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Plane-layered models for the analysis of
wave propagation in reservoir
environments'

José M. Carcione?

Abstract

The long-wavelength propagation and attenuation characteristics of three geo-
logical structures that frequently occur in reservoir environments are investigated
using a theoretical model that consists of a stack of fine and viscoelastic plane
layers, with the layers being either solid or fluid. Backus theory properly describes
fine layering and a set of fluid-filled microfractures, under the assumption that
interfaces between different materials are bonded. The effects of saturation on
wave attenuation are modelled by the relative values of the bulk and shear quality
factors.

The anisotropic quality factor in a fine-layered system shows a variety of behav-
iours depending on the saturation and velocities of the single constituents. The
wave is less attenuated along the layering direction when the quality factors are
proportional to velocity, and vice versa when inversely proportional to velocity.
Fractured rocks have very anisotropic wavefronts and quality factors, in particular
for the shear modes which are strongly dependent on the characteristics of the fluid
filling the microfractures.

When the size of the boundary layer is much smaller than the thickness of the
fluid layer, the stack of solid—fluid layers becomes a layered porous media of the
Biot type. This behaviour is caused by the slip-wall condition at the interface
between the solid and the fluid. As in Biot theory, there are two compressional
waves, but here the medium is anisotropic and the slow wave does not propagate
perpendicular to the layers. Moreover, this wave shows pronounced cusps along
the layering direction, like shear waves in a very anisotropic single-phase medium.

Introduction

A stack of plane and parallel layers is a useful model for studying the wave propa-
gation characteristics of basic geological and rock structures. In particular, the
systems investigated in this work are predominant in reservoir environments at
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4 F.M. Carcione

different spatial scales. The theory may also be applied to the analysis of laminated
composite media and certain geological structures that contribute to the formation
of sedimentary basins.

In a previous paper (Carcione 1992), the model was used to study the anisotropic
characteristics of attenuation for waves propagating in a viscoelastic finely layered
medium composed of two constituents. It is well known (Postma 1955) that when
the thicknesses of the component layers are much smaller than the wavelength of
the seismic pulse, a stratified medium can be replaced by an equivalent homoge-
neous transversely isotropic medium. For a viscoelastic system, the complex
stiffness matrix is given by Backus equations through application of the correspon-
dence principle. Carcione (1992) calculated the energy velocities and quality factors
of the three propagating modes as a function of frequency and material propor-
tions. He obtained in this way a model for describing anisotropic attenuation in
fine layering due to intrinsic loss mechanisms.

In this work, three realistic models built with a stack of viscoelastic plane solid
and/or fluid layers are investigated. Wave attenuation is described by a continuous
relaxation model, giving an almost constant quality factor over a broad frequency
band. Firstly, attenuation in fine layering is analysed for cases where the quality
factor Q is proportional to wave velocity, and then when Q is proportional to the
inverse of the wave velocity. Rocks show different attenuation depending on
whether they are dry, saturated or partially saturated. In the first two cases, the
quality factor of compressional waves is higher than the quality factor of shear
waves; the opposite occurs when rocks are partially saturated. These situations are
also investigated and, additionally, the characteristics of systems with more than
two constituents are analysed.

A stack of two-constituent plane layers is used to describe a system of long and
thin fluid-filled microfractures and cracks. This is an appropriate model because
cracks are likely to be preferentially aligned by a variety of non-lithostatic stress
and stress-induced processes. Moreover, such fluid-filled cracks are usually rea-
ligned by subcritical crack growth. The fracture-filling material is modelled by a
non-Newtonian viscoelastic fluid represented by a ‘soft” Kelvin-Voigt constitutive
relation whose rigidity is small compared to typical rock rigidities. This model
gives a complex viscosity appropriate for modelling the behaviour of fluids with
solid inclusions (colloid-type), and fluids in the presence of strong pore surface
effects. The model shows how the wave propagation characteristics of fractured
formations and rocks depend on the scale and frequency content of the probing
pulse. For instance, the results apply to fluid-filled joints and fractured systems of
rotational symmetry distributed over large areas, or to wave propagation on a
smaller scale, when fluids permeate the cleavage planes of metamorphic and sedi-
mentary rocks. In all the cases, the quality factors due to intrinsic loss mechanisms
show anisotropic effects through preferred orientations. A similar model for frac-
tured systems (Schoenberg and Douma 1988) was shown to be effective even for
aspect ratios up to 0.3 and crack densities up to 0.03.
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Plane-layered models for wave propagation analysis 5

