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Abstract 

This work analyses the performance of a two-dimensional Chebyshev diflerential operator for solving the elastic 
wave equation. The technique allows the implementation of non-periodic boundary conditions at the four bound- 
aries of the numerical mesh. which requires a special treannent of these conditions based on one-dimensional 
characteristics. In addition, spatial grid adaptation by appropriate one-dimensional coordinate mappings allows a 
more accurate modeling of complex media, and reduction of the computational cost by controlling the minimum 
grid spacing. The examples illustrate the ability of the method to simulate Rayleigh waves around a corner and 
adapt the mesh to the model geometry. In addition, a domain decomposition example shows how the boundary 
treatment handles wave propagation from one mesh to another mesh. 

I. Introduction 

The use of spectral differential operators for solving the wave equation is an important tool in geo- 
physical problems. Several works are based on the Fourier-Chebyshev operator, In particular, the articles 
by Kosloff et al, [1] and Tcssmer et al. [2] treated the elastic wave equation in Cartesian coordinates, and 
Kessler and Kosioff [3] solved the acoustic wave equation in cylindrical coordinates by using the Cheby- 
shev method in the radial direction and the Fourier method in the azimuthal direction. Careione [4] 
simulated anelastic Rayleigh waves by means of the same opcrator. These works, which use the Fourier 
method in one of the directions, are restricted to oeriodic boundary conditions in that direction. 

In a relatively recent article, Raggio [5] introd ;ed a 2D pseudospectrai Chebyshev scheme to model 
wave propagation in inhomogeneous acoustic media. This scheme suffers from two major disadvantages. 
In the first place, the grid points are restricted to the Gauss-Lobatto collocation points, and secondly, as 
Raggio points out, the clustering of the Chebyshev points near the interval end points greatly restricts 
the time step of the time integration scheme. 

In this work, we extend the modeling scheme from the acoustic to the elastic theology. We use a 
mapping translLrmation for each Cartesian coordinate which circumvents the severe stability condition 
of the integration method and distributes grid points in arbitrary locations. The 2D physical domain 
is discretized at a set of points obtained from a 2D Chebyshev grid (computational domain) after 
application of two 1D mapping transformations to each Cartesian coordinate. As mentioned above, 
the need of these transformations comes from the fact that the Gauss-Lobatto collocation points are 
very densely distributed at the end points of the mesh, and therefore impose a very restrictive stability 
condition on the time integration scheme, with time steps of the order O(N -2) where N is the number 
of grid points along each Cartesian direction. By stretching the mesh we increase the grid spacing and 
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use time steps of the order O(N-  ~) [6]. Furthermore, these transformations can be used for spatial grid 
adaptation [7, 8[ in the sense that the collocation points can be redistributed and properly concentrated in 
regions with steep velocity gradients, fine layering, complex interface geometries and physical boundary 
conditions like the surface of the Earth. For instance, an interface defined in a coarse grid may introduce 
considerable errors into the computed reflection and transmission coefficients due to the presence of 
Gibbs oscillations between collocation points [7]. Raggio [5] found that this error is proportional to the 
square of the grid spacing. 

Unlike the Fourier method, the Chebyshev pseudospectral method facilitates the implementation of 
general boundary conditions at the four boundaries of the mesh. For instance, in Lamb's problem [9], 
the upper bc.undary satisfies traction-free boundary conditions, and the other boundaries satisfy open 
radiation conditions. However, solutions computed by a direct implementation of the boundary con- 
ditions are strongly unstable. This problem is solved by modifying the wave equation by imposing the 
correct behavior on the ID characteristics normal to the boundaries. This method implies that a different 
wave equation is solved at these boundaries [10, 11]. For example, the open or non-reflecting boundary 
condition is imposed by eliminating the incoming characteristics, In addition, absorbing strips are used 
to avoid residual non-physical reflections coming from directions out of the normal. 

One of the advantages of this non-periodic mesh is the possibility of partitioning a large physical 
domain into several subdomains where the grid spacing, stretching parameters, number of grid points 
and rheology of the medium can be controlled independently. The subdomains can be joined by imposing 
the appropriate continuity conditions at the boundaries. This is the basis of domain decomposition 
techniques [12] where each subregion can be solved in a different CPU of a parallel computer, thus 
reducing the computational time. 

