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Viscoelastic effective rheologies for modelling
wave propagation in porous media’

José M. Carcione®

Abstract

Biot's poroelastic differential equations are modified for including matrix—fluid
interaction mechanisms. The description is phenomenclogical and assumes a solid-
fluid relaxation function coupling coefficient. The model satisfies basic physical
properties such as, for instance, that P-wave velocities at low frequencies are lower than
those predicted by Biot's theory,

In many cases. the results obtained with the Biot (two-phase) modelling are equal to
those obtained with single-phase elastie modelling. mainly at seismic frequencies,
However, a correct equivalence is obtained with a ewscoelasiic theology, which requires
one relaxation peak for each Biot (P and 5) mechanism. The standard viscoelastic
model, which generalizes compressibility and shear modulus to relaxation functions, is
not appropriate for modelling the Biot complex moduli, since Biot's attenuation is of a
kinetic nature (i.e. it is not related to bulk deformations). The problem is solved by
associating relaxation functions with each wave modulus.

The equivalence between the two modelling approaches is investigated for a
homogeneous water-filled sandstone and a periodically lavered poroelastic medium,
alternately filled with gas and water. The simulations indicate that, in the homogeneous
case, particle velocities in the solid skeleton, caused by a source applied to the matrix,
are equivalent to viscoelastic particle velocities. Ina finely layered medium, viscoclastic
modelling is not, in principle, equivalent to porous modelling, due to substantial mode
comversion from fast wave to slow static mode. However, this effect, caused by local
fluid-How moton. can be simulated by including an additienal relaxation mechanism
similar to the squirt-flow,

Introduction

Biot’s theory of dynamic poroelasticity (Biot 1962) successtully describes the wave
propagation properties of synthetic porous media such as sintered glass beads. In
natural porous media such as sandstone, discrepancies between Biot's theory and
measurements are due to complex pore shapes that are not present in simple synthetic
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250 FM. Carcromne

media (Gist 1994), This complexity gives rise to a variety of matrix—fuid interactions
which contribute to the attenuation of the different wave modes. The most important
interaction is the squirt-flow mechanism, which explains the energy losses and levels of
velocity dispersion at sonic and ultrasonic frequencies {Dvarkin, Nolen-Hoeksema and
Nur 19943, In this paper, the different matrix—fluid atenuation mechanisms are
introduced into Biot’s theory by substituting the fluid—solid coupling modulus by a
time-dependent relaxation function based on the standard linear solid model. The
mtreduction of memory variables for avoiding the time convolutions vields a set of
first-order differential equations for dynamic poroviscoelasticity.,

It has been suggested that the value of poroelastic wave modelling is unclear without
comparison of its results with the corresponding simulations based on single-phase
modelling (Gurevich 1996). "This is particularly important at the seismic range where
poroelastic effects are relatively small. However, Norris (1993 and Gurevich and
Lopatnikov  (1995) have shown that attenuation levels and velocity-dispersion
measurements can be explained by the combined effects of layering and energy
transfer between wave modes, For instance, if the fluid compressibility varies
significantly from point to point, diffusion of pore fluid between different regions
constitutes a mechanism that can be important at seismic frequencies. Modelling the
anelastic properties of poroviscoelastic waves with a single-phase rheological equation
is performed by assigning relaxation functions to each wave mode and fitting the
attenuation factors and phase-velocity dispersion curves of the fast waves,

Biot’s poroviscoelastic differential equations (Biot 1962) have the form v= My,
where v is the wavefield vector and M is the propagation matrix (the dot denotes
differentation with respect to time). All the eigenvalues of M have a negative real part.
While the eigenvalues of the fast wave have a small real part, the eigenvalues of the slow
wave (in the diffusive regime) have a large real part. The presence of this diffusive
mode makes the ditferential equations suff, and then seismic and sonic modelling are
unstable when using explicit tme-integration methods. In both cases, the Biot peaks
(1.e. the presence of the ditfusive mode) make the problem stiff: in the seismic case, the
squirt-flow mechanism also contributes to the stiffness of the differenual equartions,
The use of an A-stable Crank-Nicholson scheme provides a reasonable solution to the
problem in terms of efficiency and accuracy (Carcione and Quiroga-Goode 19957,

This work compares two-phase and single-phase modelling results in homogeneous
and pertodic lavered media, at both scismic and sonic frequencies. Moreover, the
problem of the gas—water contact studied by Dutta and Ode {19833 is solved. The
simulations evaluate the equivalence between the Biat (i.e, porous) and the viscoclastic
madelling. In addition, a valid implementation of the squirt-flow mechanism into Biot's
equations requires certain physical properties to be satisfied. This is investigated in the
frequency domain and the corresponding differential equations are obtained.