The fracture model assumes that the skin depth of the boundary layer is much
larger than the thickness of the fluid layers, or equivalently, that the wavelength of
the viscous wave is much larger than the thickness of the fracture. When the skin
depth is small in comparison with the thickness of the fracture, the model of alter-
nating solid and fluid layers becomes a layered porous medium of the Biot type,
where the solid is the matrix and the relative fluid proportion is the porosity
(Schoenberg 1984). The model applies when the wavelength is much larger than
the thickness of the pore, but much smaller than its length. This situation may
occur for high frequencies in fractured limestones, where the aspect ratio of the
pores is very low. Thus, the results may give an indication of the wave phenomena
taking place at the microstructural level. The dynamic coupling between the solid
and the fluid layers varies according to the propagation angle. For propagation
perpendicular to the layers, only the fast wave propagates, corresponding to in-
phase motion of the system. For angles out of the normal, the slow wave, with the
solid and fluid displacements 180° out of phase, starts to develop and reaches its
maximum decoupling along the layering direction. The anisotropic and attenuation
characteristics of these compressional modes are analysed as a function of the poro-
sity and the dissipation properties of the solid and fluid phases.

Layered media with bonded interfaces

The model representing a stratified medium is made up of homogeneous isotropic
plane layers which are perfectly bonded, i.e. there is no interfacial slip. Let there be
N different materials, each one occupying the same proportion in a sufficiently
large sample of stratified medium.

Let each single isotropic medium be anelastic with complex Lamé parameters
given by

A=A+ 5 WM, — 3u°M, and p=puM,, (1

where M; and M, are dimensionless complex moduli in dilatation and shear,
respectively, and A° and u° are the low-frequency limit Lamé constants. The theory
assumes constant quality factors over the frequency range of interest. Such behav-
iour is modelled by a continuous distribution of relaxation mechanisms based on
the standard linear solid (Ben-Menahem and Singh 1981). The dilatational and
shear dimensionless complex moduli can be expressed as

2 1 +iwt,\ |7
M) =|1+—2In(—22%2)| — 1,2, 2
) [+7er “<1+iam)] v=1 @

where 7, and 7, are time constants, with 1, < 1,, and Q, defines the value of the
quality factor, which remains nearly constant over the selected frequency range.
The low-frequency limit shows elastic behaviour with M, — 1; the high-frequency
limit is also elastic with M, — 1/[1 + 2xn/Q,) In (t,/1,)]. The bulk and shear
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quality factors are given by

Re (M)) Re (M,)
=1 d = ——iL 3
QA =tmary ™ S=imarn) 3)
respectively, and the quality factor corresponding to the compressional wave is
_Re(A+2p)
%= Im (A+2p’ @

As illustrated in Fig. la, for A,;, > L (see Postma 1955; Carcione, Kosloff and
Behle 1991), where 4., is the minimum wavelength, the stratified medium can be
replaced by an effective homogeneous transversely isotropic medium whose
stiffness components ¢;;, I, ¥=1, ..., 6 are frequency-dependent and complex.
The dependence of the ¢;; on 4 and u can be found in Backus (1962) or in Carcione
(1992).

The displacement of a general viscoelastic plane wave is of the form

u="U, exp [i(wt — k - x)], (5

where ¢ is the time variable, x is the position vector, and k is the complex wave-
number vector defined by

k =k —ia, (6)

with k and & being the propagation and attenuation vectors, respectively. When
these vectors are colinear, the wave is called homogeneous and the wavevector is
given by

k = (x — i)k = kK, (7
where
ﬁ=lxéx+lyéy+lzéz ®

defines the propagation direction through the direction cosines Z_, l,and .

