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Reflection and refraction of antiplane shear
waves at a plane boundary between

viscoelastic anisotropic media

B y J. M. Carcione

Osservatorio Geofisico Sperimentale,
P.O. Box 2011 Opicina, 34016 Trieste, Italy

We consider two monoclinic viscoelastic media in contact, with the incidence and re-
fraction planes coincident with the respective planes of symmetry. Then, an incident
homogeneous antiplane shear wave generates pure reflected and refracted antiplane
waves, whose slowness and Umov–Poynting vectors lie in the planes of symmetry.
The simplicity of the problem permits a detailed investigation of the phenomena
caused by the combined anisotropic–anelastic properties of the media and waves. A
general approach and the analysis of a numerical example provide a complete picture
of the physics. In general, the reflected and refracted waves are inhomogeneous, i.e.
equiphase planes do not coincide with equiamplitude planes. The reflected wave is
homogeneous only when the incidence medium is transversely isotropic, i.e. its sym-
metry axis is perpendicular to the interface. If the refraction medium is elastic, the
refracted wave is inhomogeneous of the elastic type, i.e. the attenuation vector is
perpendicular to the Umov–Poynting vector (energy direction). The angle between
the attenuation and the real slowness vectors may exceed 90◦, but the angle between
the attenuation and the Umov–Poynting vector is always less than 90◦. If the inci-
dence medium is elastic, the attenuation of the refracted wave is perpendicular to the
interface. As in the anisotropic elastic case, energy flow parallel to the interface is the
criterion for obtaining a critical angle. As in the isotropic viscoelastic case, critical
angles exist only in rare instances. Indeed, they do not exist if one of the media is
elastic. The existence of Brewster angles (related to a zero reflection coefficient) is
also severely restricted by anelasticity.

To balance the energy flux at the boundary, it is necessary to consider the inter-
ference flux between the incident and reflected waves (this flux vanishes in the elastic
case). For the particular example, the refracted flux is always greater than zero and
there is transmission for all the incident angles. This phenomenon is related to the
absence of critical angles. For a transversely isotropic incidence medium, attenua-
tions, quality factors and phase and energy velocities of the incident and reflected
waves coincide for all the incidence angles.

It is important to point out that the relevant physical phenomena are related to
the energy flow direction (Umov–Poynting vector) rather than to the propagation
direction (real slowness vector). For instance, the characteristics of the elastic type
inhomogeneous waves, the existence of critical angles, and the fact that the am-
plitudes of the reflected and refracted waves decay in the direction of energy flow
despite the fact that they grow in the direction of phase propagation.
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920 J. M. Carcione

1. Introduction

The antiplane shear problem is one of relative mathematical simplicity and includes
the essential physics common to more complicated cases, where multiple and cou-
pled deformations occur (Horgan 1995). In this sense, analysis of the reflection and
refraction of antiplane shear waves may serve as a pilot problem for investigating the
influence of anisotropy and/or anelasticity on solution behaviour.

As is well known, propagation in the plane of mirror symmetry of a monoclinic
medium is the most general situation for which antiplane strain motion exists in
all directions (the corresponding waves are also termed type-II S and SH in the
geophysical literature (Borcherdt 1977; Helbig 1994)).

Besides the work by Hayes & Rivlin (1974), who considered a low-loss approxima-
tion, the study of wave propagation in anisotropic viscoelastic media is a relatively
recent topic. Carcione & Cavallini (1993) and Romeo (1994) obtained some general
relations that restrict the propagation of inhomogeneous waves. Concerning antiplane
motion, Carcione (1994) studied the propagation of homogeneous plane waves in the
plane of mirror symmetry of a viscoelastic transversely isotropic medium. Krebes
& Le (1994) and Carcione & Cavallini (1995a) analysed the more general problem
of inhomogeneous viscoelastic waves, that revealed the existence of forbidden prop-
agation directions. Transient analytical solutions were obtained by Le (1993) and
Carcione & Cavallini (1994), who also developed numerical simulation algorithms
(Le et al. 1994; Carcione & Cavallini 1995b). Moreover, a confrontation between the
plane wave theory and the transient solution is given in Carcione et al. (1996).

In the following, we consider two monoclinic media with a common mirror plane
of symmetry in contact along a plane perpendicular to the symmetry plane. The
incidence and refraction plane is taken to be coincident with this plane of symmetry.
Then, an incident antiplane shear wave will generate reflected and refracted shear
waves without conversion to the coupled quasi-compressional and quasi-shear modes.

The physics of the problem may differ depending on the values of the elastic con-
stants and the anisotropic dissipation of the upper and lower media. For this reason,
we follow a general treatment and, simultaneously, consider a numerical example
including the essential physical aspects. In this way, the analysis provides further
insight into the nature of the reflection–refraction problem.

2. Propagation in a homogeneous monoclinic medium

Assume a homogeneous viscoelastic monoclinic medium with the vertical (x1, x3)-
plane as its single mirror symmetry plane. Then, antiplane shear waves with particle
velocity v = v(x1, x3)ê2 propagate, such that

v = iωu0 exp[iω(t− s1x1 − s3x3)], (2.1)

where s1 and s3 are the components of the complex slowness vector, ω is the angular
frequency satisfying ω > 0, t is the time variable, u0 is a complex quantity and
i =
√−1. The real slowness and attenuation vectors are given by

sR = [Re(s1),Re(s3)]>, (2.2)

and
α = −ω[Im(s1), Im(s3)]>, (2.3)

respectively, such that the complex slowness vector is s = sR − i(α/ω) (the symbol
> denotes transpose).
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Reflection and refraction of antiplane shear waves 921

The antiplane assumption implies that the only non-zero components of stress are
σ12 and σ32 that satisfy the constitutive equations (Carcione & Cavallini 1995a)

iωσ12 = p46∂3v + p66∂1v and iωσ32 = p44∂3v + p46∂1v, (2.4)

where pIJ are the complex stiffnesses, and ∂1 and ∂3 denote spatial derivatives. As
shown in §3, the pIJ equal the real high-frequency limit cIJ in the elastic case.

