable. This problem is solved by modifying the wave equation by imposing the
correct behavior on the 1D characteristics normal to the boundaries. This method implies that a different
wave cquation is solved at these boundaries [10, 11]. For example, the open or non-reflecting boundary
condition is imposed by eliminating the incoming characteristics. In addition, absorbing strips are used
to avoid residual non-physical reflections coming from directions out of the normal.

Onc of the advantages of this non-periodic mesh is the possibility of partitioning a large physical
domain into several subdomains where the grid spacing, stretching parameters. number of grid points
and rheology of the medium can be controlled independently. The subdomains can be joined by imposing
the appropriate continuity conditions at the boundaries. This is the basis of domain decomposition
techniques [12] where each subregion can be solved in a different CPU of a parallel computer. thus
reducing the computational time.

2. The wave equation

The wave equation is based on the equations of momentum conservation combined with the constitu-
tive relations for 2D isotropic and clastic media [13]. The velocity-stress formulation in the (x,y) plane
takes the following matrix form

Jv dv dv

P _ A% B 4y,

o Aot By ts ®
where

0 = [03, 0 0,y O 0] )

is the unknown vector,

[0 0 p" 0 0 "
00 0 0 p!
A=|E 0 0 0 0 , 3)
A0 0 0 0
10 o 0 0 0

[0 0 0 0 p!
00 0pt 0
B=1|0 2 0 0 o0 . 4)
0O E 0 0 0
lu 00 0 0

and
s =[f.. £.0,0.0]", (5)

is the body force vector. The unknown fields are the particle velocities v, and v, and the stress compo-
nents gy, 0y and oy, The elastic properties of the medium are defined by the Lame constants A and
. E = A +2u and p is the density.
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3. The 2D Chebyshev differential operator

The differential operator is based on the Chebyshev method whose collocation points define the
numerical mesh of the computational domain (Section 3.1). From this, the physical domain is obtained
after mapping transformations which circumvent the severe stability condition of the time integration
scheme and yield spatially adaptive grids (Section 3.2). The implementation of boundary conditions
requires a special treatment based on characteristics variables (Section 3.3).

3.1. Chebyshev collocation method

The computational domain is a square region (£,7) € (1, —1] x {1, -1}, where the grid distribution is
defined by the Chebyshev Gauss-Lobatto points. Let us assume that the pair ({,N) represents either
(& Ny) or (m, Ny}, where N, and N, arc the number of grid points in the x- and y-directions, respectively.
A field variable #({), -1 < { < 1, can be expanded into Chebyshev polynomials T,,({) as

N
u(g) =) a,Tul), ()

n=l

where {; = cos(wj/N).j =0,1,..., N, are the Gauss-Lobatto collocation points, and 2’ halves the first
and last terms. The first-order derivative of « is given by

N

du

i«;—; =Y BTg), b1 =bea+2ma,, n=NN-1,...1, 0]
n=0

initiating the recursion equation with by,; = by = 0 [14]. The spatial derivative is computed via a

variant of the fast Fourier transform (FFT) for the cosine transform. A detailed analysis of the different

methods to compute the cosine transform can be found in Raggio (5.

3.2. Coordinate mappings

The uneven distribution of points of the Chebyshev diffcrential operator has two main disadvantages.
In the first place, the stability condition and the accuracy of the time integration scheme depend on the
minimum grid spacing of the mesh. The dense concentration of points of the Chebyshev mesh at the
boundaries requires time steps of the order O(N -?), making the modeling algorithm highly inefficient.
Although, as Solomonoff and Turkel [15] pointed out, for global differential operators, there is no direct
correlation between the minimum grid spacing and the maximum allowable time step, increasing the
minimum spacing effectively reduces the computational cost [6]. In second place, there is no justification
for concentrating points in regions where there are not small inhomogeneities to model. In this sense,
grid adaptation is fully justified.

These problems are solved by expanding the solution as a finite sum of non-polynomial basis functions.
This is achieved by 1D transformations or stretching functions which, when applied to the Gauss-Lobatto
points, yield a numerical grid that can be adapied to the particular structure of ihe model and boundary
conditions. Lamb’s problem, for instance, requires a mapping with free surface boundary conditions at
y =0, and open (non-reflecting) radiation conditions at the other boundaries. Along the y-direction, a
aon-symmctric stretching function is used, with grid dense enough at the surface to sample the wavefield
appropriately 1o model the boundary condition, but coarse enough to avoid the severe stability condition.
At the bottom, this condition is not necessary, and a coarser grid extends as far as possible the physical
domain. Moreover, the transformations allow time steps of order O(N !}, thus considerably reducing
the computer time.