Poroviscoelastic equations of motion

The constitutive equations for an inhomogeneous. isotropic poroelastic medium under
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plane strain conditions are given by (Biot and Willis 1957, Biot 1962}

T, = Fo + (10— 2pin, |+ aMe + 5, (1
Toop = (F = 2uhv,, + Fo. . + aMe + 5., 2
Toeg = MU+ )+ S (3
py= —Me+ 5. 4
€= oty + Vo) + g + dapn (5)

where 7. 7o and 7. are the total stress components, pis the fluid pressure, v and g are
the solid and fluid (relative to the solid) pardcle velocites, and s, 5., 5, and & are the
external sources of stress, for the solid and the fluid, respectively. The subscript *, 2
denotes didx,

The elastic coefficients are given by

, 4
E=Kuy+gn (6)
K ~
.1I:m, f'.]
D= K[+ KK =11, (8
K,
=1 — |1'.1 i_.}
o K. ey

where K. K, and K; are the bulk moduli of the drained martrix, solid and fluid,
respectively, ¢ s the porosity and pois the shear modulus of the drained {and saturated)
matrix, The stiffness [7is the P-wave modulus of the dry skeleton, M is the coupling
madulus between the solid and the fluid. and @ is the poroelastic coefficient of effective
S1Tess.

Viscoelasticity is introduced into Biots poroelastic equations (Biot 1962) for
modelling a variety of dissipation mechanisms related to the skeleton=fluid interaction,
One of these mechandsms 15 the squirt-flow (Bior 19627, by which o force applied to the
aren of contact between two grains produces a displacement of the surrounding fluid in
and out of this area. Since the fluid is viscous, the motion is not instantaneous and
energy dissipation occurs. Skeleton—tluid mechanisms are modelled by generalizing
the coupling modulus M to a time-dependent relaxavon luncuoen. We assume thar I
and p are frequently independent,

The term Me in (13, (20 and {4) is replaced by & * ¢, where

1
L) = + =
Wil I(l T <

L -ir
i=

[ L
ey "1 +EII=Z‘,¢,- expl—ur o[ Hir, (1

| 8

1
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where i denotes the Heaviside function,
Tel
oy =——1, (11
Tal
and 7., and 7, denote sets of relaxation times, Equation {107 corresponds to a parallel
connection of standard linear solid elements. For high frequencies (=07, = M. As
in the single-phase viscoelastic case {(Carcione 1995), we mtroduce memory variables
in order to avoid the time convolutions.
The poroviscoelastic equations of motion are:

{1} Blor=Newrton's dynamic equatons (Biot 19627,

Tora T Tooe = 0T, T Prdy (12)
Toz & Toze = 0V, + Prda,, (13
where

g =11— o, +ap;
is the composite density, and o, and gr are the solid and uid densites, respectively,
(i) Drwvnamic Darcy's law:

—p = oty + MG + g, (14)
K

=, = opv + g, + Eq? {13

where mi= Togd, T denotes the tormuesity, w s the fluid viscosity and & is the
permeability of the medium.

(i) Constimutve equations:

I

Tens = v+ (E = 2p)v, . + el Me + 2_ )+t (16)
=1

Toea = (L = 2000, + Fo.. +alMe+ > &) + 5, (17)
=1

Trzp = "\;ff:r.: + o T Sz (18)

po=—|Me+d e |+ (19)

=1

where ¢, {=1,.... L are the memory variables.