Since the stratified medium has azimuthal symmetry, it is enough to consider
propagation in, say, the (x, 2)-plane, for which /, = 0. Then, the complex Christof-
fel equation (e.g. Auld 1990) reads

c1l} +cssl? 0 (e13 + csll,
0 066 lﬁ + C55 lf O u= szu, (9)
(c13 + ess)ll, 0 Cssly + ¢332

where V is the complex velocity. Equation (9) gives a complex dispersion equation
with three solutions, two coupled modes denoted by qP and qSV, representing the
quasi-compressional and quasi-shear waves, and a pure shear (SH) mode, whose
displacement vector is parallel to the layering. Expressions for the complex, phase
and energy velocities, attenuation factor, quality factor and slowness vector, in
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Figure 1. (a) A stratified medium whose constituents are anelastic can be replaced by a
homogeneous medium with anisotropic wave attenuation when the minimum wavelength
Amig i8 much larger than a sufficiently large sample of length L. (b) Backus theory can be
used to describe a system of fluid-filled long and planar microfractures provided that the
size of the fluid boundary layer is greater than the thickness of the fracture. Moreover, if the
fluid and the matrix rock are dissipative, the averaged system possesses an anisotropic
intrinsic Q. (¢) A model for layered porous media is obtained with alternating solid and fluid
layers, the solid representing the matrix and the fluid proportion, the porosity. At the long-
wavelength limit, this model is a Biot anisotropic medium when the thickness of the fluid
layers is large in comparison with the viscous wavelength. In this case, the fluid can be
considered practically ideal, and perfect interfacial slip takes place.
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8 F.M. Carcione

terms of the complex stiffnesses ¢;; and propagation direction K, are given by Car-
cione (1992). Since the equivalent medium is anelastic, the energy velocity (not the
group velocity) is used to define the wavefront (see Carcione 1994).

Viscoelasticity finely layered media

The first example presents a stationary medium composed of limestone and sand-
stone whose elastic properties, including density and wave velocities, are given in
Table 1. Let the time constants in (2) be 1, =0.16 s and 1, = 3 x 10™% s, so that
the quality factors are nearly constant over a broad frequency range including the
exploration seismic band. Figure 2 shows zonal sections of the slownesses, energy
velocities and quality factors of the three wave modes in the equivalent medium, at
a frequency of 25 Hz. The quality factors for the limestone are O, = 80 and Q, =
40, and for the sandstone, O, = 60 and O, = 20, corresponding to fully saturated

@
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Figure 2. Zonal sections of (a) the slowness, (b) energy velocity and (c) quality factor sur-
faces for a fully saturated stratified medium. The medium is composed of limestone and
sandstone with quality factors Q, = 80 and Q, = 40, and Q, = 60 and Q, = 20, respectively.
The symbol (s, s) indicates that both constituents (limestone and sandstone) are fully satu-
rated.
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Figure 2. Continued
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Table 1. Material Properties

A © p cp Cs
Medium (GPa) (GPa) (Kg/m®) (m/s) (m/s)
limestone 30 25 2700 5443 3043
sandstone 8 6 2300 2949 1615
shale 6.28 1.70 2250 2074 869

rocks. The symbol (s, s) in Fig. 2 indicates that both constituents (limestone and
sandstone, respectively) are fully saturated, such that

(s,8) = [(Q_13 Q_Z)limestone5 (Q_la Q_Z)sandstone] = [(80, 40), (60, 20)]

in terms of the quality factors. The polarizations are plotted on the energy velocity
curves; when not plotted, they are normal to the plane of the figure (the polariza-
tion vectors for anisotropic-viscoelastic media are calculated in Appendix A). The
deviation of the viscoelastic polarization from the elastic polarization is shown in
Fig. 3 where Ay is the difference between the polarization angles with respect to the
x-axis.

Figure 4 shows the results of all possible combinations of the quality factors; for
instance, both rocks being partially saturated means that (ps, ps) = [(40, 80),
(20, 60)], and attenuation being inversely proportional to the velocity means that
(s, s)i = [(60, 20), (80, 40)]. An example in which only one of the constituents is
saturated is given by (s, ps)i = [(60, 20), (40, 80)]. In general, attenuation is higher
along the symmetry axis when the quality factors are proportional to the wave

0.4
qgP wave

0.2+

~ 00 l T I l I I T

-0.4-

Figure 3. Deviation of the viscoelastic polarization from the elastic polarization for the qP
wave. The angles are measured with respect to the x-axis.
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Figure 4. All possible quality factors for the limestone—-sandstone system. Both constitu-
ents being fully saturated is represented by (s, s) = [(80, 40), (60, 20)] in terms of the quality
factors; partial saturation is represented by (ps, ps) = [(40, 80), (20, 60)]; attenuation
inversely proportional to the velocity is represented by (s, s)i = [(60, 20), (80, 40)]; and only
one of the constituents being saturated is represented by (s, ps)i = [(60, 20), (40, 80)].

