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SUMMARY

This work presents a numerical algorithm for solving crack scattering in a transversely isotropic medium
whose symmetry axis is perpendicular to the crack surface. The crack is modelled as boundary discontinui-
ties in the displacement u and the particle velocity v, of the stresses [iu#fv], where the brackets denote
discontinuities across the interface. The specific stiffness i introduces frequency-dependence and phase
changes in the interface response and the specific viscosity f is related to the energy loss.

The numerical method is based on a domain decomposition technique that assignes a different mesh to
each side of the interface, that includes the crack plane. As stated above, the effects of the crack on wave
propagation are modelled through the boundary conditions, that require a special boundary treatment
based on characteristic variables. The algorithm solves the particle velocity—stress wave equations and two
additional first-order differential equations (two-dimensional case) in the displacement discontinuity. For
each mesh, the spatial derivatives normal to the interface are solved by the Chebyshev method, and the
spatial derivatives parallel to the interface are computed with the Fourier method. They allow a highly
accurate implementation of the boundary conditions and computation of the spatial derivatives, and an
optimal discretization of the model space. Moreover, the algorithm allows general material variability.
( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of crack scattering plays an important role in seismology, exploration geophysics and
material science: cracks and fractures in the Earth’s crust1 may constitute possible sources of
earthquakes, and hydrocarbon and geothermal reservoirs are mainly composed of partially
saturated cracks and microcracks2; moreover, ultrasonic waves are used to detect flaws and
cracks in order to prevent material failure.3

Simulation of crack scattering requires a suitable interface model for describing the dynamic
response of the crack surface. Theories that consider imperfect contact were mainly based on the
displacement discontinuity model at the interface. Recently, Pyrak-Nolte et al.1 proposed
a non-welded interface model based on the discontinuity of the displacement and the particle



velocity across the interface. The stress components are proportional to the displacement and
velocity discontinuities through the specific stiffnesses and a specific viscosity, respectively.
Displacement discontinuities conserve energy and yield frequency-dependent reflection and
transmission coefficients. On the other hand, velocity discontinuities imply an energy loss at the
interface and frequency-independent reflection and transmission coefficients. The specific visco-
sity accounts for the presence of a liquid under saturated conditions. The liquid introduces
a viscous coupling between the two surfaces of the fracture4 and enhances energy transmission,
but at the same time this is reduced by viscous losses. The model is phenomenological and may
account for some slip and dilatancy effects as those described, for instance, by a recent interface
model proposed by Mroz and Giambianco.6

Elastic wave scattering by a circular crack in a transversely isotropic solid was investigated by
Kundu and Boström.5 They used an analytical solution method and considered stress-free
boundary conditions at the interface, implying a complete decoupling of the two surfaces which
corresponds to zero stiffnesses and zero specific viscosity.

In this work, we consider a time-domain model to account for displacement and particle
velocity discontinuities at the interface. The imperfect bonding is described by four parameters:
the normal and tangential specific stiffnesses and viscosities. The stiffnesses account for fre-
quency-dependent and phase-change effects, and the viscosities allow for damping in the interface
response. In order to model a crack embedded in a finely laminated background, we assume that
this is described by a transversely isotropic medium whose symmetry axis is perpendicular to the
crack surface and to the free surface. For instance, composite materials or geological layers whose
stratification plane is parallel to the Earth’s surface. Note that the equivalence between
a laminated medium and a transversely isotropic medium holds when the dominant wavelength
of the signal is long compared to the thickness of the layers.

The elastodynamic equations are given in the velocity—stress formulation and the crack
equations are two first-order differential equations in the normal and tangential displacement
discontinuities. The numerical algorithm is based on a domain decomposition technique,7 where
the implementation of the boundary conditions requires a special treatment based on character-
istic variables.8 Then, the governing equations are solved by a grid method that uses the
Chebyshev differential operator normal to the interface, and the Fourier differential operator in
the direction parallel to the interface.