The complex slowness relation has the following simple form (Carcione 1994):

F (s1, s3) ≡ p44s
2
3 + p66s

2
1 + 2p46s1s3 − ρ = 0, (2.5)

where ρ is the material density.
Let us assume that the positive x3-axis points downwards. In order to distinguish

between down and up propagating waves, the slowness relation is solved for s3, given
the horizontal slowness s1. It yields

s3± =
1
p44

[−p46s1 ± PV(ρp44 − p2s2
1)1/2] , (2.6)

where
p2 = p44p66 − p2

46 (2.7)
and PV(z)1/2 denotes the principal value of the square root of the complex number
z. In principle, the + sign corresponds to downward or +x3 propagating waves, while
the − sign to upward or −x3 propagating waves.

We recall that the group velocity equals the energy velocity only when there is
no attenuation. Therefore, analysis of the physics requires explicit calculation of the
energy velocity, since the concept of group velocity looses its physical meaning in
anelastic media (Oughstun & Sherman 1994; Carcione 1994). The mean energy flux
or time average Umov–Poynting vector 〈P 〉 is the real part of the corresponding
complex vector (Auld 1990; Carcione & Cavallini 1993)

P = −1
2(σ12ê1 + σ32ê3)v∗, (2.8)

where the superscipt ∗ denotes complex conjugate. Substituting the plane wave (2.1)
and the constitutive equations (2.4) into equation (2.8) gives

P = 1
2ω

2|u0|2 exp{2ω[Im(s1)x1 + Im(s3)x3]}(Xê1 + Zê3), (2.9)

where
X = p66s1 + p46s3 and Z = p46s1 + p44s3. (2.10)

For time harmonic fields, the time-average potential and dissipated energy densities,
〈εs〉 and 〈εd〉, can be obtained from a complex strain energy density (Carcione &
Cavallini 1993), which for SH waves propagating in a monoclinic medium is given by

Φ =
1
2

Re

{
p44

∣∣∣∣∂3v

iω

∣∣∣∣2 + p66

∣∣∣∣∂1v

iω

∣∣∣∣2 + 2p46 Re
[
∂3v

iω

(
∂1v

iω

)∗]}
. (2.11)

Then,
〈εs〉 = 1

2 Re(Φ), 〈εd〉 = Im(Φ) (2.12)
(Carcione & Cavallini 1995a). Substituting the plane wave (2.1) into (2.11), the
energy densities become

〈εs〉 = 1
4ω

2|u0|2 exp{2ω[Im(s1)x1 + Im(s3)x3]}Re(β) (2.13)
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922 J. M. Carcione

and
〈εd〉 = 1

2ω
2|u0|2 exp{2ω[Im(s1)x1 + Im(s3)x3]}Im(β), (2.14)

where
β = p44|s3|2 + p66|s1|2 + 2p46 Re(s∗1s3). (2.15)

On the other hand, the time-average kinetic energy density is simply

〈εv〉 = 1
4ρ|v2| = 1

4ρω
2|u0|2 exp{2ω[Im(s1)x1 + Im(s3)x3]}. (2.16)

3. Complex stiffnesses of the incidence and refraction media: a
numerical example

A realistic viscoelastic model is the standard linear solid, also called the Zener
model (Zener 1948). It satisfies causality and gives relaxation and creep functions in
agreement with experimental results (e.g. aluminium (Zener 1948) and shale (John-
ston 1982)).

The present theory assigns different Zener elements to p44 and p66 in order to
define the attenuation (or quality factor) along the horizontal and vertical directions
(x1 and x3 axes), respectively. Hence, the stiffnesses are

p44 = c44M1, p66 = c66M2, p46 = c46, (3.1)

where

Mν =
τσν
τεν

(
1 + iωτεν
1 + iωτσν

)
, ν = 1, 2 (3.2)

are the complex moduli (Ben-Menahem & Singh 1981). The relaxation times are
given by

τεν =
τ0

Q0ν
[
√
Q2

0ν + 1 + 1] (3.3)

and

τσν =
τ0

Q0ν
[
√
Q2

0ν + 1− 1], (3.4)

where τ0 is a characteristic relaxation time and Q0ν is a characteristic quality factor.
It can be shown that (see Carcione (1994) and §9) the quality factors for homoge-
neous waves along the axes are

Qν = Q0ν
1 + ω2τ2

0

2ωτ0
. (3.5)

Then, 1/τ0 is the angular frequency where the quality factor has the minimum value
Q0ν . The choice τ0 =

√
τε1τσ1 =

√
τε2τσ2 implies that the maximum dissipation for

both mechanisms occurs at the same frequency. As ω →∞, Mν → 1 and the complex
stiffnesses pIJ approach the unrelaxed elastic constants cIJ .

In the reflection–refraction problem, the upper medium is defined by the properties
cIJ , Q0ν and τ0, and the lower medium is defined by the corresponding primed
quantities c′IJ , Q′0ν and τ ′0. The numerical example assumes that

c44 = 9.68 GPa, Q01 = 10, (3.6)

c66 = 12.5 GPa, Q02 = 20, (3.7)

Proc. R. Soc. Lond. A (1997)
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and

c′44 = 19.6 GPa, Q′01 = 20, (3.8)
c′66 = 25.6 GPa, Q′02 = 30. (3.9)

Moreover,

c46 = −1
2

√
c44c66, c′46 = 1

2

√
c′44c

′
66, (3.10)

and
ρ = 2 g cm−3, ρ′ = 2.5 g cm−3. (3.11)

The characteristic relaxation time is taken as τ0 = τ ′0 = (2πf0)−1, i.e. the maxi-
mum attenuation occurs at a frequency f0. The above parameters give horizontal
and vertical (elastic or unrelaxed) phase velocities of 2500 m s−1 and 2200 m s−1,
respectively, for the upper medium, and 3200 m s−1 and 2800 m s−1, for the lower
medium.

Several subcases treated in the analysis make use of the following limiting situa-
tions:

elastic: Q0ν = Q′0ν =∞(τεν = τεν , τ
′
εν = τ ′εν) or Mν = M ′ν = 1, (3.12)

isotropic: p44 = p66 = µ, p′44 = p′66 = µ′, p46 = p′46 = 0, (3.13)
transversely isotropic: p46 = p′46 = 0. (3.14)

Note, however, that the condition p46 = p′46 = 0 does not necessarily mean that
the media are transversely isotropic.