2. The  wave equation 

The wave equation is based on the equations of momentum conservation combined with the constitu- 
tive relations for 2D isotropic and elastic media [13]. The velocity-stress formulation in the (x,y) plane 
takes the following matrix form 

ihu Oo ihv 
~ -  = A ~ff~x + B ~ y  + S, (1) 

where 

v = v.,, v,,, ~r., ~r,.v, o:., r (2) 

is the unknown vector. 

0 P0 11 p l 
A = 0 0 0 (3) 

o o () () 
LO ~ o o o 

(1 0 l) 0 
B =  0 A 0 0 (4) 

E 0 0 0 
0 0 0 

and 

s = b~,, f,., c)~ 0, o] ~, (5) 

is the body force vector. The unknown fields are the particle velocities v., and vy, and the stress compo- 
nents o~tx, tr~,y and o'x~,. The elastic properties of the medium are defined by the Lame constants A and 
it, E = A + 2p, and p is the density. 
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3. The 20  Chebyshev differential operator 

The differential operator is based on the Chebyshev method whose collocation points define the 
numerical mesh of the computational domain (Section 3.1). From this, the physical domain is obtained 
after mapping transformations which circumvent the severe stability condition of the time integration 
scheme and yield spatially adaptive grids (Section 3.2). The implementation of boundary conditions 
requires a special treatment based on characteristics variables (Section 3.3). 

3.1. Chebyshev collocation method 

The computational domain is a square region (s c, 7/) c [1, -1] x [1, -1], where the grid distribution is 
defined by the Chebyshev Gauss-Lobatto points. Let us assume that the pair (~',N) represents either 
(G N~) or (7/, Nv), where N, and N~ are the number of grid points in the x- and y-directions, respectively. 
A field variable u(~'),-I ~< ~" <~ 1, can be expanded into Chebyshev polynomials T,,(~) as 

-~, 
u(~ i) - a,,T,,(~i), (6) 

tl ( )  

where ~'~ = cos('lrj/N), j = 0, 1 . . . . .  N, are the Gauss-Lobatto collocation points, and 2_~' halves the first 
and last terms. The first-order derivative of u is given by 

O~ ~ b,)T,,(~i), b,, i=b, , l+2na, , ,  n = N , N - I  . . . . .  1, (7) 

initiating the recursion equation with bx+l = bx = 0 [14]. The spatial derivative is computed via a 
variant of the fast Fourier transform (FFT) for the cosine transform. A detailed analysis of the different 
methods to compute the cosine transform can be found in Raggio [5]. 

3.2. Coordinate mappings 

The uneven distribution of points of the Chebyshev ditfcrential operator has two main disadvantages. 
In the first place, the stability condition and the accuracy of the time integration scheme depend on the 
minimum grid spacing of the mesh. The dense concentration of points of the Chebyshev mesh at the 
boundaries requires time steps of the order O(N 2), making the modeling algorithm highly inefficient. 
Although, as Solomonoff and Turkel [15] pointed out, for global differential operators, there is no direct 
correlation between the minimum grid spacing and the maximum allowable time step, increasing the 
minimum spacing effectively reduces the computational cost [6]. In second place, there is no justification 
for concentrating points in regions where there are not small inhomogeneities to model. In this sense, 
grid adaptation is fully justified. 

These problems are solved by expanding the solution as a finite sum of non-polynomial basis functions. 
This is achieved by 1D transformations or stretching functions which, when applied to the Gauss-Lobatto 
points, yield a numerical grid that can be adapted to the particular structure of ihe model and boundary 
conditions. Lamb's problem, for instance, requires a mapping with free surface boundary conditions at 
y = 0, and open (non-reflecting) radiation conditions at the other boundaries. Along the y-direction, a 
nonosymmctric stretching function is used, with grid dense enough at the surface to sample the wavefield 
appropriately to model the boundary condition, but coarse enough to avoid the severe stability condition. 
At the bottom, this condition is not necessary, and a coarser grid extends as far as possible the physical 
domain. Moreover, the transformations allow time steps of order O(N-t) ,  thus considerably reducing 
the computer time. 