© 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44, 3-26



12 7.M. Carcione

velocity, and vice versa when the quality factors are inversely proportional to the
velocity. The coupled qSV shear mode has similar attenuation at the horizontal and
vertical axes but is very anisotropic at intermediate directions.

The following example considers an equivalent transversely isotropic medium
composed of ten isotropic constituents whose material properties are obtained from
the intermediate linear interpolated values of the limestone and shale rocks given in
Table 1. The bulk quality factor varies from Q; = 80 (limestone) to Q; = 20
(shale), and the shear quality factor from Q, = 60 to Q, = 10, when the system is
fully saturated. Its physical properties are shown in Fig. 5. Compared to the
limestone—-sandstone, this system is more anisotropic (in particular the quality
factors). Figure 6 shows the quality factors for the partially saturated medium (a),
and for homogeneous O, = 50 (b). In this case, the uncoupled shear (SH) mode
has isotropic attenuation, but the SV mode is anisotropic due to the coupling with
the compressional wave.

Slowness (saturated rock)
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Figure 5. Zonal sections of (a) the slowness, (b) energy velocity and (c) quality factor sur-
faces for a fully saturated stratified medium composed of ten constituents whose material
properties are obtained from the shale and limestone rocks given in Table 1. The bulk
quality factor varies from G, = 80 (limestone) to ; = 20 (shale), and the shear quality
factor from 9, = 60 to @, = 10.
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Figure 6. (a) Zonal! sections of the quality factor for a partially saturated rock composed of
ten constituents. Partial saturation implies that the bulk quality factors are smaller than the
shear quality factors. (b) As Fig. 5, but O, = 50 for all the constituents.
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Plane-layered models for wave propagation analysis 15

Viscoelastic fluid-filled fractured systems

Backus theory can be used to describe a system of fluid-filled long and planar
microfractures, provided that the size of the fluid boundary layer is greater than
the thickness of the fracture. Moreover, if the fluid and the matrix rock are dissi-
pative, the averaged system possesses an anisotropic intrinsic Q (Fig. 1b).

The shear complex modulus of a viscoelastic fluid can be modelled by a soft
Kelvin—Voigt rheology. The term ‘soft’ means that the rigidity modulus is much
less than the rigidities of typical rocks. This type of behaviour occurs when the
fluid filling the cracks contains some kind of inclusion or colloidal suspension. The
model can be represented by a spring of constant u, and a dashpot of viscosity 5
parameterizing the Newtonian viscosity of the fluid (i.e. a Kelvin—Voigt model, see
Ben-Menahem and Singh 1981). The behaviour of fluids in fractures of small size
may depart from that of a Newtonian fluid (which is obtained when x — 0) due to
strong surface effects.

The complex modulus of the viscoelastic fluid is given by

W= g+ ion, (10)
and the complex viscosity is defined by (e.g. Ferry 1970)

=g £ (1
iw i
In contrast to ideal fluids, a real fluid with non-zero viscosity must satisfy a no-slip
boundary condition. Near the solid-fluid interface, more precisely in the boundary
layer, viscous waves of shear character propagate with complex wavenumber given
by the frequency divided by the complex modulus (10), i.e.

By=(1—1) /5“%, 12)

where p; is the fluid density. For a Newtonian fluid, #* = #, and the wavelength of
the viscous waves is

A, = =2n [—. (13)

For oil at a pressure of 20 atm, the viscosity is # = 445 cp = 0.445 Kg/s/m, and the
density is p = 890 Kg/m?* (Winkler 1985). At the exploration seismic band, i.e. for
a frequency of approximately 20 Hz, the viscous wavelength A, = 1.77 cm, and for
frequencies in the sonic band, say 2 KHz, the wavelength 4, = 0.17 cm. For brine,
with # = 1 cp, and p; = 1040 Kg/m?, the viscous wavelengths are 0.8 mm and 0.08
mm, respectively, for the exploration and sonic frequency bands.

The model of fluid-filled fractures assumes that the interfaces are bonded by
imposing the condition that the viscous wavelength be greater than the thickness of
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16  ¥.M. Carcione

the fractures. From Backus equations, the averaged medium is transversely iso-
tropic, but actually it is a special class with only three independent stiffnesses since
¢33 ® ¢y and ¢y5 X ¢y .

