
                     
GEOPHYSICS, VOL. 63, NO. 2 (MARCH-APRIL 1998); P. 424–430, 6 FIGS.

Radiation patterns for 2-D GPR forward modeling

José M. Carcione∗

ABSTRACT

The electromagnetic (EM) radiation of a ground-
penetrating radar (GPR) antenna is affected by the pres-
ence of the air-earth interface and depends on the geo-
metrical and physical characteristics of the antenna. To
simulate the radiation pattern with grid methods with-
out the explicit modeling of these features, an equivalent
solution is obtained by using a composite source con-
cept. The 2-D analytic solution corresponding to mag-
netic and electric sources located at the same grid point
is computed. This solution constitutes a basis for the con-
struction of a composite source located in a small region
of the numerical mesh.

The field is obtained for transverse magnetic (TM) and
transverse electric (TE) waves in anisotropic media be-
cause the use of anisotropic conductivity is an alternative
approach to simulating different radar apertures. Real-
istic radiation patterns are obtained from simple com-
binations of magnetic and electric sources by analogy
with seismic shear stresses. The source parameterization
is used for GPR simulation, and single radargram traces
obtained with the modeling algorithm are cross checked
with the analytic solution.

INTRODUCTION

The computation of realistic synthetic radargrams by grid
methods (e.g., Greenfield and Wu, 1991; Kunz and Luebbers,
1993; Carcione, 1996) requires a proper simulation of the
ground-penetrating radar (GPR) antenna radiation pattern.
In principle, it is possible to obtain a precise numerical evalua-
tion of the transient field radiation. For instance, Maloney et al.
(1990) computed the directivity properties of simple anten-
nas by using a finite-difference time-domain (FDTD) method.
However, the explicit implementation of the antenna char-
acteristics (geometry and material properties) for different
heights relative to the ground, requires the use of a substan-
tial region of the numerical mesh. For practical purposes, it is
convenient to simulate the radiation pattern of the transmitting
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antenna by an equivalent approach. If the directivity pattern
of the antenna is known, either from a finite-difference simu-
lation or an analytic evaluation (Annan, 1973; Arcone, 1995)
or an experimental characterization (e.g., Wensink et al., 1990;
Bernabini et al., 1995), it can then be simulated by a composite
source concept.

The electromagnetic (EM) radiation produced by a compos-
ite source, located in a small region of the numerical mesh, can
be obtained by summing the contributions of many single mag-
netic and electric sources. The superposition principle is valid
because the EM equations used to compute the radargrams
are linear. In addition, the composite source analysis provides
an analytic solution for testing GPR simulation algorithms in
anisotropic media. Note that anisotropy can be important in
some cases (e.g., Tillard, 1994).

In the first section of this paper, I introduce the extended
transverse magnetic (TM) radar equations for anisotropic me-
dia. Then, the solution to a single set of magnetic and elec-
tric sources is obtained. The third part provides the solution
for a composite source using the superposition principle, and
for completenes, the transverse electric (TE) solution is also
given. Finally, the examples show the equivalence between
earthquake and EM sources, the role of anisotropic conduc-
tivity in the radiation pattern, and the construction of realistic
sources.

THE TM RADAR EQUATIONS

Assume that the propagation is in the (x, z)-plane, where x is
horizontal position and z is depth, and that the material proper-
ties are constant along the y-coordinate. Then, the electric and
magnetic field components Ex , Ez, and Hy are decoupled from
Ey, Hx , and Hz. The first three fields obey the extended trans-
verse magnetic (TM) differential equations (e.g., Harrington,
1961; Carcione, 1996):

∂Ez

∂x
− ∂Ex

∂z
= µ0

∂ Hy

∂t
+ My, (1)

−∂ Hy

∂z
= σ11 ∗ ∂Ex

∂t
+ ε11 ∗ ∂2 Ex

∂t2
+ Jx, (2)

∂ Hy

∂x
= σ33 ∗ ∂Ez

∂t
+ ε33 ∗ ∂2 Ez

∂t2
+ Jz, (3)
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where µ0 is the free-space magnetic permeability (µ0 =
4π10−7 H/m), ε11 and ε33 are the principal components of the
permittivity relaxation tensor, and σ11 and σ33 are the principal
components of the conductivity relaxation tensor. Moreover,
J and M are the electric and magnetic current densities, re-
spectively, and the symbol ∗ denotes time convolution.

The principal components are time-dependent and describe
various relaxation processes of the material. For instance, in
Carcione (1996) εmm, m= 1 or 3, is a generalized Debye func-
tion that represents the different dielectric losses, and σmm is a
Kelvin-Voigt relaxation function that models the out-of-phase
component of the conduction current at high frequencies.