We consider the following coordinate transformation from the computational to the physical domain:
9(g) — q(1)
q(-1)—q(1)]’

mapping the interval [1, —1] onto the interval [0, zmay], Where z represents x or y, such that the physical

z,-=zm=u[ i=01,...N ®
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domain is (x,y) € [0, Xmax) X [0, yma]. The function
=49, @) ()]

is a family of transformations, where a is a vector of parameters defining the mapping.
The spatial derivative of a field variable in the physical domain is then given by

B _Sudl_ (oo gl)] o
8z~ 8L dz « ) dqaz

Qo (10)

Zmax

Examples of mapping functions g are the following:
(1) The non-symmetric function (6]

0]

3

q({):—lrl”'/zarcsin( (1)

where r =0.5a (82 +1) — 1 and s = 0.5¢ (82 — 1) - 1 with @ = (a, B). Since
:—:=\/l+s{+r?, (12)

it can be seen that the amount of grid stretching at { = —1 is dg/d{ = «, and that the stretching
at { =1is dg/d{ = af.

A symmetric mapping function is given by
_ aresin(y{) \
q()) = ma (13

satisfying ¢(1) = 1 and g(~1) = —1. Here, @ = v, and

d{  arcsin(y) o
—= =T 1 — 22, 14
19 y Vi-7ré 14

This mapping, like the previous one, stretcies the mesh at the boundaries. When y — 0, we obtain
the Gauss-Lobatto collocation points, and y — 1 gives equally distributed points as in the Fourier
differential operator. The mapping improves the  criterion for resolving the maximum wavenum-
ber to almost two points per minimum wavelength, as in the Fourier case. A detailed analysis of
resolution and accuracy of the 1D differential operator constructed with this transformation is
given by Kosloff and Tal-Ezer [6].

A non-symmetric transformation introduced by Augenbaum [7] is
_m8-2p _ ul4
q(¢) = 5w p = arctan [etan( 2 )] y (15)
with @ = (8, €) and
%_(Zpa—‘")l[ 3<‘tr_§) :~2('"_§)
7 m cos 5 + e sin 5 ], (16)

where € > 0 and |8| < 1. The parameter e controls the magnitude of the coordinate stretching (or
compression) about a point determined by 8. For { = +1 the amount of stretching is given by
di 1%8
g ST an

Other non-symmetric mapping functions can be found in [6, 16). Note that these coordinate trans-

formations imply that we are no longer using polynomial approximation for the solution in the
physical space.

3.3. Boundary conditions

Each time the right-hand side of Eq. (1) is computed, the boundary conditions are implemented.
However, a direct application of these conditions gives unstable solutions. The global character of the
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spectral differential operator implies that an incorrect implementation of the boundary conditions imme-
diately affects the entire domain [17]. This problem is solved by decomposing the wavefield into one-way
modes (or characteristics) perpendicular to the boundaries, and modifying these modes according to the
boundary conditions. The method was recently applied by Thompson {18] to fluid dynamic problems
and by Carcione [10, 11] to the wave equation. The implementation of the boundary conditions along
a given direction requires the characteristic equation corresponding to Eq. (1) in that direction. Let us
consider the boundary normal to the y-direction. Eq. (1) can be expressed as

v dv v

5‘»;Ba—y-+s” s\.fAi—);-t-s. (18)
After diagonalization of matrix B as B = SAS ', Eq. (18) can be written as

i

o =SH +s,. (19)
the characteristic equation, where

PR L.
M= D 0)

are the characteristic variables. A is a diagonal matrix formed with the eigenvaluesof B, A; =1,...,8,
related to the phase velocities of the outgoing and incoming wave modes, such that H represents each
decoupled characteristic mode in the y-direction. Eq. (19) completely defines dv/8r at the boundaries in
terms of the decoupled outgoing and incoming modes. The characteristics H; with A; > 0, represent trav-
eling modes in the positive direction of the coordinate axes, and vice versa for those characteristics with
A; < 0. Having this in mind, the incoming modes are those quantities which point into the computational
domain. These characteristics are computed from the boundary conditions while the outgoing modes are
not modified, and replaced back into Eq. (19) to get the equations for the boundaries. The diiecticns
of the characteristics at the boundaries are illustrated in Fig. 1 (those quantities between parentheses
are computed from the boundary conditions). In the following, the boundary equations for the upper
(upper sign) and lower (lower sign) boundaries of the numerical mesh are given.