The analysis of the problem is carried out at the frequency f0 and therefore its
value is immaterial. Moreover, at a fixed frequency, the analysis does not depend on
the viscoelastic model. However, comparisons with the elastic case require a proper
constitutive equation that behaves elastically at the low- and high-frequency limits.

4. Reflection and refraction coefficients

Let us assume that the incident, reflected and refracted waves are identified by
the superscripts I, R and T. The solution to the problem parallels that of the elastic
case (Musgrave 1970; Auld 1990; Schoenberg & Costa 1991) with the difference that
here the stiffnesses and slowness components are complex quantities.

The particle velocity of the incident wave can be written as

vI = iω exp[iω(t− s1x1 − sI
3x3)], (4.1)

where, for simplicity, the superscript I in the horizontal slowness has been omitted
here and in all the subsequent analysis.

Inhomogeneous viscoelastic plane waves have the property that equiphase planes
(normal to the real slowness vector) do not coincide with equiamplitude planes (nor-
mal to the attenuation vector). When the directions of propagation and attenuation
coincide, the wave is called homogeneous. For a homogeneous wave (Carcione 1994),

s1 = sin θI/V (θI), sI
3 = cos θI/V (θI), (4.2)

where θI is the incidence propagation (attenuation) angle (see figure 1), and

V (θ) = [(p44 cos2 θ + p66 sin2 θ + p46 sin 2θ)/ρ]1/2 (4.3)

is the complex velocity.
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924 J. M. Carcione

As in the isotropic–viscoelastic case (Buchen 1971; Schoenberg 1971; Borcherdt
1977; Caviglia & Morro 1992), the boundary conditions (continuity of v and σ32)
give the reflection and transmission coefficients. Snell’s law, i.e. the continuity of the
horizontal complex slowness:

sR
1 = sT

1 = s1, (4.4)
is a necessary condition for the existence of the boundary conditions.

Denoting the reflection and refraction coefficients by R and T , the particle veloc-
ities of the reflected and refracted waves are given by

vR = iωR exp[iω(t− s1x1 − sR
3 x3)] (4.5)

and
vT = iωT exp[iω(t− s1x1 − sT

3 x3)], (4.6)
respectively.

Then, continuity of v and σ32 at x3 = 0 gives

T = 1 +R (4.7)

and
ZI +RZT = TZT, (4.8)

which have the following solution:

R =
ZI − ZT

ZT − ZR , T =
ZI − ZR

ZT − ZR . (4.9)

Since both the incident and reflected waves satisfy the slowness relation (2.5), the
vertical slowness sR

3 can be obtained by subtracting F (s1, s
I
3) from F (s1, s

R
3 ) and

assuming sR
3 6= sI

3. It yields

sR
3 = −

(
sI

3 +
2p46

p44
s1

)
. (4.10)

Then, using equation (2.10) we obtain ZR = −ZI and the reflection and transmission
coefficients (4.9) become

R =
ZI − ZT

ZI + ZT , T =
2ZI

ZI + ZT , (4.11)

in agreement with Schoenberg & Costa (1991).
The slowness relation (2.5) of the refraction medium gives sT

3 in terms of s1:

sT
3 =

1
p′44

[−p′46s1 + PV(ρ′p′44 − p′2s2
1)1/2], (4.12)

with
p′2 = p′44p

′
66 − p′46

2
. (4.13)

Alternatively, from equation (2.10),

sT
3 =

1
p′44

(ZT − p′46s1). (4.14)

Figure 1 represents the incident (I), reflected (R) and transmitted (T) waves at a
boundary between two linear viscoelastic and monoclinic media. The angles θ, δ and

Proc. R. Soc. Lond. A (1997)
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Figure 1. Incident (I), reflected (R) and transmitted (T) waves at a boundary between two linear
viscoelastic and monoclinic media. The angles θ, δ and ψ denote the propagation, attenuation
and Umov–Poynting vector (energy) directions. The reflection angle is negative as shown.

ψ denote the propagation, attenuation and Umov–Poynting vector (energy) direc-
tions. Note that the propagation and energy directions do not necessarily coincide.
Moreover, |θ − δ| may exceed 90◦ in anisotropic viscoelastic media (Krebes & Le
1994; Carcione & Cavallini 1995a), while |θ − δ| is strictly less than 90◦ in isotropic
media (Borcherdt 1977).

5. Propagation, attenuation and energy directions

The fan of incident rays is determined by the condition that the energy propagation
direction is downwards (+x3) and to the right (+x1). The limiting rays for the
numerical example are represented in figures 2a (θI = 24.76◦) and 2b (θI = 58.15◦)
(23.75◦ and 60.39◦, respectively, in the elastic case). The larger curve is the slowness
for homogeneous waves in the incidence medium, and the other curve is the slowness
for homogeneous waves in the refraction medium (Carcione 1994). In general, the
energy direction of each ray is not perpendicular to the corresponding slowness curve.
The orthogonality property is only verified in the elastic case (Carcione 1994).

Given the components of the complex slowness vector, the propagation and atten-
uation angles θ and δ for all the waves are

tan(θ) =
Re(s1)
Re(s3)

(5.1)
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926 J. M. Carcione

Figure 2. Limiting rays for the fan of incident angles. (a) θI = 24.76◦ and (b) θI = 58.15◦

(23.75◦ and 60.39◦, respectively, in the elastic case). They are determined by the condition that
the energy propagation direction is downwards (+x3) and to the right (+x1), i.e. 0 6 ψI 6 90◦.
The larger curve is the slowness for homogeneous waves in the incidence medium and the other
curve is the slowness for homogeneous waves in the refraction medium.

and

tan(δ) =
Im(s1)
Im(s3)

. (5.2)

These equations can be easily verified for the incident wave (4.1), for which δI = θI,
by virtue of equation (4.2).