We consider the following coordinate transformation from the computational to the physical domain: 

[ q(~j) - q(1) ] 
zi = z  ..... [q ( -1 )  - q(1)] ' j =0 ,1  . . . . .  N (8) 

mapping the interval [1, -1] onto the interval [0, Zm~,~], where z represents x or y, such that the physical 
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domain  is (x,y)  ~ [0, Xm~x] x [0, ym~x]. The  function 

q : q(~', a )  (9) 

is a family of t ransformations,  where a is a vector of parameters  defining the mapping. 
The  spatial derivative of a field variable in the physical domain is then given by 

ou _ o.  dC _ r q ( - 1 )  - 7 _ ( 1 . ) 1  d,; Ou 
(10) 

Oz O~" dz / k Zmax - - - /  1 dq O~'" 

Examples  of mapping functions q are the following: 
(1) The  non-symmetr ic  function [6] 

q(~) = _lrl_ll2arcsi n f 2~'r + s  
\ ~ 1 ,  ( 2 1 )  

where r = 0.5a-2(/3 -2 + 1) - 1 and s = 0.5or 2(B 2 _ 1) - 1 with a =  (a, /3).  Since 

d.__( = V/1 + s6" + r~ "---~, (12) 
dq 

it can be seen that  the amount  of grid stretching at ~ = - I  is dq/d,~ = or, and that  the stretching 
at ~" = 1 is dq /d~  = a[$. 

(2) A symmetric  mapping function is given by 

arcsin(y~) 
q ( s r ) -  arcsin(y) ' (13) 

satisfying q ( l )  = 1 and q ( - 1 )  = - 1 .  H e r e ,  a = y ,  and 

ds r _ arcsin(y)  ¢ 1  - y2~2. (14) 
:tq y 

This mapping,  like the previous one, s tretches the mesh at the boundaries.  W h e n  y --~ 0, we obta in  
the Gauss -Loba t to  collocation points, and y --* 1 gives equally dis tr ibuted points as in the Fourier  
differential  operator. The  mapping  improves the ~r cri terion for resolving the max imum wavenum- 
ber  to almost  two points per  min imum wavelength,  as in the Fourier  case. A detai led analysis of 
resolution and accuracy of the 1D differential  opera tor  constructed with this t ransformat ion is 
given by Kosloff and Tal-Ezer  [6]. 

(3) A non-symmetr ic  t ransformat ion introduced by A u g e n b a u m  [7] is 

q(~') - 2p,~ - ~r' p = a r c t a n  e t a n  , ( 1 5 )  

with ot = ( 6 ,  e )  and 

d ~ _  ( 2 p 6 - ~ )  2 [cos2fTr(, '~+e2sin2['rr(,~] (16) 
dq ~ 2 - ~ -  ~ [ I,,.T) ~,TJj 

where E > 0 and I~1 < 1. The  paramete r  E controls the magni tude of the coordinate  stretching (or 
compression) about  a point  de te rmined  by & For s r = 4-1 the amount  of stretching is given by 

d~" I=F8 
d q  14- 8e.  (17) 

Othe r  non-symmetr ic  mapping  functions can be found in [6, 16]. Note that  these coordinate trans- 
formations imply that  we are no longer using polynomial  approximat ion for the solution in the 
physical space. 

3.3. Boundary conditions 

Each time the r ight-hand side of Eq. (1) is computed,  the boundary  condit ions are implemented.  
However,  a direct application of these condit ions gives unstable solutions. The  global character  of the 
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spectral differential operator implies that an incorrect implementation of the boundary conditions imme- 
diately affects the entire domain [17]. This problem is solved by decomposing the wavefield into one-way 
modes (or characteristics) perpendicular to the boundaries, and modifying these modes according to the 
boundary conditions. The method was recently applied by Thompson [18] to fluid dynamic problems 
and by Careione [10, 11] to the wave equation. The implementation of the boundary conditions along 
a given direction requires the characteristic equation corresponding to Eq. (1) in that direction. Let us 
consider the boundary normal to the y-direction. Eq. (1) can be expressed as 

Ov Ov - A O__v_v 
~ -  = B  ~ +s,., s , . -  o x + S .  (18) 

After diagonalization of matrix B as B = S A S  ~, Eq. (18) can bc written as 

0v 
0-7 = ST-t + S.v, (19) 

the characteristic equation, where 

7-t = A S  ~ __'90 (20) 
Oy 

are the characteristic variables. A is a diagonal matrix formed with me eigenvalues of B, A i = 1 , . . . ,  8, 
related to the phase velocities of the outgoing and incomiv, g wave modes, such that 7-/represents each 
decoupled characteristic mode in the y-direction. Eq. (19) completely delines Ov/Ot at the boundaries in 
terms of the decoupled outgoing and incoming modes. The characteristics "Hi with )ti > 0, represent trav- 
eling modes in the positive direction of the coordinate axes, and vice versa for those characteristics with 
)t~ < 0. Having this in mind, the incoming modes are those quantities which point into the computational 
domain. These characteristics are computed from the boundary conditions while the outgoing modes are 
not modified, and replaced back into Eq. (19) to get the equations for the boundaries, The directions 
of the characteristics at the boundaries are illustrated in Fig. 1 (those quantities between parentheses 
are computed from the boundary conditions). In the following, the boundary equations for the upper 
(upper sign) and lower (lower sign) boundaries of the numerical mesh are given. 