c, c

(®,) % ’ ®,
I (@)
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B () e ]

e,y %, () %,
o
. 0 - . 6.

Fig. 1. Horizontal (R) and vertical (H) characteristics at the boundaries of the numerical mesh, The characteristics at the corners
are also indicated. The first and sccond ones corresponds (o the compressional waves while the third and fourth to the shear
waves. These g ities between g h (the incoming modes) are computed from the boundary conditions.
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The Neumann boundary equations are

o =03+ Zi&«'r;':f' - @
S

S =i (o g), @)
3 ZI' )

G — gold _ i((rold —8) (23)
v = Oy £y — 8

ot =g (24)

oY _ 1f, (25)

where f and g are time-dependent functions, and Zp = /(A +2u)p and Z = \/@p are the compressional
and shear impedances. A dot above a variable denotes time differentiation. The superscript ‘old’ indicates
the variables given by Eq. (1), and the superscript ‘new’ refers to the variables of the left-hand side
of Eq. (18) after modification of the incoming characteristics. In practice, at every time step and after
application of the differential operator, the vector of field variables is modified according to the boundary
equations. When f = g = 0, we have the free-surface boundary conditions. The method can be used also
to excitate a source function at a given point of the boundary. For instance, f = 0, and &y, (x), ) = £(1)
is a vertical force located at x, with time history g(r).
The Dirichlet boundary equations are

v;"““' =0, (26)
Ut = i, 27
oI = o+ 3 (0 - o), @)
G = G0+ Zp (0 ~ ), (29)
oMY = g 4 Zo@M - p), (30)

where v and w are time dependent functions. For instance. rigid boundary conditions imply w = v = 0.
The non-reflecting boundary equations are

pew _ Lo 1 o
i = 3 (0 o). en
R AT
SNeW soid sold
=3 +=a). 32
wt=3 (v\ Zn o0 ) (32)
cnew __ cold A <old sold
ot =l - 5E (a0 F Zpol™). (33)
ot = % (o0 + Zpo?), (34)
o 1 Aol ol
o =5 00 £ Z), (33)

The equations for the left boundary can be obtained from the lower boundary equations by substituting
x — y and y — x. Similarly, the equations for the right boundary are obtained from the left boundary
equations by substituting x — —x, where in this case, v, — —v, and oy, — —0,,.
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For the corner points, we usc an ad hoc trcatment introduced by Lic [19] who defined the ‘normal to
the corner point’ inwards and bisecting the angle between the adjacent boundary lines. For a rectangular
mesh this angle is a multiple of /4 depending on the corner point. For example, let the y’-direction
(system S') make an angle w/4 with the y-axis (system S) where the problem is solved. The boundary
treatment is applied to the variables in system §’ since the method uses the characteristics normal to the
boundaries. We proceed as follows: after calculation of the right-hand side of Eq. (1), giving, say, vy, we
compute vy by rotating the particle velocities and stresses from $ to S’ by using [20]

] - k] o9

11 21 T
b1l =2 o (37)
-1 1 0} |on

and

S
Il
ol —

Then, we apply the boundary treatment to vector v}, and calculate the new vy by the inverse rotation
transformations.

4. Examples

The first example simulates Lamb’s problem in order to check the accuracy of the Chebyshev operator.
When the source is very close to the free surface, the high amplitude of the Rayleigh wave represents
a challenge for the boundary treatment. The second example illustrates wave propagation through a
surface step in order to test the characteristic approach applicd to the corner points. A third example
computes seismograms produced by a stack of fine layers modeled by refining the grid points at the

center of the numerical mesh. Finally, the last example illustrates wave propagation in a multi-domain
mesh.