Moreover, from equations (4.5) and (4.10), the reflection, propagation and atten-
uation angles are

tan(θR) = − Re(s1)
Re(sI

3 + 2p46p
−1
44 s1)

(5.3)

and

tan(δR) = − Im(s1)
Im(sI

3 + 2p46p
−1
44 s1)

, (5.4)

respectively. Unlike the isotropic case (Borcherdt 1977), the reflected wave is, in
general, inhomogeneous.

Theorem 5.1. If the incident wave is homogeneous and not normally incident,
the reflected wave is homogeneous if and only if Im(p46/p44) = 0.

Proof. Assume that the reflected wave is homogeneous. Then, tan θR = tan δR

implies that Im[s∗1(sI
3 + 2p46p

−1
44 s1)] = 0. Assuming θI 6= 0 and using equation (4.2)

gives Im(p46/p44) = 0. The same reasoning shows that this constraint implies a
homogeneous reflected wave.

An immediate corollary of theorem 5.1 is as follows.

Corollary 5.2. If the upper medium has p46 = 0, the reflected wave is homoge-
neous. This follows immediately from theorem 5.1.

In the elastic case, all the quantities in equation (5.3) are real, and the incidence
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and reflection angles are related by

cot(θR) = −
(

cot θI + 2
c46

c44

)
. (5.5)

From equation (4.6), the refraction propagation and attenuation angles are

tan(θT) =
Re(s1)
Re(sT

3 )
(5.6)

and

tan(δT) =
Im(s1)
Im(sT

3 )
, (5.7)

respectively. In general, the refracted wave is inhomogeneous.

Theorem 5.3. If the refraction medium is elastic, the refracted wave is inhomo-
geneous of the elastic type; that is, the attenuation and Umov–Poynting vectors are
perpendicular, i.e. |ψT − δT| = 90◦.

Proof. The dissipated energy density for antiplane inhomogeneous waves in the
plane of symmetry of a monoclinic medium was calculated by Krebes & Le (1994)
and Carcione & Cavallini (1995a). For the refracted wave it is

〈εTd 〉 = 1
2 |T |2 exp{2ω[Im(s1)x1 + Im(sT

3 )x3]}Im(βT), (5.8)

where
βT = p′44|sT

3 |2 + p′66|s1|2 + 2p′46 Re(s∗1s
T
3 ). (5.9)

Since the medium is elastic (p′IJ → c′IJ), βT is real and 〈εTd 〉 = 0. On the other hand,
Carcione & Cavallini (1993) showed that an inhomogeneous wave propagating in a
general three-dimensional anisotropic viscoelastic medium satisfies

〈εTd 〉 =
2
ω
αT> · 〈PT〉, (5.10)

where the dot indicates the ordinary matrix product. Since the energy loss is zero, it
is clear from equation (5.10) that αT is perpendicular to the average Umov–Poynting
vector 〈PT〉.

The existence of an inhomogeneous elastic plane wave propagating away from the
interface is not intuitively obvious, since it is not the usual interface wave with at-
tenuation vector perpendicular to the boundary. Elastic inhomogeneous body waves
appear, for instance, in the expansion of a spherical wave (Brekhovskikh 1960).

Corollary 5.4. Theorem 5.3 implies that, in general, the attenuation direction
of the elastic refracted wave is not perpendicular to the propagation direction. That
is, αT> · sT

R 6= 0, or
Re(s1)Im(s1) + Re(sT

3 )Im(sT
3 ) 6= 0. (5.11)

In fact, the orthogonality property only happens in the isotropic case (Romeo 1994).
Assume for simplicity transverse isotropy. Perpendicularity implies that Im(s2

1 +
sT

3
2) = 0, and using the slowness relation (2.5) we obtain

Im(s2
1)(c′66 − c′44) = 0, (5.12)

which gives c′66 = c′44 (i.e. isotropy).
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Proposition 5.5. If the incidence medium is elastic, the attenuation of the re-
fracted wave is perpendicular to the interface.

This result follows immediately from equation (5.7), since s1 real (see equa-
tion (4.2)) implies δT = 0.

The expressions of the time average reflected and refracted Umov–Poynting vectors
are obtained from equation (2.9), with u0 = R and u0 = T , respectively. Then, the
propagation angles of the incident, reflected and refracted energy vectors are obtained
from

tanψI =
Re(XI)
Re(ZI)

, (5.13)

tanψR =
Re(XR)
Re(ZR)

(5.14)

and

tanψT =
Re(XT)
Re(ZT)

, (5.15)

respectively. Since from equations (2.10) and (4.10) ZR = −ZI and XR = XI −
2p46p

−1
44 Z

I, then

tanψR =
2 Re(p46p

−1
44 Z

I)
Re(ZI)

− tanψI. (5.16)

In the elastic case,
tanψR = 2c46c

−1
44 − tanψI. (5.17)

In the evaluation of each angle, particular attention should be given to the choice of
the branch of the arctangent.

Figure 3 represents the propagation, attenuation and energy angles for the fan of
incident rays. Note that the energy angle of the incident wave satisfies 0◦ 6 ψI 6 90◦
and that the inhomogeneity angles of the reflected and refracted waves (|θR−δR| and
|θT−δT|, respectively) never exceed 90◦. However, consider a refraction medium with
stronger dissipation; for instance, Q′01 = 2 and Q′02 = 3. In this case, |θT− δT| > 90o
for θI > 50.46◦, meaning that the amplitude of the refracted wave grows in the
direction of phase propagation. A physical interpretation of this phenomenon was
given by Krebes & Le (1994) who showed that the amplitude of an inhomogeneous
wave decays in the direction of energy propagation, i.e. in our case, |ψT − δT| is
always less than 90◦. Indeed, since the energy loss is always positive (Krebes & Le
1994; Carcione & Cavallini 1995a), equation (5.10) implies that the magnitude of
the angle between αT and 〈PT〉 is always strictly less than 90◦.

Proposition 5.6. There is an incidence angle θI
0 such that the incident and re-

flected propagation directions coincide, i.e. θI
0 − θR = 180◦. Moreover, the corre-

sponding incident Umov–Poynting vector is parallel to the boundary.
The angle can be found by equating (5.1) with (5.3) and using equation (2.10). It

yields
Re(ZI) = 0, (5.18)

whose solution is θI
0 = 58.15◦, which corresponds to figure 2b. In the elastic case, we

obtain
θI

0 = − arctan(c44/c46), (5.19)
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Figure 3. Propagation, attenuation and energy angles for the incident, reflected and refracted
waves versus the incidence angle θI.

whose solution is θI
0 = 60.39◦. The angle is 90◦ in the isotropic case.