2. THE INTERFACE MODEL AND NUMERICAL MODELLING TECHNIQUE

Consider a planar crack of finite width embedded in an elastic and transversely isotropic
homogeneous medium. That is, the material on both sides of the crack (two media formally) is the
same. The non-ideal characteristics of the crack surface are modelled through the boundary
conditions. If the displacement and stress field are continuous across the interface (ideal or welded
contact), the reflection coefficient is zero and the interface cannot be detected. On the other hand,
if the two media are in non-ideal contact, reflected waves with appreciable amplitude can exist.

The model proposed here is based on the discontinuity of the displacement and particle
velocity fields across the interface. We consider the two-dimensional case, and refer to the upper
and lower media with the labels I and II, respectively, with z increasing toward the upper medium
(see Figure 1). Then, the boundary conditions for a wave impinging on the interface (z"0) are
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Figure 1. Diagram showing a crack between media I and II. The algorithm uses a domain decomposition technique based
on characteristics variables. The incoming variables (in parenthesis) are calculated from the boundary conditions that

define the type of crack
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where t is the time variable, u
x
and u

z
are the displacement components, v

x
and v

z
are the particle

velocity components, p
xz

and p
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are the stress components, i
x
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(x) are specific stiffnesses

and f
x
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z
(x) are specific viscosities. They have dimensions of stiffness and viscosity per unit

length, respectively. Moreover, the brackets denote discontinuities across the interface, such that
for a field variable /, it is [/]"(/)

II
!(/)

I
.

The model simulates the crack by a zero width layer of distributed spring-dashpots. It can be
shown that relaxation-like functions of Maxwell type govern the tangential and normal coupling
properties of the crack. The interface exhibits time-dependent mechanical properties through the
relaxation functions, and, as in a viscoelastic material, this implies energy dissipation. The
boundary conditions (1)—(4) are analysed in Appendix I by a plane wave analysis for normal
incidence. A displacement discontinuity (i

z
O0) yields a change of phase, while a discontinuity in

the particle velocity (f
z
O0) implies an energy loss at the interface.

A similar model, based on combined displacement and velocity discontinuities, was developed
by Pyrak-Nolte et al.,1 who introduced a single parameter (g) to describe the viscous coupling
between the two surfaces of a fracture. Note that i

i
"0 gives the displacement discontinuity

model and f
i
"0 gives the particle velocity discontinuity model. On the other hand, if f

i
PR, the

model gives the ideal (welded) interface.
The characteristics of the medium are completed with the constitutive relations. The interface

equations (1) and (2) can be implemented in a numerical solution algorithm based on a particle
velocity—stress formulation yielding a first-order differential equation in the displacement discon-
tinuities that must be solved simultaneously with the equations of momentum conservation.
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Figure 2. Cartesian mesh composed of two subgrids discretizing media I and II. The vertical grid points correspond to the
collocations points of a modified Chebyshev differential operator. The non-periodicity of this operator allows the
implementation of general boundary conditions at the horizontal boundaries. In the horizontal direction, a periodic

Fourier differential operator is used

The interface model is implemented in numerical modelling by using a domain decomposition
technique.7, 9 The boundary treatment is based on characteristics representing one-way waves
propagating with the phase velocity of the medium. The wave equation is decomposed into
outgoing and incoming wave modes perpendicular to the interface separating the two media (see
Figure 1). The outgoing waves are determined by the solution inside the corresponding medium,
while the incoming waves are calculated from the boundary conditions.

The particle velocity—stress equation and the interface equations are solved by a fourth-order
Runge—Kutta time integration algorithm. The spatial derivatives of the field variables are
computed by using the Fourier method in the horizontal direction, and the Chebyshev method in
the vertical directions, where non-periodic boundary conditions are required. For instance,
Figure 2 illustrates a typical mesh system where the collocation (grid) points can be appreciated.
Along the horizontal direction the coordinates of the sampling points are given by

x
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where x
.!9

is the maximum distance and N
x

is the number of grid points. For a given function
f (x), with transform fI (k

x
) , derivatives are computed as
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where k
x

is the discrete wave number and ı"J!1.
On the other hand, the conventional Chebyshev differential operator requires time steps of the

order O(N~2
z

), where N
z
is the vertical number of grids points. In order to use time steps of order
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), which are those required by the Fourier method, the vertical sampling points are defined by
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where f
i

are the Gauss—Lobato collocation points, and g is a grid stretching function that
stretches the super fine Chebyshev grid near the boundaries to have a minimum grid size of the
order of the desired time step. Then, vertical derivatives are calculated by the chain rule
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(8)