4.1. Lamb’s problem

We consider a Poisson solid with compressional and shear velocities ¢p = /E/p = 2000 m/s,cy =
/i/p = 1155 m/s, respectively. with a density of p = 2 g/cm®. We solve the problem in the ultrasonic
range, but since it is elastic, the results can be scaled to any frequency range. The source is a vertical
impact having a Ricker wavelet time-history with central frequency f, = 110 kHz.

The calculations use a numerical mesh with N, = 121, N, = 8!, with the mapping function equa-
tion {13) for the x coordinate and the mapping function equation (11) for the y coordinate. The dimen-
sions of the physical space after the transformations are Xp,, = 233.5 mm and ym. = 146 mm, with
maximum grid sizes of dtmuy = dyma = 2 mm at the center of the mesh. The stretching parameters are
v = 0.999 for the x-direction, and @ = 4.86, 8 == 2 for the y-direction. The mesh has free surface bound-
ary conditions applied to the upper boundary and open radiation conditions to the other boundaries.
Since for non-vertical incidence the incoming waves are not completely eliminated, absorbing strips of
length 18 grid poinis are used at the sides and lower boundary to climinate the residual non-physical
reflections [21]. The vertical force is applied at grid point 24 (x = 37 mm) at a depth of y = 0.186 mm
(second grid point), which is very close to the surface. This depth is small compared to the dominant
wavelength of the signal which for shear waves is approximately 10 mm. The solution is propagated to
0.2 ms with a time step of 0.1 us, by using a 4th-order Runge-Kutta integration scheme [4]. This time
step is of the order of the time step which would be used with the Fourier method.

Comparisons between numerical and analytical solutions are shown in Fig. 2, where the coordinates
of the receivers relative to the source are in (a) and (b), (72,0) mm. and in (c) and (d), (72,29) mm.
As can be scen from the pictures, the matching between solutions is excellent. The non-causal event
before 0.02 ms occurs near the surface when the source reaches its maximum amplitude. The polarity
of the noise changes in the x-direction at every grid point. This resembles the behavior of the Nyquist
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Fig. 2. Comparison between numerical and analytical solutions for Lamb's problem, where the coordinates of the reccivers with
respect to the source are in (a) and (b), (72.0) mm, and in (¢) and (¢). (72.29) mm. The matching is virtually perfect.

component. For display purposes, the noise can be eliminated by summing the solutions of contiguous
grid points. This effect is probably caused by the so-called Runge phenomenon [22] which reflects in
strong oscillations of the Chebyshev coefficients near the interval end points [S]. This problem takes
place in equally spaced grids, so the cause could be too much stretching of the grid points at the surface.
An elaborate analysis of this phenomenon will be given in a future paper.

4.2. Step problem
We consider the same physical properties, source type and number of grid points as the previous

example. The model is a surface step whose physical mesh is illustrated in Fig. 3, where the upper and
right boundaries satisfy traction-free conditions. The mappings functions are given by Eq. (1!) for both

Fig. 3. Numerical mesh of the physical space for the step probk,m The uppc,r and right boundarics, which form the step, satisfy
free surface conditions. The mesh is constructed with two ional mapping tr ion based on Eq. (11).
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cartesian coordinates with « = 4.86 and 8 = 2, where Xp,, = 225.5 mm. As can be appreciated in Fig. 3,
the mesh is denser at the. step in order to correctly model the free surface condition. The lower and
left boundaries satisfy open radiation conditions. The vertical force is applied at grid point 90 located
52.5 mm from the corner and at 0.186 mm depth.

The time-integration scheme and time step are the same as for the preceding example. Fig. 4 displays
snapshots of the particle velocity vector at 1 = 0.06 ms and ¢ = 0.09 ms. In Fig. 4(a), the compressional
wave has been diffracted by the corner while the Rayleigh wave is on the corner with the shear wave
slightly in advance. A head wave connecting the body waves can also be observed. At 0.09 ms (Fig. 4(b)),
the Rayleigh wave has been split into transmitted and reflected surface waves traveling vertically and
horizontally, respectively. The event generated by the interaction of the shear wave with the vertical
boundary can be clearly appreciated. This pulse travels with apparent infinite veiocity at the corner and
approaches cg at infinite distance from the corner (sec also Fig. 5). In Fig. 5, we show the response
of the medium recorded at 0.186 mm from the surface. The first 60 receivers correspond to the upper
boundary and the next 40 receivers to the right boundary of the step. The strong event is the Rayleigh
wave which at 0.06 ms splits into transmitted and reflected Rayleigh waves.