Proposition 5.7. There is an incidence angle θI
1 such that the reflected and

refracted propagation directions coincide, i.e. θT − θR = 180◦.
The angle is obtained from equations (5.3) and (5.6) and the solution is θI

1 =
33.40◦, with θR = −74.46◦. There is an explicit expression in the elastic case, that
can be obtained from equations (4.2), (4.3), (4.12), (5.3) and (5.6). It gives

tan(θI
1) = (−b−

√
b2 − 4ac)/(2a), (5.20)

where
a = ρ′c66 − ρc′66 + 4ρc46(c′46c44 − c46c

′
44)/c2

44, (5.21)

b = 2(ρ′c46 + ρc′46 − 2ρc46c
′
44/c44) (5.22)

and
c = ρ′c44 − ρc′44. (5.23)

The solution is θI
1 = 34.96◦ and θR = −73.63◦. In the isotropic case, a = c, b = 0

and there is no solution.

This situation is shown in figure 4, where the Poynting and attenuation vectors
of the reflected (refracted) wave point upward (downward) and downward (upward),
respectively. Thus, there is no contradiction since the energy of the refracted wave
is actually pointing to the lower medium.

Proposition 5.8. There is an incidence angle θI
2 such that the propagation di-

rection of the incident wave coincides with the corresponding Umov–Poynting vector
direction, i.e. θI = ψI = θI

2. This angle is related to the symmetry axis of the inci-
dence medium, which is a pure mode direction where the waves behave as in isotropic
media.
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Figure 4. At the incidence angle θI
1 = 33.40◦ the reflected and refracted propagation directions

coincide. However, note that the Poynting vector of the refracted wave (empty arrow) points
downward.

From equations (5.1) and (5.13), this is verified when

Re(s1)
Re(sI

3)
=

Re(XI)
Re(ZI)

. (5.24)

Using equations (2.10) and (4.2) and after some algebra,

tan(θI
2) = {Re(p66 − p44)− [(Re2(p66 − p44) + 4 Re2(p46)]1/2}/[2 Re(p46)]. (5.25)

The solution is θI
2 = 36.99◦. In the isotropic case, ψI = θI for all incident rays.

Proposition 5.9. There is an incidence angle θI
3 such that the propagation direc-

tion of the reflected wave coincides with the corresponding Umov–Poynting vector
direction, i.e. θR = ψR. From equations (5.3) and (5.14), this is verified when

Re(s1)
Re(sR

3 )
=

Re(XR)
Re(ZR)

. (5.26)

The solutions are θI
3 = 26.74◦ and θR = −53.30◦. In the elastic case,

tan(θI
3) = (−b−

√
b2 − 4ac)/(2a), (5.27)

where

a = c46

(
2
d

c2
44
− 1
)
, b =

c44

c46
a− c66, c = −c46, (5.28)

with
d = c44c66 − 2c2

46. (5.29)
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The corresponding reflection angle is obtained from equations (5.3) and (5.14):

tan(θR
3 ) = {c66 − c44 + [(c66 − c44)2 + 4c2

46]1/2}/(2c46). (5.30)

The solutions are θI
3 = 27.61◦ and θR

3 = −52.19◦. In the elastic case, the reflection
angle corresponds to the direction along the slowness ellipse. In the isotropic case
ψR = θR for all incident rays.

Proposition 5.10. An incident wave whose energy flux vector is parallel to the
interface [Re(ZI) = 0] generates a reflected wave whose energy flux vector is parallel
to the interface [Re(ZR) = 0]. Moreover, in the elastic case and beyond the critical
angle, the refracted energy flux vector is parallel to the interface [Re(ZT) = 0].

Assuming Re(ZI) = 0, and combining equations (2.10) and (4.10) gives Re(ZR) =
0. On the other hand, from equations (4.12) and (4.14),

ZT = PV(ρ′p′44 − p′2s2
1)1/2. (5.31)

In the elastic limit of the example, a grazing incident wave generates a supercritical
refracted wave. Beyond the critical angle, ZT is purely imaginary (see §6), conse-
quently Re(ZT) = 0.

6. Brewster and critical angles

David Brewster in 1815 noted the existence of an angle (θB) such that: if light is
incident under this angle, the electric vector of the reflected light has no component
in the plane of incidence (Born & Wolf 1964). When this happens, θB + θT = 90◦
and the reflection coefficient of the wave with electric vector in the plane of incidence
vanishes. Here, we define the Brewster angle as the incidence angle for which R = 0
(note that in elastodynamics θB + θT 6= 90◦ in general).

From equation (4.9), this occurs when ZI = ZT, or from (2.10), when

p46s1 + p44s
I
3 = p′46s1 + p′44s

T
3 . (6.1)

Using (4.2), (4.3) and (4.12), equation (6.1) yields the following solution

cot(θB) = (−b± PV
√
b2 − 4ac)/(2a), (6.2)

where
a = p44(ρp44 − ρ′p′44)/ρ, b = 2p46a/p44, (6.3)

and
c = p2

46 − p′46
2 − p′44(ρ′p66 − ρp′66)/ρ. (6.4)

In general, cot(θB) is complex and there is no Brewster angle. In the elastic limit
of the example the Brewster angle is θB = 32.34◦ (see figure 5). In the isotropic
viscoelastic case, the solution is

cot(θB) = ±PV
(
ρ′ − ρµ′/µ
ρµ/µ′ − ρ′

)1/2

, (6.5)

which is, in general, complex for viscoelastic media. Actually, the Brewster angle
exists only in rare instances. For example, cot(θB) is real for Im(µ/µ′) = 0. Since
the quality factor for homogeneous waves is Q = Re(µ)/Im(µ) (Krebes 1983), the
Brewster angle exists when Q = Q′, where Q′ = Re(µ′)/Im(µ′).
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In anisotropic media, two singular angles can be defined depending on the orien-
tation of the propagation and Umov–Poynting vectors with respect to the interface.
The pseudocritical angle θP is defined as the angle of incidence for which the re-
fracted real slowness vector is parallel to the interface. In Auld (1990), the critical
angle phenomenon is related to the condition sT

3 = 0, but this is only valid when the
lower medium has p′46 = 0 (e.g. transversely isotropic). The correct interpretation
was given by Henneke II (1971), who defined the critical angle θC as the angle(s) of
incidence beyond which the refracted Umov–Poynting vector is parallel to the inter-
face (see also Rokhlin et al. (1986)). We keep the same interpretation for viscoelastic
media. Actually, the pseudocritical angle does not play any important physical role
in the anisotropic case. It can be shown that if p46 = 0, θC = θP.