(]1 

:_ ( ~ )  0e3 - 

-I 

(]3 

Fig,. 1. Horizontal (TO) and vertical (74) characteristics at the boundaries of the numerical mesh. The characteristics at the corners 
arc also indicated. The first and second ones corresponds Io 1hc comprcssionat w~vcs while the third and fourth to the shear 
waves. These qmmtities between p~rcntheses (the incoming rhodes) are cnmputcd from the boundary conditions. 
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The Neumann boundary equations are 

1 to 0 "~'' = 0 TM + - - ( ± o " ' .  - f ) ,  (21) 
' ~ Z.s' .r~ 

b new = b TM 4- 1 . . . .  id _ g) ,  (22) 
• , Z/-~ ( ~ ' y  

, t ~  . . . . . .  ,d a . . . .  to = oM - ~La~.y - g), (23) 

o;~" = g, (24) 

al~,~ ' _ ,,f, (25) 

where f and g are t ime-dependent  functions, and Zv = x / ~  + 2/t)p and Zs = ~ - p  are the compressional 
and shear  impedances.  A dot above a variable denotes  time differentiation. The superscript 'old '  indicates 
the variables given by Eq. (1), and the superscript "new' refers to the variables of the left-hand side 
of  Eq. (18) after modification of the incoming characteristics. In practice, at every time step and after 
application of  the differential operator,  the vector of field variables is modified according to the boundary 
equations. When ] '  = g = 0, we have the flee-surface boundary conditions. The method can be used also 
to excitate a source function at a given point of the boundary. For instance, f = 0, and 0"ry(X0, t) = .~(t) 
is a vertical force located at x0 with time history g( t ) .  

The Dirichlet boundary equations are 

0 "~' = v, (26) 

0~e" = +~i,, (27) 

a,"p" .,,~d a . . . .  Id . , , la = rr,., + ~ t<..,. -- o';..,. ), (28) 

er~"~'" = er~.'la + Z , , ( ~ O ; :  d - #) ,  (29) 

drn~',~' = &old 4- Zs(0,,ld _ 0), (30) • .~ y 

where v and w are time dependent  functions. For instance, rigid boundary conditions imply w = v = 0. 
The non-reflecting boundary equations are 

1 . Id~ 1 Oj~ 'ld ± - - o ' 0 .  ( 3 1 )  
° ~ ' =  ~ z~ .... ) '  

1 (0 , , : a_  1 .,,.d'~ O~ e'' = ~ ± ~ / ,  or,, ) ,  (32) 

8~,~ • ,,Id a . . . .  la :a: Z v b '  id ) ( 3 3 )  . = o~,, - 2---E t.o';.,.. 

1 (<. ,{d 4.  Z v 0 , ? , d ) ,  ( 3 4 )  
' / ~ "  = 5 

o.n~ w... = 21 (d.old.,y :t: Zs/,(, 'ld) , (35) 

The equations for the left boundary can be obtained from the lower boundary equations by substituting 
x ~ y and y ---, x. Similarly, the equations for the right boundary are obtained from the left boundary 
equations by substituting x ---+ - x ,  where in this case, o., ---, -v., and cr, y --+ -o:,y. 
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For the corner points, wc use an ad hoc t reatment  introduced by Lie [19] who defined the 'normal to 
the corner point" inwards and bisecting the angle between the adjacent boundary lines. For a rectangular 
mesh this angle is a multiple of w/4 depending on the corner point. For example,  let the y~-direetion 
(system S') make an angle ~r/4 with the y-axis (system S) where the problem is solved. The boundary 
t reatment  is applied to the variables in system S' since the method uses the characteristics normal to the 
boundaries. We proceed as follows: after calculation of the right-hand side of Eq. (1), giving, say, v~, we 
compute v~ by rotating the particle velocities and stresses from S to S' by using [201 

o 

and 

cr~.~. 1 1 - ~r~.~ . (37) 

Then, we apply the boundary t reatment  to vector vi~ and calculate the new v,, by the inverse rotation 
transformations. 