The derivative with respect to f at the ith sampling point is
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where Q
k

are Chebyshev polynomials, and b
k
are the coefficients for the derivatives.13

The reason for using the Fourier and Chebyshev methods for computing the spatial derivatives
is that these differential operators are infinitely accurate up to the Nyquist wave number of the
mesh, that corresponds to a spatial wavelength of two grid points (at maximum spacing for the
Chebyshev operator). This fact makes these so-called pseudospectral methods very efficient in
terms of computer storage and the Chebyshev technique highly accurate for simulating Neumann
and Dirichlet boundary conditions. The advantages over finite difference and finite element
techniques lie in the absence of any numerical dispersion and in the use of a smaller number of
grid points. These facts make the algorithm highly accurate and computationally efficient.

More details about the numerical technique can be found, for instance, in Carcione.8

3. SIMULATIONS

The transversely isotropic medium is defined by the elastic constants c
11
"12)5 GPa, c

13
"

1GPa, c
33
"8GPa and c

55
"2)88GPa, and the density o"2000 kg/m3. The corresponding

horizontal and vertical compressional velocities are 2500 and 2000m/s, respectively, while the
associated shear velocity is 1200m/s. For illustration, Figure 3 shows a polar representation of
the energy (group) velocity corresponding to the qP (quasi-compressional) and qS (quasi-shear)
waves, where the vertical axis is the symmetry axis perpendicular to the plane of isotropy (by
symmetry considerations, only one quarter of the plane is displayed). The crack is located at
14)6 cm from the surface and has an extension of 14)4 cm. At the sides of the crack, the choice
i
i
P0 and f

i
PR gives a welded interface, simulating a homogeneous medium. Note that these

boundary conditions do not model a crack in the traditional sense of the term since they do not

account for the 1/Jr stress singularity at the crack tip. Such a model would require a displace-
ment discontinuity proportional to the corresponding stress times the radial distance to the crack
tip [10]. In this way, zero opening at the tips can be simulated. A uniformly distributed vertical
load with a Ricker wavelet time-history of central frequency f

0
"110 kHz is applied at the surface.

The load consists of discrete delta functions applied on the first row of the mesh, between grid
points 132 and 242.

We consider four cases whose crack properties are given in Table I. Also, the amount of
dissipation, energy reflection coefficient and phase change at the crack surface for a normal
incidence compressional plane wave of angular frequency u

0
"2n f

0
are illustrated. These

quantities are evaluated in Appendix I by means of a plane wave analysis. In case 1, the crack
surface satisfies stress-free boundary conditions. In case 4, u

P
/u"1 and f

x
and f

z
are given by
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Figure 3. Polar representation of the energy velocity curves corresponding to the qP and qS wave modes. Due to
symmetry, only one quarter of the curves are represented

Table I. Crack properties

Case i
x

i
z

f
x

f
z

Remarks

1 0 0 0 0 No dissipation,
DR

PP
D2"1,

no phase change

2 0 0 Z
S
/2 Z

P
/2 50% dissipation,

DR
PP

D2"0)25,
no phase change

3 u
0
Z

s
/2 u

0
Z

P
/2 Z

S
/100 Z

P
/100 Negligible dissipation,

DR
PP

D2+0)5,
45° phase change

4 u
0
Z

S
/2 u

0
Z

P
/2 Z

S
/J2 Z

P
/J2 41% dissipation,

DR
PP

D2+0.14,
22)5° phase change

equations (23) and (22), respectively. These choices imply a reflection coefficient

R
PP
"(1#J2#ı)~1 (10)

for a normal incidence compressional wave of frequency f
0

[see equation (16)].
Figure 4 represents the normal incidence reflection and transmission coefficients DR

PP
D and

D¹
PP

D versus the normalized specific viscosity f
z
/Z

P
, corresponding to case 4. The limit f

z
PR
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Figure 4. Normal incidence reflection and transmission coefficients DR
PP

D and D¹
PP

D versus normalized specific viscosity
f
z
/Z

P
, corresponding to case 4 of Table I

gives the welded interface, since R
PP
P0. and ¹

PP
P1. The normalized energy loss for an incident

compressional plane wave is represented in Figure 5, where it is confirmed that the maximum

dissipation occurs for f
z
"Z

P
/J2, the value given it the table and predicted by equation (22).