The condition Re(ZT)=0 in equation (5.15) yields the critical angle θC. Using
equation (2.10) this gives

Re[p′46s1 + p′44s
T
3 ] = 0, (6.6)

or, from (4.12) and (4.14),

Re[PV(ρ′p′44 − p′2s2
1)1/2] = 0. (6.7)

Since for a complex number z it is [Re(
√
z)]2 = 1

2 [|z| + Re(z)], equation (6.7) is
equivalent to

Im(ρ′p′44 − p′2s2
1) = 0, ρ′p′44 − p′2s2

1 6 0. (6.8)

For the particular case when ρ′p′44 − p′2s2
1 = 0, the following explicit solution is

obtained

cot(θC) =
1
p44

[
− p46 + PV

(
ρp44

ρ′p′44
p′2 − p2

)1/2 ]
. (6.9)

There is a solution if the right-hand side of equation (6.9) is real, which occurs only
in very particular situations. However, the equation is general for the elastic case.

A critical angle exists in the isotropic case if

cot2(θC) =
ρ

ρ′
µ′

µ
− 1 (6.10)

is a real quantity. This is verified for µ′/µ real or Q = Q′. Then, µ′/µ = Re(µ′)/Re(µ)
and

sin(θP) =
[
ρ′Re(µ)
ρRe(µ′)

]1/2

, (6.11)

in agreement with Borcherdt (1977).
Figure 5 shows the absolute values of the reflection and transmission coefficients

versus the incidence angle for the elastic (dotted line) and viscoelastic cases, re-
spectively, with θP = 31.38◦, θB = 32.34◦ and θC = 36.44◦. The directions of real
slowness and Umov–Poynting vectors, corresponding to the critical angle θC, can
be appreciated in figure 6 (elastic case). At the critical angle and beyond, the re-
fracted Umov–Poynting vector is parallel to the interface and the wave becomes
evanescent. In fact, beyond the critical angle, the horizontal slowness s1 is greater
than (ρ′c′44)1/2/c′, where c′ = c′44c

′
66 − c′46 (Schoenberg & Costa 1991). Therefore,

the quantity ρ′c′44− c′2s2
1 becomes negative, Re(ZT) = 0 and the vertical component

of the refracted slowness vector sT
3 becomes complex (see equation (4.12)). A geo-

metrical interpretation is that, in the elastic case, critical angles are associated with

Proc. R. Soc. Lond. A (1997)

 on January 13, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Reflection and refraction of antiplane shear waves 933

Figure 5. Absolute values of the reflection and transmission coefficients versus the incidence angle
for the elastic (dotted line) and viscoelastic (continuous line) cases (θP = 31.38◦, θB = 32.34◦

and θC = 36.44◦).

tangent planes to the slowness surface that are normal to the interface (see figure 6).
Snell’s law requires that the end points of all the slowness vectors lie in a common
normal line to the interface. We get the critical angle when this line is tangent to the
slowness curve of the refraction medium. Beyond the critical angle there is no inter-
section between that line and the slowness curve, and the wave becomes evanescent
(Henneke II 1971; Rokhlin et al. 1986; Helbig 1994).

According to proposition 5.10, the Umov–Poynting vector is parallel to the
boundary beyond the critical angle. Moreover, since ZT is purely imaginary, equa-
tions (4.12) and (5.31) imply that Re(sT

3 ) = −c′46s1/c
′
44. Finally, using equation (5.6)

we obtain the refracted propagation angle

θT = − arctan(c′44/c
′
46). (6.12)

This angle takes the value θT = 119.75◦ (ψT = 90◦) and remains constant for θI > θC.
This phenomenon does not occur in the anelastic case.

As can be seen in figure 5, there is no critical angle in the viscoelastic case and
the reflection coefficient is always greater than zero (no Brewster angle). As in the
isotropic case (Borcherdt 1977), critical angles exist under very particular conditions.

Theorem 6.1. If one of the media is elastic and the other is anelastic, then there
are no critical angles.

Proof. Suppose there exists a critical angle; that is, the refracted Umov–Poynting
vector is parallel to the interface. Assume first that the incidence medium is elastic.
Proposition 5.5 implies that the attenuation of the refracted wave is normal to the
interface. However, since the refraction medium is anelastic, such an inhomogeneous
(elastic) wave cannot propagate.

Conversely, assume non-normal incidence and that the refraction medium is elas-
tic. Since the incidence medium is anelastic, Snell’s law requires a transmitted inho-
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Figure 6. Directions of the real slowness and Umov–Poynting vectors, corresponding to the
critical angle θC = 36.44◦ for the elastic case. At the critical angle and beyond, the refracted
Umov–Poynting vector is parallel to the interface. Moreover, the refracted wave becomes evanes-
cent.

mogeneous wave of the viscoelastic type (α> · 〈P 〉 6= 0) in the refraction medium.
However, this wave cannot propagate in an elastic medium (see equation (5.10)).