For application of the source, consider three main cases (Carcione and Quiroga-
Goode 19967
1 Frame source: sr=10, and the various combinations of 5. 5. and 5. giving a
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Viscoelasiic representanion of porows media 253

horizontal force, a vertical force, an explosive source and a purely shear source, all
applicd o the skeleton,

2 Fluid velume injection: &, = &, = ¢ and 5. =10

3 Bulk source: this case assumes that the energy is partitioned between the two phases
and that the radiation pattern is isotropic, 5, =, =5 and s.. =0,

vy Memory variable equations;

-1
1 L
g, =——|[|M (I. + Z g,,..) e 2| 200

ape |

Phase velocity and attenuation for porous media
The calculation of the phase velocity and attenuanon factor requires a Fourier
transformation of the constitutive equations to the frequency domain, implyving the
fallowing substitation

M— M,

where

! .
1 + w7,
Mo =ML+ - T8 21)
; g 1+ iwry, (
where w denotes the angu]ar frequency. The relaxation tmes can be expressed in terms
of a Q-factor, Ou, and a reference frequency. fip. as

1 [

T O |V Uy + 1+ ]_ (22)
and

=[SOt 411 23)

T 2wy Oy |V ' -

The velocities of the fast (+ s1gn) and slow {— sign) compressional waves and shear

wave are given by (see, for example, Carcione 1998}
AT A =AM Ep b
I5s =1"—_-- S 24
2o.0
and
M
g =—, (25)
P
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where
A= Mdp — 2epe) + plE 4+ o” M),
. = p — piiB,
and
_ 1 i
0= ‘; oy = E;

where [ denotes the frequency and i=./—1. Similar expressions for the complex
velocities inoan isotropie Biots medium are given by, for instance. Dutta and Ode
(1983, The difference resides in the fact that (24} = explicily dependent on the
complex viscoelastic quantity AL Note that Iy does not depend on M, and therefore
skeleton—fuid interactions do not affect the shear wave,

The phase velociry ¢ s equal to the angular frequency o = 27/ divided by the real
wavenumber, Then

1y wan

K

-1
: (26}

where Re denotes the real part. Following Dutta and Ode (19833, we define the
attenuation coeficients as

I 1)
Rel 1)

Tl )

ype = 17,372 — e
o T Rells)

g = 173727

P27

where Im denaotes the imaginary part,

Equivalent viscoelastic equations of motion

The attenuation in Biots poroclastic equations s not caused by bulk viscoelasticity
{through the stress—strain relations), and therefore the standard viscoelastic model,
which generalizes compressibility and shear modulus to relaxation functions, 1s not
apprapriate to describe the Biot complex moduli. Instead, we try to match directly the
compressional and shear attenuation and velocity dispersion by using relaxation
functions associated with each wave mode, Since. within the present extension of Biot's
theory, the squirt-flow mechanism does not affect the shear wave, this is described by
one set of relaxation times. The equations are similar to those obrained by Carcione
(19951, but contain an additional memory variable per set of relaxation times.

The two-dimensional velocity—stress equations for propagation in the {x, ¥)-plane,
assigning one relaxation mechanism to cach wave mode, can be expressed as:

(i" Newton's equations:
Ty Oz z = PTG +Jr..x' i(28)

eyt Foze = P + 1 (29}
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Viscoslustic representation of porows media 255

where v, and v are the particle velocities, o,.,, 0. and o, are the stress components, p
is the density and £, and f; are the body forces.

(i) Constitutive equations:

i
Foep = p(‘f_;,__ft,'l._‘. T T.‘:.:‘] - 2’I':"'::‘.‘:;M-':I:...' + 2_ L3 2"-:_" + Fin iaﬂ}
=1
I
Cozp = J'inz"wfz"x..x + o) = dpesaT,, + Z €1 — 263 + 55, (31)
=1
Tyoy = Pty 4 75, + €4 + Sy (32)
where
2 Lo (23
4 iy T E A T
L = — — and 5. = o5 33)
! L 2 Tf; 5 50 13, i

are the squared high-frequency compressional and shear velocities, respectively, and s,
i; and 5. are external forees equivalent to the sources used in the porous case (see
equations (11-{313. Moreover, the memory variables €,; and £pi=2....,4 satisfv the
following equations:

(i) Memory variable equations;

&
€1y = Byplvy +0.) = —e, I=1,...01, (34)
A0
Ea
€2 = ';t'lvz_: - ,_I:T!] {3:"]
€
€3, = B2T — 77 (36)
T
_ , ) . 3] -
€4 = ‘DEI:L.L: L f":..‘c] . @l (3 .}
where
pc‘3 T' 1) ﬂb_l T-'EJ
_ Popa 4] _ At +
uspm\itm) 2=\ e o