The following example examines a fractured limestone (see Table 1 for the lime-
stone properties) where the volume ratio of the fractures is assumed to be 1073,
The complex bulk modulus of the fluid is simply A = Af M,, and the shear
modulus is given by (10). For oil and water, the elastic moduli are A° = 1.94 GPa
and A° = 1.96 GPa, respectively, with a shear modulus modelled by one Kelvin—
Voigt element of rigidity u = 10~ > GPa. The values of the quality factors are Q, =
40 and Q, = 20 for the limestone, and Q, = 20 for bulk dissipations of the fluid.

The wave characteristics of the oil-filled fractured system are shown in Fig. 7,
where the wavefronts are highly anisotropic, in particularly the shear modes. The
form of the quality factor curves changes substantially from 20 Hz to 10 KHz,
governed by the characteristics of the fluid. This has a complex viscosity at low
frequencies and behaves as a Newtonian fluid at high frequencies. While the

;a; Slowness (fractured rock)
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Figure 7. Zonal sections of the (a) slowness, (b) energy velocity, (c) and (d) quality factor
surfaces and (e) attenuation for a fractured rock. The solid matrix is limestone and the fluid
is oil whose complex viscosity (or complex rigidity modulus) is modelled by a ‘soft” Kelvin-
Voigt rheology. The values of the quality factors are O, = 40 and Q, = 20 for the limestone,
and Q, = 20 for bulk dissipations of the fluid.

V-

© 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44, 3-26




(b)

Energy Velocity (fractured rock)

L

-

f=20

Hz

~

N'z'

(Ce)z (Km/s)
w

\qSV \/

N\
e

2
1
\ SH
0
0 1 L 2 3 4 5 6
(Ce)x (Km/s)
()
70 Quality Factor (fractured rock)
f = 20 Hz
60 \
50 \ \SH
40
N
30 T _\qP
20 \
10 \A‘\ L qSV
\ \\
0
0 10 20 30 40 50 60 70

© 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44, 3-26

Figure 7. Continued

17



18
(d
70 Quality Factor (fractured rock)
f = 10 KHz
60
50
40
N
g \
30
A
20 N
10 —A
Vaavd \SI—
0
0 10 20 30 40 50 60 70
(Q)x
1(6()) Attenuation Factor (fractured rock)
f = 420 HZ
0.8
SH
0 // SY
N
<
0.4
0.2
0.0 el
0.0 0.2 0.4 0.6 0.8 1.0
(A)x

© 1996 European Association of Geoscientists & Engineers, Geophysical Prospecting, 44, 3-26



Plane-layered models for wave propagation analysis 19

coupled modes are symmetric with respect to the propagation direction at 45°, the
pure SH mode is not, but follows the shape of the slowness curve. For a water-
filled limestone, the quality factor is shown in Fig. 8; its characteristics are non-
Newtonian at 10 KHz since the inertia term dominates the viscosity term in (11).
In this case, the Newtonian behaviour is reached at higher frequencies.

Anisotropic and viscoelastic porous media

A model for layered porous media is obtained with alternating solid and fluid
layers, the solid representing the matrix, and the fluid proportion, the porosity. In
the long-wavelength limit, this model is a Biot anisotropic medium when the thick-
ness of the fluid layers is large in comparison with the viscous wavelength (Fig. 1¢).
In this case, the fluid can be considered practically ideal, and perfect interfacial slip
takes place. As a Biot solid, this system supports two compressional waves, the fast
wave for which the solid and fluid displacements are in phase, and the slow wave
with displacements 180° out of phase (Fig. 9) (For a complete review of Biot theory
see Biot 1956; Bourbie, Coussy and Zinszner 1987). A Biot medium at very low
frequencies does not support the slow wave since the viscosity effects dominate,

Quality Factor (fractured rock - water-filled)

150

f = 10 KHz
125

P
100 H

50 qP

25

R SV
0
0 25 50 75 100 125 150
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Figure 8. Quality factor for a water-filled fractured rock at 10 KHz. The only difference to
Fig. 7 is the value of the fluid viscosity, which is much less for water than for oil.
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Fast P-wave Slow P-wave
In-phase displacements Out of phase displacements

Figure 9. The anisotropic porous medium supports two compressional waves: the fast
wave, for which the solid and fluid displacements are in phase, and the slow wave with
displacements 180° out of phase.

and this mode becomes diffusive. When tangential slip takes place, the inertial
effects are predominant and the Biot slow wave is activated. Here the effects due to
viscoelasticity of the solid and fluid layers can be investigated for typical relative
dimensions of grain (solid) and pore (fluid) sizes, a task that cannot be carried out
within the framework of Biot theory. Shear-wave propagation is not of interest,
since the layered porous medium propagates shear waves only along the direction
of layering, with the velocity of the solid (Brekhovskikh 1980).