A special case: Let us consider that both media are transversely isotropic and that
M2 = M ′1 = M ′2 = M1. This case is very similar to the one studied by Krebes (1983)
in isotropic media. Equation (6.8) gives the solution

cot(θC) =
ρc′66

ρ′c44
− c66

c44
(6.13)

and s1 =
√
ρ′/p′66, which implies sT

3 = 0. The critical angle for this case is θC =
47.76◦. It can be shown from equations (4.2), (4.9), (4.10), (4.7) and (4.12) that the
reflection and transmission coefficients are identical to those for perfect elasticity.
However, beyond the critical angle, there is a normal interference flux (see §9 below)
towards the boundary, complemented by a small energy flow away from the boundary
in the transmission medium. This means that θC is a discrete critical angle, i.e. the
Umov–Poynting vector of the refracted wave is parallel to the boundary only for the
incident angle θC (in the elastic case this happens for θI > θC).

Since sT
3 = 0 at the critical angle, this occurs when the normal to the interface of

abscissa Re(s1) is tangent to the slowness curve of the refracted wave and, simultane-
ously, the normal to the interface with abscissa Im(s1) is tangent to the attenuation
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curve of the same wave. The analysis of this property for the general case will be
given in a future paper.

7. Phase velocities and attenuations

The magnitude of the phase velocities can be obtained as the reciprocal of the
slownesses. From equations (2.2) and (4.2), the phase velocity of the incident wave
is simply

vI
p = {[Re(s1)]2 + [Re(sI

3)]2}−1/2 =
[
Re(V −1)

]−1
. (7.1)

The phase velocity of the reflected wave is obtained from equation (4.5):

vR
p = {[Re(s1)]2 + [Re(sR

3 )]2}−1/2, (7.2)

or, using equations (2.10), (4.2) and (4.10),

vR
p =

{
(vI

p)−2 + 4 sin(θI) Re
(
p46p

−1
44 V

−1)Re(p−1
44 Z

I)
}−1/2

. (7.3)

In the transversely isotropic case vR
p equals vI

p. In the elastic case, equation (7.3)
reduces to

vR
p = vI

p{1 + 4 sin(θI)c46c
−1
44 [c46c

−1
44 sin(θI) + cos(θI)]}−1/2. (7.4)

Moreover, when the incident Umov–Poynting vector is parallel to the interface, ZI =
0, sI

3 = sR
3 and vR

p = vI
p.

Similarly, the phase velocity of the refracted wave is obtained from equation (4.6):

vT
p = {[Re(s1)]2 + [Re(sT

3 )]2}−1/2. (7.5)

The phase velocities of the incident, reflected and refracted waves, versus the
incidence angle, are represented in figure 7, where the dotted line corresponds to the
elastic case. As can be seen, the elastic velocity is always higher than the viscoelastic
velocity, since the elastic case is taken at the high-frequency limit.

When the incident Umov–Poynting vector is parallel to the interface, the phase
velocity vT

p is approximately equal to vI
p, since, for our particular example, c66/c44 ≈

c′66/c
′
44 implies that Re(sT

3 ) ≈ sI
3.

By virtue of equations (2.3), (4.2) and (4.5), the magnitudes of the incident and
reflected attenuation vectors are given by

αI = ω{[Im(s1)]2 + [Im(sI
3)]2}1/2 = −ωIm(V −1) (7.6)

and
αR = ω{[Im(s1)]2 + [Im(sR

3 )]2}1/2 (7.7)
or, using equations (2.10), (4.2) and (4.10),

αR =
[
(αI)2 + 4ω2 sin(θ)Im

(
p46p

−1
44 V

−1) Im(p−1
44 Z

I)
]1/2

. (7.8)

In the transversely isotropic case, αR = αI. Finally, the magnitude of the refracted
attenuation vector is obtained from equation (4.6):

αT = ω{[Im(s1)]2 + [Im(sT
3 )]2}1/2. (7.9)

The attenuations are represented in figure 8. The high attenuation value of the
refracted wave can be explained as follows. Figure 3 indicates that, at approximately
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Figure 7. Phase velocities of the incident, reflected and refracted waves versus the incidence
angle. The elastic case is represented by a dotted line.

Figure 8. Attenuations of the incident, reflected and refracted waves versus the incidence angle.

the elastic critical angle and beyond, the energy angle of the refracted wave ψT is
close to 1

2π and that the attenuation vector is almost perpendicular to the interface.
In practice, this implies that the refracted wave behaves as an evanescent wave of
the elastic type. This effect tends to disappear when the the intrinsic quality factors
of the lower and/or upper media are lower than the values given in §3.

8. Energy flux balance

It is well known that to balance energy flux at an interface between two isotropic
single-phase media, it is necessary to consider the interaction energy fluxes when the
media are viscoelastic (Borcherdt 1977; Krebes 1983). In the incidence medium, for
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Figure 9. Normalized fluxes (energy coefficients) versus the incidence angle. The fluxes are
normalized with respect to the incident flux. The elastic case is represented by a dotted line.

instance, they arise from the interaction of the stress and velocity fields of the incident
and reflected waves. A similar phenomenon takes place at an interface separating two
porous media when the fluid viscosity is different from zero. For instance, Dutta &
Ode (1983) call them interference fluxes and show that they vanish for zero viscosity.

In a welded interface, the normal component of the average Umov–Poynting ê3·〈P 〉
is continuous across the interface. This is a consequence of the boundary conditions
that impose continuity of normal stress σ32 and particle velocity (Borcherdt 1977).
Then, the balance of power flow at the interface can be expressed as

− 1
2 Re[(σI

32 + σR
32)(vI + vR)∗] = − 1

2 Re(σT
32v

T∗). (8.1)

Equation (8.1) is of the form

〈P I
3〉+ 〈PR

3 〉+ 〈P IR
3 〉 = 〈PT

3 〉, (8.2)

where
〈P I

3〉 = −1
2 Re(σI

32v
I∗) = 1

2ω
2 Re(ZI) exp[2ωIm(s1)x1] (8.3)

is the incident flux,

〈PR
3 〉 = −1

2 Re(σR
32v

R∗) = 1
2ω

2|R|2 Re(ZR) exp[2ωIm(s1)x1] (8.4)

is the reflected flux,

〈P IR
3 〉 = −1

2 Re(σI
32v

R∗ + σR
32v

I∗) = ω2Im(R)Im(ZI) exp[2ωIm(s1)x1] (8.5)

is the interference between the incident and reflected normal fluxes, and

〈PT
3 〉 = −1

2 Re(σT
32v

T∗) = 1
2ω

2|T |2 Re(ZT) exp[2ωIm(s1)x1] (8.6)

is the refracted flux. In the elastic case, ZI is real and the interference flux vanishes.
The normalized normal fluxes (energy coefficients) versus the incidence angle are
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shown in figures 9, with the dotted line representing the elastic case. Beyond the
critical angle, the normal component of the refracted Umov–Poynting vector vanishes
and there is no transmission to the lower medium. The energy travels along the
interface and, as stated before, the plane wave is evanescent. In the viscoelastic case,
these effects disappear and the reflected and refracted fluxes have to balance with a
non-zero interference flux. Since the refracted flux is always greater than zero, there
is transmission for all the incident angles.

