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Effects of vector attenuation on AVO
of offshore reflections

J. M. Carcione∗

ABSTRACT

Waves transmitted at the ocean bottom have the char-
acteristic that, for any incidence angle, the attenuation
vector is perpendicular to the ocean-bottom interface
(assuming water a lossless medium). Such waves are
called inhomogeneous; in this case, the inhomogeneity
angle coincides with the propagation angle. The vec-
tor character of this transmitted pulse affects the am-
plitude variation with offset (AVO) response of deeper
reflectors. The analysis of the reflection coefficient is per-
formed for a shale (the ocean-bottom sediment) overly-
ing a chalk, assuming no loss in the sea floor and loss
with an incident homogeneous wave and an incident in-
homogeneous wave. Beyond the elastic critical angle the
differences are important, mainly for the incident homo-
geneous wave. These differences depend not only on the
properties of the media but also on the inhomogeneity
of the wave.

INTRODUCTION

In offshore seismic exploration, the waves transmitted at the
ocean bottom have a particular characteristic. Assuming that
water is lossless, their attenuation vectors are perpendicular
to the ocean-bottom interface. This fact affects the amplitude
variation with offset (AVO) response of reflection events gen-
erated at the lower layers.

Winterstein (1987) investigates the general problem from a
kinematic point of view. He analyzes how the angle between
propagation and maximum attenuation varies in an anelastic
layered medium and shows that departures from elastic-wave
raypaths can be large. On the other hand, compressional wave
reflection coefficients for different incidence inhomogeneity
angles are compared by Krebes (1984). He shows that the de-
viations from the elastic case can be important at supercritical
angles.
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In this paper I investigate the AVO response for an inho-
mogeneous wave generated at the ocean bottom and incident
at a lower interface separating two viscoelastic transversely
isotropic (TI) media. Unlike the analysis performed by Krebes
(1984), the inhomogeneity angle is not constant with offset but
is equal to the incidence angle, since the interface is assumed
to be parallel to the ocean bottom (see Figure 1). The inter-
face may separate two finely layered formations whose contact
plane is parallel to the stratification or two media with intrinsic
anisotropic properties, such as shale and limestone.

CONSTITUTIVE EQUATIONS

A consistent stress-strain model for anisotropic viscoelastic-
ity is given by Carcione (1995). The convention is to denote
with (ν= 1) and (ν= 2) the quasi-dilatational and quasi-shear
deformations, respectively. The complex stiffnesses relating
stress and strain for a 2-D TI medium can be expressed
as

p11 = c11 − 1
2 (c11 + c33)+ [ 1

2 (c11 + c33)− c55
]
M1

+ c55 M2, (1)

p33 = c33 − 1
2 (c11 + c33)+ [ 1

2 (c11 + c33)− c55
]
M1

+ c55 M2, (2)

p13 = c13 − 1
2 (c11 + c33)+ [ 1

2 (c11 + c33)− c55
]
M1

+ c55(2− M2), (3)

and

p55 = c55 M2. (4)

The elastic constants cI J , I , J = 1, . . . , 6 are the unrelaxed
or high-frequency limit stiffnesses; Mν(ω) are dimensionless
complex moduli describing the amount of attenuation. In the
purely elastic case (ω→∞) Mν → 1.
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GENERATION OF INHOMOGENEOUS WAVES

Let us assume that the positive z-axis points downward. A
general solution for the particle velocity field v = (vx, vz) is

v = iωU exp[iω(t − sxx − szz)], (5)

where sx and sz are the components of the complex slowness
vector, t is the time variable, and U is a complex vector. The
real slowness vector

sR ≡ [Re(sx),Re(sz)]> (6)

and the attenuation vector

α ≡ [Im(sx), Im(sz)]> (7)

in general will not point in the same direction; when they do
not, waves are called inhomogeneous. Otherwise, the waves
are homogeneous, as in 1-D space.

Figure 1 depicts a transmitted inhomogeneous wave gener-
ated at the ocean bottom. Since the attenuation vector of waves
propagating in the water layer is zero, viscoelastic Snell’s law
(Wennerberg, 1985) implies that the transmitted attenuation
vector is perpendicular to the ocean bottom. Note that the in-
homogeneity angle is equal to the propagation angle θ .

The complex slowness relation of a viscoelastic TI medium
has the form (e.g., Auld, 1990)(

p11s2
x + p55s2

z − ρ
)(

p33s2
z + p55s2

x − ρ
)

− (p13 + p55)2s2
xs2

z = 0 (8)

and has two solutions, corresponding to the quasi-compres-
sional (qP) and quasi-shear (qS) waves.

The complex slowness components below the ocean bottom
are

sx = sR sin θ, sz = sR cos θ − i
α

ω
, (9)

FIG. 1. Snell’s law for a plane wave incident on the ocean-
bottom interface. The diagram shows the continuity of the hori-
zontal component of the complex slowness vector. In the ocean
this vector is real, since water is assumed to be lossless. In the
shale layer the attenuation vector is perpendicular to the ocean
bottom.

where sR and α are the magnitudes of sR and α, respec-
tively. For a given angle θ , sR and α can be computed from
equation (8); substitution of these quantities into equation (9)
yields the slowness components of the incident inhomogeneous
wave. However, this method requires the numerical solution
of two fourth-degree polynomials. A simpler approach is the
following.

First, assume a given propagation angle θh for a hypothetical
transmitted homogeneous wave. Then, the complex slowness
is

s= 1√
2ρ

(
p55 + p11 sin2 θh+ p33 cos2 θh± E

)−1/2
, (10)

where ρ is the density and

E = {[(p33 − p55) cos2 θh − (p11 − p55) sin2 θh
]2

+ (p13 + p55)2 sin2 2θh
}1/2

, (11)

with the plus sign corresponding to the qP-wave and the minus
sign to the qS-wave (e.g., Carcione, 1997).