-

Phase velocity and attenuation for viscoelastic media

The transformution to the frequency domain of the viscoelastic constitutive equations
vields the complex velocites, As mentioned in the previous section, a set of relaxation
mechanisms was  associated with the compressional wave and one relaxation
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mechanism was associated with the shear wave, The respective dimensionless complex
maduli can be expressed as
- g g il
. 1o 1 +i2afr)
My =7y ——H (39)
Li=1 4 i2mf7)
and

1 +i2xfr
My(f) = — (40
Z.[Jr 1+ i21|'_.l"'r'_3‘ )

where the relaxation times can be related o the more phyvsical parameters Oy /1 O
and 5 by the following formulae:

(1} 1 - 1
= [y =1 41
Tl 2uf, Oy |V Qu+l J @b
and
2 1 e ] .
D= — 2121 42
T T ampo, |V e

The quality factor associated with the compressional wave is equal to the real part of
M, divided by its imaginary part. For instance, in the case of twoe dissipation
mechanisms, O and Oy are related to the quality factors of the squirt-flow and the
Biot mechanisms with maximum attenuation at the frequencies 7, and [, 2. respectively.

The complex velocities of the P- and S-waves in 2D viscoelastic media are (for
example Carcione 1993)

[ -l} —_— (,fl.::.fl"]’] [43]
and
1§ = eqpM; (4}

where ¢pg and cg are the Biot low-frequency phase velocities of the fast compressional
and shear waves, respectively, The viscoelastic phase velocities and attenuation factors
can be obtained similarly from (263 and (27,

Effective viscoelastic medium

A homogeneous porous medium can be modelled by a single-phase viscoelastic
medium. As will be seen below, only one relaxation mechanism for each viscoelastic
modulus is encugh to fit the moduli of the porous medinm.

We consider the same media as analvsed by Dutta and Ode (19537, who computed
the reflection coefficients for a gas—water contact, The material properties of the single
constituents and saturated porous medium are given in Tables 1 and 2, respectively,
Table 2 gives the relaxed (w=0) and unrelaxed (w=+) phase velocities, and the
atternuation factors at the central frequency of the Biot peak, Phase velocities and
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Table 1. Marterial properties of the single const-

[LETls,

Solid bulk modulus, &, 35 GPa
density, p, 2650 kg/m?

Marrix bulk modulus, &, 1.7GPa
shear modulus, N 155 GPa
POTOSIDY. 6 3
permeability, x 11
tortunsity, 1 1

Cras bulk modulus, K 0022 Gl
density, p, 100 k,g.."m'j'
viscosity, g, 0015l

Water bulk modulus, &, 2.4 GPa
density, p. 1000 kg/m*
VISCOEITY, 1, 1cl*

Tahle 2. Propertics of the samrated rock:
Biot’s model.

Water-filled Cras-fAlled
P 2155kg/m’ 1885 kg/m®
cpa i 2205 m/s 1300 m)'s
Cpa(ea) 2234 my/s 1306 m)'s
) GXEms GOk m/s
egle) 1000 my/s 1000 my/s
SulP+ #7.54 kHz E07kHz
(5 51.71 kHz 7.23kHz
cep | i) 0.356d48 11648
cegl Mg 2.044 dB 21948

Table 2. Properties of the equivalent viscoelastue media: Biots model.

Pore fluid  epg (mys) gy (M%) o (kg,-'rn"‘;- 11 (kHz) 3 (kHzy oy s
CGras 1500 G 1885 507 7.23 1o 125
Water 2205 92 2155 7.54 #1.71 ART 133

attenuations are shown by Dhutta and Ode (19830, together with the reflection and
transmission coefficients,

The properties of the equivalent viscoclastic media are shown in Table 3, where
o= (1 —alp, + doris the composite density, The squirt-flow mechanism is incorporated
imto the dynamic poroelasticity model by assuming L= 1 and Oy = 10in (211, (22} and

. g . - . . . . i : . -
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258 TM. Carcione

Table 4. Propertics of the saturated rock:
BISE model.