4. Examples 

The lirst example simulates Lamb's  problem in order  to check the accuracy of the Chebyshev operator. 
When the source is very close to the free surface, the high amplitude of the Rayleigh wave represents  
a challenge for the boundary treatment.  The second example illustrates wave propagation through a 
surface step in order  to test the characteristic approach applied to the corner  points. A third example 
computes seismograms produced by a stack of fine layers modeled by refining the grid points at the 
center  of the numerical mesh. Finally. the last example illustrates wave propagation in a multi-domain 
mesh. 

4.1. L a m b  ~ problem 

We consider a Poisson solid with compressional and shear velocities ct, = ~ = 2000 m/s ,  cs = 

q'-ff-/0 = 1155 m/s .  respectively, with a density of p = 2 g/era ~. We solve the problem in the ultrasonic 
range, but since it is elastic, the results can be scaled to any frequency range. The source is a vertical 
impact having a Ricker wavelet t ime-history with central frequency f,~ = 110 kHz. 

The calculations use a numerical mesh with N, -- 121, N, = 8!. with the mapping function equa- 
tion (13) for the x coordinate and the mapping function equation (11 ) for the y coordinate. The dimen- 
sions of the physical space after the transformations are Xm,~ = 233.5 mm and ym,,~ = 146 ram, with 
maximum grid sizes of dxm:,~ = dy,,,~,x = 2 mm at the center of the mesh. The stretching parameters  are 
y = 0.999 for the x-direction, and cr = 4.86,/3 -- 2 for the y-direction. The mesh has free surface bound- 
ary conditions applied to the upper boundary and open radiation conditions to the other  boundaries.  
Since for non-vertical incidence the incoming waves are not completely eliminated, absorbing strips of  
length 18 grid points are used at the sides and lower boundary to eliminate the residual non-physical 
reflections [21]. The vertical force is applied at grid point 24 (x = 37 mm) at a depth of y = 0.186 mm 
(second grid point), which is very close to the surface. This depth is small compared  to the dominant  
wavelength of  the signal which for shear waves is approximately 10 ram. The solution is propagated to 
0.2 ms with a time step of 0.1 ~ts, by using a 4th-order Runge-Kut ta  integration scheme [4]. This time 
step is of the order  of the time step which would be used with the Fourier method.  

Comparisons between numerical and analytical solutions are shown in Fig. 2, where the coordinates 
of the receivers relative to the source are in (a) and (b). (72,0) ram. and in (c) and (d), (72,29) mm. 
As can be seen from the pictures, the matching between solutions is excellent. The non-causal event  
before 0.02 ms occurs near the surface when the source reaches its maximum amplitude. The polarity 
of the noise changes in the x-direction at every grid point. This resembles the behavior  of  the Nyquist 
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1,0" 

0 . 5 -  

o,o- 

-0,5 - 

.1 .o  - 

numet,cal  

. . . . .  analytical 

1 012 014 0~6 018 02 

O5-  

~" o.o ---1 
002 o o 

-05 - ,  

.t04 

0!2 Ct4 0 '6  0~8 02 

r ,mo  (ms) 

. . . . .  analyl,cal 

o o . s -  

:~ o.0 . . . .  ~ 00- 
01 012 01~ 01~ 01S 02  

T,me (ms) 

• o s -os- 

-I.o J .l.o- 

o o~  o14 016  01a 02  

Y,me (ms) 

Fig. 2. Comparison between numerical and analytical solutions for Lamb's problem, where the coordinates of the receivers with 
respect to the source are in (a) and (b), (72,0) mm, and in (c) and (c). (72.29) mm. The matching is virtually perfect. 

component. For display purposes, the noise can be eliminated by summing the solutions of contiguous 
grid points. This effect is probably caused by the so-called Runge phenomenon [22] which reflects in 
strong oscillations of the Chebyshev coefficients near the interval end points [5]. This problem takes 
place in equally spaced grids, so the cause could be too much stretching of the grid points at the surface. 
An elaborate analysis of this phenomenon will be given in a future paper. 