The dispersion equation for the elastic layered system was obtained by Schoen-
berg (1984). The viscoelastic system is obtained by substituting complex velocities
for the elastic velocities. The dispersion equation is

o for B (2 2] (% LY
V+{ V[<P>+l’°<<p>+pr? * Vak pe - <p>))\pVE =0, 14

where V), refers to compressional velocity, denoted by V; for the fluid, ¢ is the
porosity, p; is the density of the fluid, and V; = 2(1 — Vi/V})?Vy is the long
wavelength complex velocity of extensional waves in an infinite plate, with /g and
Vp the shear and compressional complex velocities of the solid, respectively. The
bracket operation ¢ - > denotes thickness weighted average.

Equation (14) has two physical solutions, corresponding to the fast and slow
compressional waves. The medium is anisotropic since the density is a transversely
isotropic tensor with effective density {(p> normal to the layering, and effective
density {1/p) ~! parallel to the layering.

The phase velocity is the frequency divided by the real wavenumber. As in the
bonded interface case (Carcione 1992), its magnitude is given by

BNOR
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Similarly, the magnitude of the attenuation vector is given by

a=—wIm (%/) (16)

An energy analysis is beyond the scope of this work. Thus, a precise formula for
the wave surface as given by the energy velocity will not be developed. Similarly, it
is not clear whether the expression for the quality factor obtained from the Backus
model (Carcione 1992) applies to this case. Attenuation and wave surfaces are
described by the absorption coefficient and the group velocity, the latter represent-
ing an approximation of the wavefront surface for anelastic media. The formula for
the group velocity surface is obtained in Appendix B.

The following example considers a limestone matrix filled with water. The
attenuation characteristics of the constituents are the same as for the fractured
limestone with the difference that here the rigidity modulus of the fluid is negligi-
ble, and therefore the viscous skin is much smaller than the size of the pores.
Figure 10 shows the wave characteristics of the porous medium for two different
values of the porosity, (a) ¢ = 0.1, and (b) ¢ = 0.5, at a frequency of 10 Khz. As
can be seen from the phase and group velocity curves, the slow wave does not
propagate in the neighbourhood of the vertical direction since the solid and fluid
displacements are in phase in that region. The waves are highly anisotropic with
faster velocities along the directions of the pores. In particular the slow waves
presents pronounced cusps. Higher porosity implies significant reduction of the
fast wave velocity only in the vertical direction. Unlike the fractured model, the
attenuation curves do not change significantly with frequency in the range where
the quality factors of the constitutents are constant. Here the effects of the fluid
viscosity are not important, since the model does not consider the Biot mechanism.
For a given porosity, the slow wave is more attenuated than the fast wave and, for
increasing porosity, the attenuation along the vertical direction increases relatively
more than in the horizontal direction. The fact that the slow wave does not propa-
gate in the neighbourhood of the vertical direction is also evident in the attenuation
curves, where it is indicated by the infinite value of the attenuation factor.

Conclusions

This work investigates the anisotropic characteristics of wave propagation in
reservoir environments by means of three simplified models based on plane-layered
structures, where particular attention is given to the attenuation properties. Fine
layering shows a variety of behaviours depending on the intrinsic attenuation that
is used to model total and partial saturation of the single constituents. The quality
factor surfaces of the three propagating modes indicate that the SV mode is the
most affected by a transition from total to partial saturation. In general, the dissi-
pation is higher along the symmetry axis direction when the quality factors are
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Figure 10. Zonal sections of the phase velocity, group velocity and attenuation factor in a
layered porous medium for two different porosities, (a) ¢ = 0.1 and (b) ¢ = 0.5. Frequency
is 10 KHz. The medium is limestone filled with water, and the attenuation characteristics of
the constituents are the same as for the fractured limestone of Fig. 7.
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proportional to the wave velocities, and vice versa when inversely proportional to
the velocity. On the other hand, the energy velocity surfaces are not substantially
affected by the intrinsic dissipation. This implies that the attenuation surfaces can
be better indicators of the direction of layering, and its degree of saturation, than
the respective wavefronts.