Water-filled Cras-filled
a 2155 kg/m’ 1855 kg/m”
() 281 m)s 1498 mys
Cpa o] 2230 mys 1306 m)s
FsalP4) 3.22kH: TR0k
cep{fggl 1.597dB 0115dn

(237, Following Dvorkin er al. (19947, we consider that, as the viscosiry of the pore fluid
decreases. the attenuation peak of the squirt-flow mechanism shifts towards higher
frequencies. We assume §, = 3 kHz for water and J; = 40 kHz for gas, Table 4 gives the
properties of the porous medium including this mechanism. The effect is to increase
the attenuation level of the compressional wave in the sonic range and decrease the
relaxed velociry. The S-wave is unaffected by the presence of the mechanism. The
frequency fsg corresponds o the maximum attenuation, The properties of the
eguivalent viscoelastic media are shown in “lable 5. Two relaxaton mechanisms were
used o e the viscoelastic features of the compressional wave,

Figure 1 shows the attenuation factors as a functon of frequency for gas and water
pore fluids, where (@) corresponds to the Biot theory and (b) o the BISE (Blot plus
Squirt-Flow theory, The continuous line refers to the porous case and the dot o the
single-phase viscoelastuc theory, It can be shown that the attenuation associated with
Biot's (Biot and Willis 1957) dilatational modulus,

’ =% ‘4 =%

o 7. -5 t)
is negative. In fact, Biot's attenuation is not of a viscoelastic nature, i it is not
associated with bulk deformations, and therefore the negative value has no physical
meaning.

Figure 2 shows the P-wave phase velocities as functions of frequency for gas and
water, with (a3 and (b} ilustraung the poroelastic and poroviscoelastic cases,
respectively, The attenuations and phase velocities Tor the shear wave are shown in
Fig. 3. Note that the shear-wave attenuation is higher than the poroviscoelastic

Table 5. Properties of the equivalent viscoclastic medin: BISE model,

Pore fluid oy () cgg (Mys) o (kgim™  fy (kHz) 5 (kHe) i oy

Cias 1448 G942 1885 0.28 7.23 330 125
T.H 120

Warer 20%1 Q24 2155 67,54 51.71 34 13.3
3 9.2
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] (&)

.. (dB)

loglf) (Hz)

] (&)

o, (dB)

logif) (Hz)

Figure 1, P.-wave attenuation factors for water- and gas-saturated sandstone; [a) corresponds
o Biot's theory and (b} 1o the combined Biogsquirt-flow (BISF) model, The continuous lne
corresponds to the porous medium solution, whose parameters are listed in Tables 2 and 4, and
the dots to the viscoelastic equivalent media, whose parameters are given in Tables 3 (Biot) and
(BISEF).

L1998 European Association of Geoscientists & Engineers, Geoplavsical Prospecting, 46, 249-270)



260 FM, Carcione

2.5
4 (a)
i water
2.25
= 2.0
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Figure 2. P_-wave phase velocities for water- and gas-satrated sandstone: (a) corresponds 1o
Biot's theory and (b to the combined Biorsquirt-flow (BISF) medel. The continuous line
corresponds to the porous medium solution, whose parameters are listed in Tables 2 and 4. and
the dots o the viscoelastic equivalent media, whose parameters are given in Tables 3 (Biot) and 5
(BISE), The vertical lines are the frequency limit for the validity of the low-frequency Biot's
theory, fo= o/ (27w,
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laglf) {Hz)
1.0 (b) _-"'_,,-o-"_ e
i gas
0.975—
7 i
E (.95 —
o T
1
0925 i
water

logify (Hz)

Figure 3. S-wave atenuation factors (a) and phase velocities (b} for water- and gas-saturated
sandsrone. The continuous line correspends to the porous medium solution, whose parameters
are listed in Tables 2 and 4, and the dots 1o the viscoelastc equivalent media, whose parameters
are given i Tables 3 (Bion and 5{BISEF).
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N (a)

2.5: gas

ot (dB)

5 water

1 2 3 4 5 B 7
logify (Hz)

1.0— b} waler

0.5 gas

logify (Hz)

Figure 4. ' _-wave attenuation factors (a) and phase velocities (b) for water- and gas-saturated
sandstone, The curves correspond to the BIST model with g = 0.
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compressional-wave attenuation (see Fig. 1b), The properties of the slow wave for
g =10 are illustrated in Fig. 4; the presence of the squirt-flow mechanism vields a
relaxation peak near the exploration frequency band for gas-saturated sandstone, This
behaviour is quite unexpected since, in the fast-wave case, the squirt-flow mechanism
far gas peaks at a higher frequency than the corresponding mechanism in the water-
saturated sandstone.