4.2. Step problem 

We consider the same physical properties, source type and number of grid points as the previous 
example. The model is a surface step whose physical mesh is illustrated in Fig. 3, where the upper and 
fight boundaries satisfy traction-free conditions. The mappings functions are given by Eq. (11) for both 

~iiiiiiiiiiiiiiiiiiiiiiii!!!~!~!!!!!!!!!ii!!!!!!!iiiiiiiiiiiiiiiiiiiiiiiiiii~iii~iiiiiiiiiii~iii~i 

~iii~i!!!!!!!!!!!!!!i!iiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiii~i~ 

iiiiiiiiiii-iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  
~iiiiiiiiii~::~!!!!!!!!iiiii!!!!!!!!!!!!!iiiiiiii~L~.%~ 

Fig. 3. Numerical mesh of the physical space for the step problem. The upper and right boundaries, which form the step, satisfy 
free surface conditions. The mesh is constructed with two one-dimensional mapping transformation based on Eq. (11). 
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cartesian coordinates  with o~ = 4.86 and/3  = 2, where  Xm,,~ = 225.5 mm.  As  can be  appreciated in Fig. 3, 
the  mesh  is denser  at the. step in order  to correctly model  the free surface condition.  The  lower and  
left boundar ies  satisfy open radiat ion conditions. The  vertical force is applied at grid point  90 located 
52.5 m m  from the corner  and  at 0.186 m m  depth.  

The  t ime-integrat ion scheme and t ime step are the same as for the preceding example .  Fig. 4 displays 
snapshots  of  the particle velocity vector at t = 0.06 ms  and 1 = 0.09 ms. In Fig. 4(a), the  compress ionai  
wave has  been  diffracted by the corner  while the Rayleigh wave is on the corner  with the  shear  wave 
slightly in advance.  A head  wave connect ing the body waves  can also be observed.  A t  0.09 ms  (Fig. 4(b)), 
the  Rayleigh wave has  been split into t ransmi t ted  and reflected surface waves  t ravel ing vertically and  
horizontally, respectively. The  event  genera ted  by the interaction of the shear  wave with the vertical 
boundary  can be cle~_r!y apprec;.ated. This  pulse travels with apparent  infinite velocity at the  corner  and  
approaches  cs at infinite dis tance from the corner  (see also Fig. 5). In Fig. 5, we show the  response  
of the  m ed ium recorded at 0.186 m m  from the surface. The  tirst 60 receivers correspond to the  upper  
boundary  and the next  40 receivers to the right boundary  of the step. The  s t rong event  is the  Rayle igh  
wave which at 0.06 ms splits into t ransmit ted  and reflected Rayleigh waves. 

~ r  

.,~.!.~ 

] :::~.. :~::: 

(a)  (b )  

Fig. 4. Snapshots of the particle velocity vector for the step problem at ().()6 ms (a) and 11.(19 ms (b). In (a). the Rayleigh wave 
produced by a vertical impact has reached the corner. The rellectcd and transmitted surface waves can be observed in (b). 

V.;.componentY i , $1 ~L . t i  li q ilnl ; ~i~, 0 O0 VV-~O n ~ r n ~ o n e n t  

~ 004 

o 06 

(a)  (b )  

006 

(ms) 

0.08 

Fig. 5. Response of the step recorded at 0.186 mm from the surface, where (a) and (b) represent the 0x and vy components. 
respectively. The lirst 61) receivers correspo..ad to Ihc upper boundary and the next 40 receivers to the right boundary of the step. 
The strong event is the Raylcigh wave which at 0.06 ms splits into transmitted and reflected Rayleigh waves. 
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4.3. Fine layering 

This example illustrates the ability of the method to model a stack of fine layers, one of the most 
common geological structures appearing in sedimentary formations. It is well known that in the long- 
wavelength limit, the fine layering formation can be replaced by an equivalent transversely isotropic 
medium. A series of numerical experiments to illustrate this property in periodically layered media have 
been carried out by Carcione et al. [23], where they show that the replacement is valid for a dominant 
wavelength greater than nearly ten times the spatial period of the stratification. The grid geometry with 
N~ = N, = 81 is shown in Fig. 6, where the fine concentration of points at the center of the mesh has 
been obtained by using the mapping function equation (15) with ~5 = 0 and E = 0.2. In the horizontal 
direction, we apply the same mapping with 8 = 0 and a = 0.4. This shows that it is more effective to use 
mapping transformations to resolve the structure than to simply add more grid points into the physical 
coordinate system. The dimensions of the physical space are x,n~, = 1000 m and y,.:,~ = 500 m, with 
maximum and minimum grid spacing of dx~,~ = 20 m, dyma~ --- 13 m, and of dxmin = dymi, = 0.96 m, 
respectively. 