The TM equations (1), (2), and (3) can be transformed to the
frequency domain and, after elimination of the electric field
components, written in terms of the magnetic field as

β33
∂2 H̃y

∂x2
+ β11

∂2 H̃y

∂z2
+ µ0ω

2 H̃y

= ıωM̃y + β33
∂ J̃z

∂x
− β11

∂ J̃x

∂z
, (4)

where a tilde denotes Fourier transform with respect to time.
Coefficients βmm, m= 1, 3 contain the information about the
different permittivity and conductivity relaxation processes af-
fecting the EM propagation. They are complex and frequency
dependent and have form

βmm =
(

εemm− ı

ω
σemm

)−1

m = 1, 3, (5)

where εemm and σemm are the effective permittivity and con-
ductivity components [they are real and frequency dependent,
see Carcione (1996)]. Moreover, ω is the angular frequency
and ı = √−1. The effective permittivity and conductivity con-
tribute to the EM wave velocity and dissipation, respectively.
For clarity, we omit the subindex e in the subsequent analysis.

In some soils, the radar aperture is reduced by the pres-
ence of moisture. This effect, observed in the field (M. Pipan,
Trieste University, personal communication), can be simulated
by assuming that the conductivity is anisotropic. Although con-
ductivity is a property of the medium, it is common in modeling
to include near-source coupling effects as part of the effective
source. Note that the conductivity in the source region can be
anisotropic even in the case of propagation in an isotropic un-
derground.

A plane-wave analysis of equations (1), (2), and (3), based
on uniform waves, gives the following quality factor (Carcione,
1996),

Q = Re(β11) + Re(β33) tan2 θ

Im(β11) + Im(β33) tan2 θ
(6)

where θ is the angle between the z-axis and the propagation
vector and Re and Im denote real and imaginary parts, re-
spectively. Note that σ11 determines the attenuation in the
z-direction and σ33 the attenuation in the x-direction.

EM FIELD OF A POINT SOURCE

The solution of equation (4) for homogeneous media was
obtained by Carcione and Cavallini (1993, 1995) for the case
Jx = Jz = 0. Here, the spatial derivatives in the electric currents
imply the differentiation of the Green’s function. Assume for

instance that the vertical electric current Jz is a delta function.
Since the solution is the convolution of the Green’s function
with the source term, it can be obtained as the x spatial deriva-
tive of the Green’s function. Thus, the solution to equation (4)
is

H̃y(r, θ, ω) = πωM̃y H (2)
0 (α) + ıπµ0ω

2r

× (sin θ J̃z − cos θ J̃x)α−1 H (2)
1 (α), (7)

where H (2)
0 and H (2)

1 are Hankel functions of the second kind,

α = √
µ0ωr

(
sin2 θ

β33
+ cos2 θ

β11

)1/2

(8)

and

r =
√

x2 + z2. (9)

In the derivation of equation (7), the property (∂/∂α)
[H (2)

0 (α)] = −H (2)
1 (α) has been used. The time-domain solution

is obtained by a numerical inverse Fourier transform.

SOLUTION AND RADIATION PATTERN
OF A COMPOSITE SOURCE

Let us assume an EM source at a point of the form

M̃y = IM h̃(ω)δ(x)δ(z), J̃x = Ixh̃(ω)δ(x)δ(z),

J̃z = Izh̃(ω)δ(x)δ(z), (10)

where IM , Ix , and Iz are the respective intensities, h̃(ω) is the
source time Fourier transform, and δ denotes the Dirac func-
tion. Since x = r sin θ and z= r cos θ , equation (7) can be rewrit-
ten as

H̃y(x, z, ω) = πω
[
IM H (2)

0 (α) + ıµ0ω(x Iz − z Ix)

× α−1 H (2)
1 (α)

]
h̃(ω)δ(x)δ(z), (11)

with

α = √
µ0ω

(
x2

β33
+ z2

β11

)1/2

. (12)

A composite source can be obtained by summing the contri-
butions of many single sources. Consider a composite source
located in a rectangular region of the mesh where the mate-
rial properties are homogeneous (see Figure 1). If the size of
the rectangle is 2Lx × 2Lz (measured in grid points) and the
respective grid spacings are dx and dz, the total magnetic field
can be expressed as

H̃y(x, z, ω) = πω

Lx∑
i =−Lx

Lz∑
j =−Lz

{
IM(i, j )H (2)

0 (αi j )

+ ıµ0ω[(x − idx)Iz(i, j ) − (z − jdz)Ix(i, j )]

× α−1
i j H (2)

1 (αi j )
}
h̃(ω)δ(x − idx)δ(z − jdz), (13)

where

αi j = √
µ0ω

[
(x − idx)2

β33
+ (z − jdz)2

β11

]1/2

. (14)
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As in the previous section, the time-domain magnetic field is
obtained by a numerical inverse Fourier transform. The radia-
tion pattern is a polar plot of the peak amplitude computed at
the circle of radius r in a homogeneous medium, with r À dx
and r À dz.