3
BN
timex0 06 ms Vi 3 ume=0 €9 ms
—_ Anf"!.. R S e e ”
I H

1

(a) (b)

Fig. 4. Snapshots of the particle velocity veetor for the step problem at 0.06 ms (a) and 0.09 ms (b). In (a). the Rayleigh wave
produced by a vertical impact has reached the corner. The reflected and transmitied surface waves can be observed in (b).
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Fig. 5. Response of the step recorded at 0.186 mm from the surface. where (@) and (b) represent the vy and v, components,
respectively. The first 60 receivers correspond to the upper houndary and the next 40 receivers to the right boundary of the step.
The strong event is the Rayleigh wave which at 0.06 ms splits into itted and reflected Rayleigh

waves.



42 J.M. Carcione/Comput. Meihods Appl. Mech. Engrg. 130 (1996} 33-45
4.3. Fine layering

This example illustrates the ability of the method to model a stack of fine layers, one of the most
common geological structures appearing in sedimentary formations. It is well known that in the long-
wavelength limit, the fine layering formation can be replaced by an equivalent transversely isotropic
medium. A series of numerical experiments to illustrate this property in periodically layered media have
been carried out by Carcione et al. [23], where they show that the replacement is valid for a dominant
wavelength greater than nearly ten times the spatial period of the stratification. The grid geometry with
Ny = N, = 81 is shown in Fig. 6, where the fine concentration of peints at the center of the mesh has
been obtained by using the mappmg function equation (15) with 8 = 0 and € = 0.2. In the horizontal
direction, we apply the same mapping with § =0 and e = 0.4. This shows that it is more effective to use
mapping transformations to resoive the structure than to simply add more grid points into the physical
coordinate system. The dimensions of the physical space are x,.« = 1000 m and ym., = 500 m, with
maximum and minimum grid spacing of dxm.x = 20 m, dyma = 13 m, and of dxpin = dymin = 0.96 m,
respectively.

The model structure and configuration is illustrated in Fig. 7. The structure is a periodic set of
sandstone-limestone layers (from grid point 35 to grid point 47) of equal thickness embedded in ho-
mogeneous sandstone. The spatial period of the stratification is approximately 4 m, such that the total
thickness of the system is 24.5 m. In [23] the values of the wave velocities and elastic constants of the
equivalent medium can be found. At 40 m above the stack, a vertical force of 20 Hz dominant frequency
excitates the medium. The response is recorded by a set of geophones located 40 m below the fine
layering. The dominant wavelength to spatial period ratio for vertical incidence is 45 for the P waves
and 25 for the § waves, so the long-wavelength approximation is satisfied.

The solution is propagated to 1.2 s with a time step of 0.25 ms by using a 4th-order Runge-Kutta
integration scheme. Fig. 8 represents the seismograms for the fine layering system and equivalent trans-
versely isotropic medium. As the pictures show, the match between solutions is virtually perfect. This
example also constitutes a test of the performance of the differential operator in regions where sharp
discontinuities of the material properties take place.

4.4. Lamb’s problem by domain decomposition
This example consider two meshes (subdomains A and B) as displayed in Fig. 9. The vertical interface

scparating the subdomains can be a real material interface or just a boundary separating regions of the
same medium. As before, the wave equation is decomposed into wave modes describing outgoing and

cargsione

source

recersers

sandstone

Fig. 6. Numcrical mesh of the physical space for the fine layering problem. The mapping function (15) is uscd for both the
horizontal and vertical directions. The region at the center of the mesh has vertical grid spacing of 2 m and represents a periodic
sequence of sandstone-limestone layers.