The model structure and configuration is illustrated in Fig. 7. The structure is a periodic set of 
sandstone-limestone layers (from grid point 35 to grid point 47) of equal thickness embedded in ho- 
mogeneous sandstone. The spatial period of the stratification is approximately 4 m, such that the total 
thickness of the system is 24.5 m. In [231 the values of the wave velocities and elastic constants of the 
equivalent medium can be found. At 40 m above the stack, a vertical force of 20 Hz dominant frequency 
excitates the medium. The response is recorded by a set of geophones located 40 m below the fine 
layering. The dominant wavelength to spatial period ratio for vertical incidence is 45 for the P waves 
and 25 for the S waves, so the long-wavelength approximation is satisfied. 

The solution is propagated to 1.2 s with a time step of 0.25 ms by using a 4th-order Runge-Kutta 
integration scheme. Fig. 8 represents the seismograms for the fine layering system and equivalent trans- 
versely isotropic medium. As the pictures show, the match between solutions is virtually perfect. This 
example also constitutes a test of the performance of the differential operator in regions where sharp 
discontinuities of the material properties take place. 

4.4. Lamb ~ problem by domain decomposition 

This example consider two meshes (subdomains A and B) as displayed in Fig. 9. The vertical interface 
separating the subdomains can be a real material interface or just a boundary separating regions of the 
same medium. As before, the wave equation is decomposed into wave modes describing outgoing and 

. . . . . . . . . . .  

source 

............ i 

° . . . . . . . . . . . .  . . . - , . ~  

rece, , :e,= 

sa~ds~Qn,~ 

N i 
Fig. 6. Numerical mesh of the physical space liar the line layering problem. The mapping function (15l is used for both the 
horizontal and vertical directions. The region at the center of the mesh has verlieal grid spacing of 2 m and represents a periodic 
sequence of sandstone-limestone hlyers. 

Fig. 7. Structure and reet~rding eonliguration of the line layering problem. The sandstone-limestone sequence of 24.5 m total 
thickness is embedded in ~1 homogeneous sandstone. The source is a vertical impact of 40 Hz dominant wavelength, so that the 
long-wavelength approximation is satislied. The stack of layers is equivalent to a homogeneous transversely isotropie medium. 
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Fig. 8. Seismograms of the line layered problem. (a) and b display the uL-compt.ncnt. ~tnd (c) and (d) display the o>.-eomponent. 
As can be observed, there is nl~ difl'crencc between the solutions obtained from the stacg ,ff liL~'crs and the homogeneous anisotropie 
equivalent medium. 

f.s. 

|'S" r L. ~ , T1 i'!l " ' 

_ A - i - -  B n ,  

n.r. 
. 

Fig. 9. ('artesian mcsh composed of twt* ('hchyshev subgrids (A and B). The directions of the characteristics are indicated in 
the Figure. The left and upper b~undarics satisfy strcss-frcc conditions, and the right and lower boundaries satisfy non-reflecting 
conditions. 

incoming wave modes  perpendicular  to the boundary.  The  outgoing waves are de t e rmined  by the solut ion 
inside the subdomain ,  while the incoming waves  are calculated from the condit ions at the  interface, i.e. 
cont inui ty of  d isp lacements  and normal  stresses.  The  boundary  equa t ions  can be found in [2, 12]. 

Corners  points,  like L, for instance,  are tes ted in the step example .  Problems m a y  arise f rom the so- 
called T points,  which combine  interface and  free surface boundary  condit ions (T1), or  interface and  non-  
reflecting boundary  condit ions (T2). These  points  are t reated independent ly  (in each subdomain)  with 
ro ta ted  characteristics. Unl ike  the interface points,  where  the wavefield is unique  for both  subdomains ,  
T points  have  dissimilar values. 