SOLUTION FOR THE TE MODE

For completeness, the solution for the transverse electric
(TE) mode is presented in this section. The TE equations
are

∂Ey

∂z
= µ0

∂ Hx

∂t
+ Mx, (15)

−∂Ey

∂x
= µ0

∂ Hz

∂t
+ Mz, (16)

∂ Hx

∂z
− ∂ Hz

∂x
= σ22 ∗ ∂Ey

∂t
+ ε22 ∗ ∂2 Ey

∂t2
+ Jy, (17)

where ε22 and σ22 are the principal components of the
permittivity and conductivity relaxation tensor. A trans-
formation to the frequency-domain yields for the electric
field

∂2 Ẽy

∂x2
+ ∂2 Ẽy

∂z2
+ µ0

β22
ω2 Ẽy = ıωµ0 J̃y − ∂ M̃z

∂x
+ ∂ M̃x

∂z
. (18)

FIG.1. Illustration of the composite source concept. The contri-
bution of many single magnetic and electric sources located in
a small region of the numerical mesh gives a composite source
with a general directivity pattern. The grid spacings are de-
noted by dx and dz; Ix and Iz are the intensities of the electric
sources, and Iz is the intensity of the magnetic source at each
grid point. For instance, if all the grid points illustrated in the
figure are used to construct the composite sources, the numbers
of free parameters to fit a given radiation pattern is 25×3 = 75.

The TE solution for a single source is obtained from equa-
tions (7), (8), and (9) by making the following substitutions:

TM TE

Hy → Ey

β11 → β22

β33 → β22

My → µ0β22 M̃y

J̃z → −M̃z

J̃x → −M̃x.

Substituting these into equation (13) gives the composite TE
source solution.

EXAMPLES

The EM field obtained from the analytic solution (13) is used
to calculate radiation patterns, i.e., the source intensities IM ,
Ix , and Iz in a given region of the numerical mesh. Then, the
radar equations are solved with a direct grid method that com-
putes the spatial derivatives by using the Fourier pseudospec-
tral method and propagates the solution in time with an explicit
fourth-order Runge-Kutta algorithm (Carcione and Cavallini,
1994; Carcione, 1996). The snapshots presented in the follow-
ing figures are computed with this simulation method.

The calculations assume the source time function

h(t) = exp
[−2 f 2

c (t − t0)2] cos 2π fc(t − t0), (19)

whose Fourier transform is

h̃(ω) =
√

2π

fc
exp(ıωt0)

{
exp

[
−2π2

(
1
2

− ω

π fc

)2
]

+ exp

[
−2π2

(
1
2

+ ω

π fc

)2
]}

, (20)

where fc is the central frequency and t0 = 3/(2 fc) is a time
delay.

Consider a medium with ε11 = ε33 = 25ε0 (ε0 = 8.85 ×
10−12 F/m) and σ11 = 0. Figure 2 displays two snapshots of the
magnetic field at 50 ns for a source with a central frequency
of 200 MHz. The snapshots correspond to a single magnetic
source located at the center of a 3 × 3 m region and a grid spac-
ing of dx= dz= 7.5 cm. In (a), the medium is lossless (σ33 = 0),
implying an isotropic amplitude distribution. In (b), σ33 =
0.01 S/m, and the radiation pattern is anisotropic. A polar rep-
resentation of the quality factor (6) corresponding to Figure 2b
is shown in Figure 3a, indicating that the medium is lossless only
in the vertical direction [Q(θ = 0) → ∞].

The normalized radiation pattern in the lossless medium, at
a radial distance of 1.5 m, is represented in Figure 3b. As can
be seen, the amplitude distribution is isotropic. The effect of
the anisotropic conductivity depends on the distance from the
source: the radiation patterns at 1.5 m and 3 m from the source
are represented in Figures 3c and 3d, respectively. In this way,
different radar apertures can be simulated.

Carcione and Cavallini (1995) investigated the analogy be-
tween EM and shear-wave propagation. They showed that the
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propagation of the TM mode is governed by the same differ-
ential equations describing antiplane shear-wave motion. A
consequence of this mathematical analogy is that the EM ra-
diation patterns are equivalent to shear directivity patterns. In
fact, the following sources yield the typical seismic wave radi-
ation patterns (e.g., Pilant, 1979, 352):

Iz(0, 0) = 1, vertical electric current

Iz(−1, 0) = −1, Iz(1, 0) = 1, couple with moment

Iz(0, −1) = −1, Iz(0, 1) = 1, linear doublet

Ix(0, 1) = 1, Ix(0, −1) = −1

Iz(−1, 0) = −1, Iz(1, 0) = 1,

double couple with moment.