Similarly, the attenuation in fluid-filled fractured rocks, where the fluid is
explicitly modelled by a thin layer, strongly depends on the frequency range and
the fluid viscosity. When viscosity effects dominate (i.e. at high frequencies), the
shear waves are highly attenuated perpendicular to the fracture strike. When the
inertial term is predominant (i.e. at low frequencies), the qP wave presents, in
general, the highest dissipation along all the propagation directions.

Layered porous media describe the wave behaviour on a local scale assuming
that the pores are of planar shape. In this context, the wavefront and attenuation
are very anisotropic, the anisotropy increasing with increasing porosity. The pro-
pagation of the slow wave is forbidden along the direction perpendicular to the
layering, and its wavefront resembles a cuspidal triangle similar to the cusp of a
qSV wave in a single-phase anisotropic medium. The implementation of these
rheologies into modelling codes should give support to the theory and more insight
into the physical processes involved.
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Appendix A
Polarizations in anisotropic-viscoelastic media

Polarization of the different wave modes in the (x, z)-plane can be calculated from
the Christoffel equation (9). The SH mode is polarized only along the y-direction,
while the coupled modes have components exclusively in the (x, 2)-plane. The first
line of (9) yields

(cy B2 + css 12— pVPu, + (¢y3 + css)l lu, = 0. (A1)

It is clear that the complex vector [1, 0, u,/u]" is also an eigenvector of the Chris-
toffel equation (9). Then, the normalized polarizations vectors of the coupled
modes are

{1+ [Re (BI*}""?’[1,0,Re (B,]', m=1,2, (A2)
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where

B, = _0111)2c+05513“PV;2n’ (A3)
(Cl3 + CSS)lez

and where m =1 and m = 2 correspond to the gP and qSV waves, respectively.
The SH polarization vector is perpendicular to the (x, z)-plane.

The deviation of the viscoelastic polarization from the elastic polarization can be
quantified by computing the difference between the polarization angles with
respect to the x-axis.

Ay(w, 0) = arctan [Re (B (w, 6))] — arctan [B,(0, 8)], (Ad)

where 6 = arccos (/,).

Appendix B
Group velocity for alternating solid and fluid layers

The group velocity is the velocity of the modulation envelope of the wave and, as
in the elastic case, can be expressed by

w Jw ow

c,=¢8 —+é& —+6é,—, B1
£ T ok, ok, Tk, (BD)

where the spatial derivatives are taken with respect to the real wavenumber. Since a
real explicit relationship of the form o = Q% , K, K.) is not available, (B1) is not
appropriate. Alternatively, the group velocity can be obtained by implicit differen-
tiation of the dispersion relation (14). For instance, for the x-component,

0w <6Kx>_1
—=\l=) > (B2)

Ok, 0w

or, since k, = Re (k,),

0 ok N\ |1
£=[Re <%>] . (B3)

Implicit differentiation of the complex dispersion relation Q(k,, kys k., 0)=0
gives

oQ o0Q
— - Ok =0.
<6w ow + oF. x>ky, . (B4)
Thus,
k 0Q/0
%) o Do (BS)
00 )i, k. 0Q/ok,,
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and similar relations hold for the k£, and k£, components. Replacing the partial
derivatives in (B1), the group velocity can be evaluated as

. 0Q/ow\ |~ 1
%= _{e"[Re (aa/ak)]
. 0Q/0w\ |~ 1 . 0Q/ow\ |~ 1
* ey[Re <an/aky>] * eZ[Re (aa/ak)] } (56

For the alternating solid—fluid layered system, the complex dispersion relationship
is obtained from (14) and the expression for the complex wavevector is

k= 19/ (18, +18). (B7)
Thus,
oKL R >
Qlk,, k,, ) = V2 k§<—+—
( R PR
k2 1\ ¢V? 1
—wz[ 4+ k§<<—> ——L’>] + w4<—> =0. (BS®)
P> e/ pVE pV2

The evaluation of the group velocity from (B6) is performed first through explicit
calculation of the partial derivatives, and then by numerical evaluation of the final
formula. The calculation of the partial derivatives with respect to the wavenumber
components is straightforward, while dQ/0w requires more effort because each
complex velocity in (B8) is frequency-dependent. Since only squared velocities
appear in the formula, the last step of the calculation includes the explicit deriv-
atives of the dimensionless moduli (2), which are

oM, (2 i(t, —1,)M?
oo~ \nQ,) (1 +iwt,)(1 + iwt,)’

v=1,2. (B9)
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