Here ,  we test the  pe r fo rmance  of the boundary  t r ea tment  on T points,  in particular, the  intersect ion 
of the  vertical interface with the free surface (point  T1) (see Fig. 9). This  type of s ingular  points  appears  
in m a n y  problems.  For instance,  consider  a fluid-filled borehole.  If the fluid and  the Ear th  are given 
m e s h  A and B, respectively, the point  f luid-solid-Earth surface is a T point. 
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We consider the medium homogeneous with compressional and shear velocities Cr = 2000 m / s  and 
cs = 1300 m/s ,  respectively, and a density of p = 2 g /cm 3. The source is a vertical force having a 
Ricker wavelet time-history with central frequency f)  = 16 Hz. The force is in subdomain A at 1.87 m 
depth, and 372.8 m from the interface. Two receivers are located in subdomain B at 121 m from the 
interface, one at the surface and the other at 212.8 m depth. The calculations use a numerical mesh with 
N~ = 81 and N~. = 121 for each subdomain. Their dimensions after the stretching are xmax = 1460.3 m 
and Ym~ = 225"2.3 m, with maximum grid sizes of dx .... = dy,~,~ = 20 m at the centers of the meshes. 
The mapping function is given in Eq. (11) and the stretching parameters are o~ = 4.86, ~ = 7.2 and 
/3 = 2. We found from numerical tests that in order to maintain stability, the aspect ratio of the cells 
(maximum to minimum length) close to L and T points must be less than 5. The solution is propagated 
to 0.8 s with a time step of 1 ms. 

Fig. 10 shows two snapshots of the particle velocity vector. Comparison between numerical and analyt- 
ical time histories are represented in Fig. 11. As can be seen from the pictures, the results are satisfactory. 
The information is correctly transmitted from one subdomain to the other. 

(a) 

Fig. I(). Snapshots of Ihe particle velocily veet,~r at (a) 0.2 s and (hi 0.X s. The source is in the left subdomain (A) and the receivers. 
lepresented by d()ts. ~lrc in the right subdomain (B). 

00' o ] (a) iii~ analyI~cal 
o s i 

05~ 
,o : 

0 ,  ~ i! 
l / .  ~t H 

,o 

Fig. I 1. Comparison between numerical and analytical solution at the Iwo receivers located in domain B (indicated by dots in 
Fig. 10). [a) represents the v,-component at the surface receiver, and (b) shows the v~-componen! at the deplh receiver. 



J.M. ('arcionc/Compnt. Methods AIq~L Mech. Engrg. 130 tit)q6) 33-45 45 

5. Conclusions 

We have solved the elastic wave equation with a 2D Chebyshev pseudospectral operator where general 
boundary conditions can be imposed, and the collocation points in the physical domain can be distributed 
in accordance with the structure of the model. This is achieved by mapping transformations which control 
the minimum grid spacing to render the algorithm efficient in terms of computational effort. Instabilities 
of the differential operator due to boundary conditions are solved with a characteristic approach. First, 
Lamb's problem tests the effectiveness of the 2D Chebyshev grid and boundary treatment by comparing 
numerical and analytical solutions. The performance of the corner points is tested by propagating a 
pulse  t h r o u g h  a sur face  s t ep  w h e r e  the  m o d e l i n g  r e p r o d u c e s  cor rec t ly  the  t r a n s m i t t e d  a n d  re f l ec ted  
R a y l e i g h  waves .  T h e  th i rd  e x a m p l e  shows  h o w  the  gr id  can  be  a d a p t e d  to a f ine ly  l a y e r e d  s t ruc tu re ,  a n d  
success fu l ly  tes t s  the  p e r f o r m a n c e  of  the  d i f f e ren t i a l  o p e r a t o r  in the p r e s e n c e  of  s h a r p  d i s c o n t i n u i t i e s  in  

the  m a t e r i a l  p rope r t i e s .  Final ly ,  the  t e c h n i q u e  is u sed  for d o m a i n  d e c o m p o s i t i o n  w h e r e  the  s u b d o m a i n s  
can  be  j o i n e d  by i m p o s i n g  the  a p p r o p r i a t e  b o u n d a r y  c o n d i t i o n s  on  the  i n c o m i n g  w a v e s  a t  the  in te r faces .  

L a m b ' s  p r o b l e m  is success fu l ly  so lved  for the source  in one  s u b d o m a i n  a n d  the  r ece ive r s  in the  o t h e r  

s u b d o m a i n .  
A n a t u r a l  e x t e n s i o n  of  the  m e t h o d  invo lves  the use of  2D c o o r d i n a t e  t r a n s f o r m a t i o n s  such t h a t  the  

g r id  po in t s  can  be  a d a p t e d  to  t o p o g r a p h i c  f ea tu re s  a n d  cu rved  in te r faces .  
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