FIG. 2. Snapshots of the magnetic field at 50 ns corresponding
to a single magnetic source of 200 MHz central frequency. The
size of the model is 3 × 3 m. In (a), the medium is lossless; in
(b), σ11 = 0 and σ33 = 0.01 S/m.

The magnetic dipole IM (0, −1) = −1, IM (0, 1) = 1 gives the
snapshot and radiation pattern shown in Figures 4a and 4b,
respectively. Measurements of the radiation pattern of a dipole
bistatic GPR antenna in air by Bernabini et al. (1995) are rep-
resented by dots in Figure 5b. An equivalent source is obtained
by matching the experimental points with the inverse Fourier
transform of equation (13), using the intensities IM , Ix , and Iz

as fitting parameters. A standard nonlinear curve-fitting algo-
rithm is used to obtain the following composite source:

Ix(0, −1) = 0.4 A, Ix(1, 1) = 0.3 A,

Ix(0, 0) = −10 A, Ix(−1, −1) = −0.1 A,

Ix(0, −1) = 1.2 A, Ix(1, −1) = 0.5 A,

IM(−1, 1) = −0.25 γ A, IM(0, 1) = 0.15 γ A,

IM(1, 1) = −0.02 γ A, IM(−1, 0) = −0.15 γ A,

IM(0, 0) = 2.3 γ A, IM(1, 0) = −0.14 γ A,

IM(−1, −1) = −0.12 γ A, IM(0, −1) = 0.1 γ A,

IM(1, −1) = 0.18 γ A,

where γ = (µ0/ε0)1/2. Figure 5e illustrates a radargram corre-
sponding to a test model whose background medium has per-
mittivity of 25 ε0 and the rectangular objects have a permittivity
of 4 ε0. The antenna is located above the center object and has
a frequency of 200 MHz (the earth’s surface is not modeled).
A numerical mesh of 225 × 81 is used, with a grid spacing of
7.5 cm in the vertical and horizontal directions. The center ob-
ject produces the strongest reflection, since most of the energy
is directed downward.

Finally, Figure 6 compares analytic and numerical solutions
(continuous line and dots, respectively) of the magnetic field
along three different directions at r = 1.5 m, corresponding to
the following source:

Ix(0, −1) = 1 A, Ix(0, 1) = −1 A, IM (0, 1) = 0.2 γ A.

The solutions are normalized with respect to the receiver lo-
cated at 180◦. As can be seen, the agreement is virtually perfect,
giving a cross check of both analytic and modeling solutions.

CONCLUSIONS

The composite source concept provides a method to simulate
arbitrary radiation patterns from GPR antennas and to save
computer memory and time by reducing the amount of grid
points used for modeling the antenna. The method simulates
the far field radiated energy with, in general, no more than nine
grid points, i.e., a 3 × 3 region of the numerical mesh. The use
of an anisotropic medium at the source location allows flexible
control of the directivity properties. It is shown how anisotropic
conductivity affects the radar aperture.

Simple sources can be used as a base to construct complex
directivity patterns that simulate the radiation of a complex
antenna configuration in homogeneous media and in the pres-
ence of the air-earth interface. Moreover, the analysis gives the
solution of a complex distribution of sources in a medium with
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FIG. 3. (a) A polar representation of the quality factor corresponding to the medium whose snapshots are shown
in Figure 2b; (b) normalized radiation pattern in a lossless and isotropic medium; (c) and (d) are radiation patterns
in a lossy medium (as in Figure 2b) at distances of 1.5 m and 3 m, respectively, from the source.

FIG. 4. Radiation pattern (a) and snapshot (b) corre-
sponding to a magnetic dipole.
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FIG. 5. Source distribution (a), radiation pattern (b), snapshots [at 30 ns (c) and 60 ns (d)], and radargram (e), corresponding to a
real antenna, whose experimental values (measured by Bernabini et al., 1995), are indicated by dots. The background medium of
the test model has a permittivity of 25 ε0 and the rectangular objects (0.75 m width) have a permittivity of 4 ε0. The numbers in (a)
indicate the values of the magnetic intensities (in γ A) and of the electric intensities (in parentheses, in A).
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FIG.6. Comparison between analytic (solid line) and numerical
(dots) solutions at (a) 180◦, (b) 135◦, and (c) 90◦ for a composite
source.

anisotropic permittivity and conductivity properties and gen-
eral frequency-domain behaviour. This solution can be used to
test GPR forward modeling codes based on grid methods.

The research may proceed as follows. The simulation of com-
posite pulses could be obtained by initiating sources at different
times and positions in the radiation process, or using as fitting
parameters the whole source time history instead of the max-
imum intensities. In addition, anisotropic permittivity can be
used to model a nonisotropic wavefront arising from an arbi-
trary antenna shape. The concept can be easily extended to the
three-dimensional case, provided that the 3-D Green’s func-
tion for single magnetic and electric sources can be obtained
in closed analytic form.
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