9. Energy velocities and quality factors

The energy velocity ve is the ratio of the average power flow density 〈P 〉 = Re(P )
to the mean energy density 〈εv+εs〉. For an incident homogeneous wave, substitution
of (4.2) into (2.15) and use of (4.3) gives βI = ρV 2/|V |2. Then, equations (2.13)
and (2.16) imply

〈εv + εs〉 = 1
2ρω

2 (vI
p

)−1
exp{2ω[Im(s1)x1 + Im(sI

3)x3]} Re(V ), (9.1)

where vp is the phase velocity. Finally, combining (2.9) and (9.1) gives

vI
e =

vI
p

ρRe(V )
Re(XIê1 + ZIê3). (9.2)

The energy velocity of the reflected wave is obtained from equations (2.9), (2.13)
and (2.16):

vR
e =

2 Re(XRê1 + ZRê3)
ρ+ Re(βR)

, (9.3)

where βR = β(sR
3 ). If the upper medium has p46 = 0 (e.g. transverse isotropy),

ZR = −ZI, XR = XI, βR = ρV 2/|V |2, and after some algebra, it can be shown that
vR

e = vI
e.

Similarly, the energy velocity of the refracted wave is

vT
e =

2 Re(XTê1 + ZTê3)
ρ′ + Re(βT)

, (9.4)

where βT = β(sT
3 ).

An alternative expression for the energy velocity is obtained from the fact that,
as in the elastic case, the phase velocity is the projection of the energy velocity onto
the propagation direction. This relation was demonstrated by Carcione & Cavallini
(1993) for inhomogeneous waves propagating in a general anisotropic viscoelastic
medium. For antiplane plane shear waves we have that

ve = vp/ cos(ψ − θ). (9.5)

In terms of the tangents defined in §5,

ve = vp
{[1 + tan2(ψ)][1 + tan2(θ)]}1/2

[1 + tan(ψ) tan(θ)]
. (9.6)

The energy velocities of the incident, reflected and refracted waves, versus the
incidence angle, are represented in figures 10, with the dotted line corresponding to
the elastic case. Comparison of figures 7 and 10 indicates that the energy velocity in
anisotropic viscoelastic media is greater or equal than the phase velocity (as predicted
by equation (9.5)).
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Figure 10. Energy velocities of the incident, reflected and refracted waves versus the incidence
angle. The elastic case is represented by a dotted line.

The quality factor is the ratio of twice the average strain energy density (2.13) to
the dissipated energy density (2.16). For the incident homogeneous wave it is simply

QI =
Re(V 2)
Im(V 2)

. (9.7)

while for the reflected and refracted waves,

QR =
Re(βR)
Im(βR)

(9.8)

and

QT =
Re(βT)
Im(βT)

, (9.9)

respectively. When p46 = 0, βR = ρV 2/|V |2, and QR = QI.
Let us consider the incident homogeneous wave. From equation (4.3), ρV 2 = p44

along the x3-axis. Substitution of (3.1) into (9.7) and use of (3.2) gives equation (3.5).
Then, the quality factor along the vertical direction is Q01 at the reference frequency
f0. Similarly, it can be shown that Q02 is the quality factor along the horizontal
direction.

The quality factors are represented in figure 11. Like the attenuations (figure 8), the
quality factors of the reflected and transmitted waves show a substantial anisotropic
behaviour.

In a recent paper, Carcione & Cavallini (1995c) have demonstrated that the equa-
tions describing propagation of the TM (transverse magnetic) mode in a conduct-
ing anisotropic medium are completely analogous, from the mathematical point of
view, to the propagation of viscoelastic antiplane shear waves in the plane of sym-
metry of a monoclinic medium. The equivalence identifies the magnetic field with
the particle velocity, the electric field with the stress components, and the compli-
ance components p−1

IJ with the complex dielectric components. Therefore, the present
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Figure 11. Quality factors of the incident, reflected and refracted waves versus the incidence
angle.

reflection–refraction analysis can be applied to the electromagnetic case with minor
modifications.

As in the homogeneous case (Carcione et al. 1996), confrontation of the present
theory with numerical simulations may confirm some of the results and provide
further insights into the physics of the problem. Additional work should consider
an incident inhomogeneous plane wave and an analysis of the reflection–refraction
problem including quasi-compressional and quasi-shear propagation modes.

10. Conclusions

Reflection and refraction in anisotropic–viscoelastic media present substantial dif-
ferences compared to isotropic–elastic media. First, the multiple configurations, aris-
ing from different orientations of the principal axes with respect to the interface
plane, imply different physical situations. The numerical example considered here
intends to provide a comprehensive description of the different phenomena. Second,
Snell’s law in viscoelastic media considers also the attenuation vector, that plays the
same role as the propagation vector. The presence of anisotropy implies that the
relevant phenomena, as critical refraction, are related to the energy direction rather
than the propagation direction. On the other hand, attenuation severely restricts the
existence of critical and Brewster angles, and requires the existence of an interference
flux between the incident and refracted waves, to balance energy flow.

This study considers a fixed frequency and an incident homogeneous wave. There-
fore, additional research is necessary to study the effects of frequency and inhomo-
geneity of the incident wave on the reflection and refraction coefficients. Moreover,
confrontation of the theory with numerical simulations may provide further insight
into the physics of the problem.

The present reflection–refraction analysis can be applied to the TM electromag-
netic case with minor modifications.

I thank Michael Schoenberg for a very detailed review of the paper.
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