Simulations

The simulations are carried out in the seismic and sonic bands. The numerical meshes
have 231231 gridpoints, with a grid spacing of 5m and 5 cm. respectively, and the
source is dilatational (s, = s, applied to the matrix) with central frequencies of 23 He
and 2300t Hz, respectively. Both the viscoelastic and poroviscoelastic algorithims wse
time steps of 0.25x 10 *s and 0.25 % 10”5 in the seismic and sonic cases, respectively,

The first simulation refers to Tables 2 and 3, and compares viscoelasue (single-
phase} and poroelastic v, snapshots in water-saturated sandstone, Figure 3 shows the
snapshots at 2.7s. As can be appreciated, both simulations are equivalent with the
difference being less than 1 per cent,

Let us assume somic frequencies, the presence of the squirt-flow mechanism and
i =10. In this case, the slow wave is a propagation mode whose properties are illustrated
in Fig. 4. Poroviscoelastic snapshots computed at 2,7 1077 s for water are illustrated
in Fig. 6, where the outer (inner) front corresponds to the P, (P J-wave, The lower
snapshot corresponds to a purely poroelastic rheology, i.e. no squirt-flow mechanism,
In this case. the source central frequency is equal to 2100 Hz. At this frequency the
attenuation factor of the P -wave is 1.6 dB which corresponds to a Q-factor of nearly
17, On the other hand, the P_-wave attenuation level at that frequency is 0.94dB or a
Q-factor equal to 30, This is the reason why the outer front is more attenuated by the
sguirt-flow mechanism than the slow wave.

[n the next simulations, gridpoint 1 o gridpoint 105 is a periodic lavering of gas-
and water-saturated sandstone, with a thickness of one gridpoint, i.e. 5m. From
gridpoint 105 to gridpoint 231, the medium is homogeneous and saturated with
water. "The source, in the seismic range, is applied at gridpoint 105, Figure 7 shows
the wviscoelastic and poroelastic snapshots, The amplitudes on the lower part are
similar while the amplitudes on the upper part are weaker in the poroclastic case, due
o conversion from fast wave to slow mode, A similar 1D numerical experiment,
showing this phenomenon, was performed by Turgut and Yamamoto (19887 fo
finely layered marine sediments. As demonstrated by Norris (1993 and Gurevich
and Lopatnikov (1995), the attenuation/dispersion pair corresponding to this elfec:
has the form which is typical for relaxation phenomena. The physical reason behind
this anelastic behaviour is the combined effect of lavering and local flow of the pore
fluid between mdividual lavers. Hence. the effect can be simulated in single-phase
viscoelastic modelling by incorporating an additional relaxation mechanism, This
phenomenon may explain the low signal-to-noise ratio P-wave sections observed in
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Viscoalastic

A AN

Figure 5. Viscoclastic (single-phase) and poroelastic (two-phase without squirt-ow) snapshots
af the v, particle-velocity componentat 2.7 s, The medium is saturated with water and the source
fin the seismic range) is dilatational, applied to the solid skeleton in the poroslastic case.
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BISF

200 em

Figure 6. Poroviscoelastic and poroclastic snapshots computed ar 2.7 107 s in a non-viscous
(=0} water-saturated medium, The source (in the sonic range) is dilatational and is applied to
the solid skeleton, The upper snapshot corresponds 10 a purely poroclastic rheology, ie. no
sguirt-How mechanism,
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200 m

Figure 7. Viscoclastic (single-phase) and poroelastic (two-phase without squirt-flow) snapshots
of the v, particle-velocity component at 2.7 5. The upper medium is a periodic lavering of gas-
and water-samrated sandstone, and the lower medium s homogeneous water-saturated
sandsrone,
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Figure 8. Viscoelastic (single-phase), poroelastic and residual o, seismograms produced by a
dilatational source of central frequency 23 He, located 520m above a gas—warer contact. The
maximum offser is 1500 m.
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some ocean-bottom seismic data (Kommedal, Barkved and Thomsen 1997), In fact,
the presence of gas, leaked from the reservoir to the overburden, has the effect of
both lowering seismic velocities and increasing selsmic atlenuation. producing low
signal-to-noise ratio P-wave sections, These effects were not observed in S-wave
seClions,