Flg 7. Structure and recording configuration of the fine layering problem. The sandstone-limestone sequence of 24.5 m total
bedded in a ‘The source is a vertical impact of 40 Hz dominant wavelength. so that the
long-wavelength approximation is satistied. The stack of layers is cquivalent to a b ly isotropic medium.

is
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Equivalent medium

Fig. 8. Scismograms of the fine
As can be observed. there is no
cquivalent medium,

red problem, (a) and (b) display the ¢ -component. und (¢) and (d) display the vy-component.
rence between the solutions obtained from the stack of Javers and the homogeneous anisotropic

are indicated in
isfy non-refiecting

Fig. 9. Cartesian mesh composed of two Chebyshev subgrids (A and B). The directions of the characteris
the Figure. The left and upper boundaries satisfy stress-free conditions. and the right and lower boundarics s:
conditions.

incoming wave modes perpendicular to the boundary. The outgoing waves are determined by the solution
inside the subdomain, while the incoming waves are calculated from the conditions at the interface, i.e.
continuity of displacements and normal stresses. The boundary equations can be found in [2, 12].

Corners points, like L, for instance, are tested in the step example. Problems may arise from the so-
called T points, which combine interface and free surface boundary conditions (T1), or interface and non-
reflecting boundary conditions (T2). These points are treated independently (in each subdomain) with
rotated characteristics. Unlike the interface points, where the wavefield is unique for both subdomains,
T points have dissimilar values.

Here, we test the performance of the boundary treatment on T points, in particular, the intersection
of the vertical interface with the free surface (point T1) (see Fig. 9). This type of singular points appears
in many problems. For instance, consider a fluid-filled borehole. If the fluid and the Earth are given
mesh A and B, respectively, the point fluid-solid-Earth surface is a T point.
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We consider the medium homogeneous with compressional and shear velocities ¢, = 2000 m/s and
cg = 1300 m/s, respectively, and a density of p = 2 g/cm®. The source is a vertical force having a
Ricker wavelet time-history with central frequency fy = 16 Hz. The force is in subdomain A at 1.87 m
depth, and 372.8 m from the interface. Two receivers are located in subdomain B at 121 m from the
interface, one at the surface and the other at 212.8 m depth. The calculations use a numerical mesh with
N, =81 and N, = 121 for each subdomain. Thcir di ions after the stretching are xm.x = 1460.3 m
and ymax = 2252.3 m, with maximum grid sizes of dXmax = dymax = 20 m at the centers of the meshes.
The mapping function is given in Eq. (11) and the stretching parameters are a, = 4.86,a, = 7.2 and
B = 2. We found from numerical tests that in order to maintain stability, the aspect ratio of the cells
(maximum to minimum length) close to L and T points must be less than 5. The solution is propagated
to 0.8 s with a time step of 1 ms.

Fig. 10 shows two snapshots of the particle velocity vector. Comparison between numerical and analyt-
ical time histories are represented in Fig. 11. As can be seen from the pictures, the results are satisfactory.
The information is correctly transmitted from one subdomain to the other.

@ time=0.2 s lime=0.8's

Fig. 10. Snapshots of the particle velocity vector at (a) 0.2 s and (b) 0.8 5. The source is in the left subdomain (A) and the receivers,
1epresented by dots. are in the right subdomain (B).
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Fig. 11. Comparison between numerical and analvtical solution at the 1wo receivers located in domain B (indicated by dots in
Fig. 10). (a) represents the v, -component at the surface receiver. and (b) shows the v, -component at the depth rec
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5. Conclusions

We have solved the elastic wave equation with a 2D Chebyshev pscudospectral operator where general
boundary conditions can be imposed, and the collocation points in the physical domain can be distributed
in accordance with the structure of the model. This is achieved by mapping transformations which control
the minimum grid spacing to render the algorithm efficient in terms of computational effort. Instabilities
of the differential operator due to boundary conditions are solved with a characteristic approach. First,
Lamb’s problem tests the eficctiveness of the 2D Chebyshev grid and boundary treatment by comparing
numerical and analytical solutions. The performance of the corner points is tested by propagating a
pulse through a surface step where the modeling reproduces correctly the transmitted and reflected
Rayleigh waves. The third example shows how the grid can be adapted to a finely layered structure, and
successfully tests the performance of the differential operator in the presence of sharp discontinuities in
the material properties. Finally, the technique is used for domain decomposition where the subdomains
can be joined by imposing the appropriate boundary conditions on the incoming waves at the interfaces.
Lamb’s problem is successtully solved for the source in one subdomain and the receivers in the other
subdomain.

A natural extension of the method involves the use of 2D coordinate transformations such that the
grid points can be adapted to topographic features and curved interfaces.
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