Similar plots and conclusions are obtained for an incident S wave, for which the maximum loss

occurs when f
x
"Z

S
/J2. Moreover, it can be shown that, for any incident angle and values of the

specific stiffnesses, there is no energy loss when f
z
P0 and f

z
PR.

The calculations use two meshes with N
x
"375 and N

z
"81 each, and a horizontal grid

spacing D
x
"2mm. The vertical load is applied from grid point 132 to grid point 242, and has

a length of 22 cm. The upper boundary of the model (mesh 1) has stress-free conditions. The
details about the differential operators used to compute the spatial derivatives can be found, for
instance, in Carcione.8 The solution is propagated to 0)136ms with a time step of 0)1ls, by using
a fourth-order Runge—Kutta integration scheme.

Snapshots of the v
x

and v
z

components, at a propagation time of 136ls, are illustrated in
Figures 6—9. The different waves are identified by labels in Figure 6. For visual reasons, the
v
x

snapshots are enhanced a factor 5 with respect to the v
z

snapshots. The leading pulse is the
compressional wave, that is followed by the shear wave. Moreover, it is clear how the crack tips
act as secondary sources, producing body waves (compare the wavefronts to the energy velocity
plots of Figure 3). At the surface, the shear waves are followed by Rayleigh pulses originated at the
load edges. Rayleigh waves can also be observed at the crack interface in Figure 6, that satisfies
stress-free boundary conditions (the crack completely reflects the incident wave). Then, case
3 presents the stronger reflected wave and, in cases 2 and 4, the scattered fields are weaker due to
energy loss at the crack surface (compare, for instance, the v

x
components). These phenomena are

in agreement with the theoretical predictions summarized in Table I. The wraparound effects
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Figure 5. Normalized energy loss e
-044

versus normalized specific viscosity f
z
/Z

P
, corresponding to case 4 of Table I

Figure 6. Vertical surface load radiation and crack scattering for case 1 of Table I. The snapshots show the v
x

and
v
z
components at a propagation time of 136ls. The labels identify the different waves: qP is the incident quasi-compressional

wave, qS is the incident quasi-shear wave, R denotes the Rayleigh waves and dqP and dqS are the diffracted body waves
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Figure 7. Vertical surface load radiation and crack scattering for case 2 of Table I. The snapshots show the v
x

and
v
z
components at a propagation time of 136ls.

observed at the sides, mainly in the v
x

component, are caused by the periodicity of the Fourier
differential operator.

4. CONCLUSIONS

The proposed numerical simulation technique is used to compute the elastic wave scattering
produced by a crack embedded in a transversely isotropic medium. The crack surface satisfies
quite general boundary conditions, from welded contact to a stress-free interface. The theory
allows frequency-dependent reflection and transmission coefficients, phase changes and energy
dissipation.

The numerical method for solving wave propagation uses a domain decomposition technique,
that assigns a different mesh to each side of the interface. The use of the Chebyshev differential
operator, to compute the spatial derivatives normal to the interface, allows the imposition of
general boundary conditions. In particular, a boundary treatment, based on characteristic
variables, implements the interface model in the velocity—stress formulation of the wave equation.
The method allows complete material variability at any point of the model space. The examples
show how the modelling algorithm correctly simulates the influence of the non-ideal interface on
the different waves, in particular, tip diffractions, interface waves, partial reflection and transmis-
sion, and energy dissipation. The modelling algorithm can be used, for instance, to investigate the
propagation of interface waves along cracks and fractures.*11, 12+
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Figure 8. Vertical surface load radiation and crack scattering for case 3 of Table I. The snapshots show the v
x

and
v
z
components at a propagation time of 136ls.