Tinally, we compute seismograms obtained with a dilatational source, located 520 m
ahove the gas—water contract, and a line of recelvers passing through the source
location. In this case. the grid spacing is 10 m. The seismograms are shown in Fig. &,
where the upper hyperbola is the Py reflection and the lower event is the 1P.-5
conversion, A maximum offset of 1500m, corresponding w an angle of 357, is
represented in Fig, 8. The amplitude behaviour of the reflected wave must be
compared with Fig. 10 of Dutta and Ode (1983) after correction for geometrical
spreading. The residual ampliudes, provided thart the algorithms do not introduce any
artefact, are due o a reduced reflection coefficient in the poroelastic case by mode
conversion from fast to slow compressional wave,

Conclusions

The present work has two purposes: first, to extend Biot's theory in order to include
relaxation mechanisms arising  from grain—{luid interactons, and secondly, 1o
investigate whether single-phase viscoelastic modelling s equivalent to poroclastic
modelling.

Mechamsms like the squirt-flow can be incorporated inte Biots theory by
generalizing the coupling modulus A to a relaxaton funcuon that vields M ar the
high-frequency limit. Introduction of memaory variables avoids the time convolutions
and gives a set of differental equatdons o be solved with Biot's differential equartions.
The so-called BISE phenomenological equations give the poroelastc equations at the
high-freguency limit.

The anelasuc propertes of the fast waves can be modelled by using relaxation
functions associated with cach wave mode, and fitting the P and 5 relaxation peaks with
corresponding viscoelastic peaks, The same approach can be used when the medium s
highly inhomogeneous, since the effect of mode conversion from fast wave to slow
mode shows a relaxaucen behaviour. Moreover, viscoelastic modelling s more
convenient since the computer time iz reduced by nearly 60 per cent compared with
poroelastic modelling,
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Appendix
Time-integration technigie

The spatial derivatives are calculated with the Fourier method by using the fast Fourier
transtorm (FFT). This approximation is infinitely accurate for band-limited periodic
functions with cut-ofl’ spatal wavenumbers which are smaller than the cut-off
wavenumbers of the mesh,

Since the presence of the slow compressional wave makes Biots differential
cquations stff {Jain 1984}, a dme-splitting time-integration  algorithm s wsed
(Carcione and Quirega-Goode 19963, The stff part corresponding 1w the Biot
mechanisms s solved analvtically and the stiff part related to the squirt-flow and other
viscoelastic mechanisms is solved with an A-stable Crank-Nicholson scheme. This
method possesses the stability properties of implicit algorithms but the solution can be
abtained explicitly. Single-phase viscoelastic seismic modelling also vields stiff
differential cquations, since relaxation peaks are not, generally, in the source frequency
band. In this case, the solution is obtained with the Crank-Nicholson technigue.

Let us consider the central differences and mean value operators

nu+J =] LE] H=
D= % and A’k = E—;—‘E~ (Al)
where o7 is the tme step and j=1 ar j=1/2.

In the Crank-Nicholson scheme, particle velocities and memory variables at time
(i 1/20de and stresses at time {n+ Dde are computed explicitly from particle
velocities and memory variables at dme (i — 1/23dr and stresses at tme st and
{n=1idi. Consider, for mstance, the porous differental equations (127-(207, We
proceed as follows:

1 Solve analytically the stiff part of (123—{15) and obtain the particle velocities ar time
A= 1204 (see Carcione 1994),

2 Compute the spatial derivatives of the stresses at tme nde and then the particle
velocities at time (u - 12048 from the non-sulf parts of (123—(15) by using the central
difference operator D'V?. Add the previous analytical solutions.

3 Compute the particle velocities at time #dr by using the mean value operator A" and
then the corresponding spatial derivatives,

4 Compute ¢ from equation (5), the memory variables at time (5= 1/20dr from (200
and then theiwr mean values at ndr,

5 Compute the stresses at (n+ 1/2)dr from (167-019) by using the central difference
operator 1

The algorithms are 2nd-order accurate in time and ‘infinite’ (spectral) in space. The
differential equations corresponding to the memory variables require an A-stable
(implicit} algorithm. In the absence of viscoelastic relaxations or when the correspond-
ing relaxation peaks are located in the source frequency band, the porous differental
equations are solved with the splitting technique and an explicit dth-order Runge-Foutta
algorithm, More details are given by Carcione and Quiroga-Goode (19963,
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