Further developments of the method will allow, for instance: the treatment of cracks of
arbitrary shape by co-ordinate mapping transformations; and axisymmetric scattering by a circu-
lar crack, that requires the use of cylindrical co-ordinates and a slight modification of the 2-D
cartesian code.
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APPENDIX I. PLANE WAVE ANALYSIS FOR NORMAL INCIDENCE

Consider that the crack surface separates two media with equal material properties, and that the
boundary conditions are given by (1)—(4). Since the crack surface is perpendicular to the symmetry
axis of the transversely isotropic medium, the normal to that surface represents a pure mode
direction. Then, the compressional and shear waves are decoupled and the problem of transmis-
sion and reflection can be treated separatedly.

Assume an incident compressional plane wave of the form

u
z
)
I
" exp[ı(k

p
z!ut)] (11)
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Figure 9. Vertical surface load radiation and crack scattering for case 4 of Table I. The snapshots show the v
x

and
v
z
components at a propagation time of 136ls

where ı"J!1, u is the angular frequency and k
p
"uo/Z

p
, with Z

P
"Jc

33
o, c

33
the elastic

constant along the direction normal to the crack plane and o the material density. Then, the
reflected and transmitted waves can be written as

u
z
)
R
"R

PP
exp[!ı (k

P
z#ut)] (12)

u
z
)
T
"¹

PP
exp[ı(k

P
z!ut)] (13)

Substituting the displacements (11)—(13) into (2) and (4) and using [v
z
]" ıu[u

z
], gives

(¹
PP
!1!R

PP
) (i

z
!ıuf

z
)"ık

P
c
33
¹

PP
(14)

ık
P
c
33

¹
PP

" ık
p
c
33

(1!R
PP

) (15)

respectively. Use of k
P
"uo/Z

P
and after some algebra, yields the expressions for the reflection

and transmission coefficients are

R
PP

"A1#ı
u

P
u

#2
f
z

Z
P
B
~1

(16)

¹
PP

" 1!R
PP

(17)
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where u
P
"2i

z
/Z

p
is the characteristic frequency that defines the transition from an apparently

perfect interface to the apparently decoupled one.14 If i
z
"0, then u

P
"0 and the particle

velocity discontinuity model is obtained. In this case, the coefficients are frequency independent
and there are no phase changes. On the other hand, when f

z
" 0, the theory gives the

displacement discontinuity model. It is shown below that a discontinuity in the particle velocity
implies energy dissipation at the interface.

Moreover, if f
z
P0 and i

z
P0, R

PP
P1 and ¹

PP
P0, and the free surface condition is

obtained; when f
z
PR, R

PP
P0 and ¹

PP
P 1, giving the solution for a welded contact.

The reflection and transmission coefficients corresponding to an incident S wave can be
obtained in the same way as for the incident P wave. In particular, the normal incident coefficients
R

SS
and ¹

SS
have the same form as (16) and (17) but substituting i

z
by i

x
and f

z
and f

x
.

The normal component of the mean energy flux is continuous at a welded interface. This is
a consequence of the boundary conditions that impose continuity of normal stress and particle
velocity. For a normal incidence compressional wave, the normal component of the mean energy
flux is proportional to the real part of p

zz
v*
z
, where the symbol * denotes complex conjugate.

However, at a non-welded interface, the discontinuity of the particle velocity implies that the
energy flux is also discontinuous. The difference between the sum of the reflected and transmitted
energies and the incident energy is the energy dissipated at the interface.

After normalizing with respect to the incident wave, the reflected and transmitted energy fluxes
are

reflected P waveP DR
PP

D2 (18)

transmitted P waveP D¹
PP

D2 (19)

Hence, the normalized dissipated energy is

e
-044

" 1!DR
PP

D2!D¹
PP

D2 (20)

Substituting (17), the energy loss becomes

e
-044

"

4f
z
/Z

P
(1#2f

z
/Z

P
)2#(u

P
/u)2

(21)

The displacement discontinuity model (f
z
"0) yields no dissipation. On the other hand, the

maximum loss is obtained for

f
z
"

Z
P

2 S1#A
u

P
u B

2
(22)

Similarly, the maximum loss for an incident S wave occurs for

f
x
"

Z
S

2 S1#A
u

S
u B

2
(23)

where u
S
"2i

x
/Z

s
.
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