Next, choose sx for the inhomogeneous wave equal to
Re(s) sin θh a real quantity (according to Snell’s law), since the
projection of α on the interface is zero. Then compute sz from
equation (8). Finally, compute the incidence propagation angle
θ for the inhomogeneous wave as

θ = arcsin

(
sx√

s2
x + [Re(sz)]2

)
. (12)

In this way, a vector (sx, sz), satisfying equation (8) and in-
put to the reflection-transmission problem, can be obtained for
each incidence angle θ . The price we pay for this simplicity is
that the ray angle does not reach 90◦, but this is not impor-
tant since the offsets of interest in exploration geophysics are
sufficiently covered.

REFLECTION-TRANSMISSION PROBLEM

The problem of reflection and refraction at an interface be-
tween two TI media whose respective symmetry axes are per-
pendicular to the interface has been investigated by Graebner
(1992) and Carcione (1997) in the elastic and anelastic cases,
respectively. He considered a homogeneous incident wave and
obtained the attributes of the reflected and transmitted waves
such as, for instance, the energy reflection coefficients, the
phase and energy velocities, the quality factor, and the inter-
ference coefficients.

To distinguish between downward- and upward-propagating
waves, the slowness relation (8) is solved for sz, given the hor-
izontal slowness sx . It yields

sz = ± 1√
2

(
K1 ∓ pv

√
K 2

1 − 4K2K3

)1/2

, (13)

where

K1 = ρ
(

1
p55
+ 1

p33

)
+ 1

p55

[
p13

p33
(p13 + 2p55)− p11

]
s2

x,

K2 = 1
p33

(
p11s2

x − ρ
)
, K3 = s2

x −
ρ

p55
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and pv(z)1/2 denotes the principal value of the square root of
the complex number z. The signs corresponds to (+,−) =
downward qP-wave, (+,+) = downward qS-wave, (−,−) =
upward qP-wave, and (−,+) = upward qS-wave.

Application of welded boundary conditions generates the
following matrix equation for the reflection and transmission
coefficients R and T :

βP1 βS1 −βP2 −βS2

γP1 γS1 γP2 γS2

ZP1 ZS1 −ZP2 −ZS2

WP1 WS1 WP2 WS2




RP P

RPS

TP P

TPS

 =

−βP1

γP1

−ZP1

WP1

 .
(14)

The upper layer is denoted by the subscript 1 and the lower
layer by the subscript 2. The symbols P and S indicate the
qP- and qS-waves, respectively. The quantities β and γ are
the horizontal and vertical complex polarizations, respectively,
given by

β = pv

[
p55s2

x + p33s2
z − ρ

p11s2
x + p33s2

z + p55
(
s2

x + s2
z

)− 2ρ

]1/2

(15)

and

γ = ±pv

[
p11s2

x + p55s2
z − ρ

p11s2
x + p33s2

z + p55
(
s2

x + s2
z

)− 2ρ

]1/2

, (16)

where the plus and minus signs correspond to the qP- and qS-
waves, respectively. Moreover,

W = p55(γ sx + βsz) and Z = βp13sx + γ p33sz, (17)

and the ray angle is

tanψ = Re(β∗X + γ ∗W)
Re(β∗W + γ ∗Z)

, (18)

where

X = βp11sx + γ p13sz (19)

(Carcione, 1997).

RESULTS AND DISCUSSION

The material properties of the incidence and transmission
media (the shale and the chalk, respectively) are given in
Table 1, where VI J =

√
cI J/ρ. The unrelaxed velocities are

indicated in the table, and attenuation is quantified by the pa-
rameters Qν = Re(Mν)/Im(Mν). Wright (1987) calculated the
reflection coefficients for the elastic case, which is obtained in
the unrelaxed limit.

The comparison between the absolute values of the qP-wave
reflection coefficients, together with the corresponding phase

Table 1. Material properties.

V11 V33 V55 V13 ρ
Rock (m/s) (m/s) (m/s) (m/s) Q1 Q2 (g/cm3)

Shale 3810 3048 1402 1828 10 5 2.3
Chalk 5029 5029 2621 3414 100 70 2.7

angles, is shown in Figure 2, where E corresponds to the elastic
case (i.e., elastic shale), H to an incident viscoelastic homoge-
neous wave, and I to an incident inhomogeneous wave with
the characteristics indicated in Figure 1 (the chalk is assumed
anelastic in the three cases). In the purely elastic case, i.e., shale
and chalk both elastic (Wright, 1987), there is a critical angle
between 40◦ and 50◦. It can be shown that the energy vector of
the refracted qP-wave points downward for all incident angles.
Thus, there is no critical angle in the strict sense. However, the
shape of the E and I curves indicates that a quasi-evanescent
wave propagates through the interface. This character is lost in
the H curve. In the near-offset (up to 20◦), the three coefficients
follow the same trend and are very similar each other. The dif-
ference with the elastic case (E) is because of the anelastic
properties of the shale. Beyond 30◦ the differences are impor-
tant, mainly for the incident homogeneous wave. This can also
be observed in the phase, where the H curve has the oppo-
site sign with respect to the other curves. A similar effect is
reported by Krebes (1984).

Figure 3 represents the energy velocities of the reflected
qP-wave for the three cases. The variations with offset are
mainly due to shale anisotropy and, as before, the differences
with the elastic case (E) are from the anelastic properties of the

FIG. 2. Comparison between the absolute values of the RP P
reflection coefficients together with the corresponding phase
angles, where E corresponds to the elastic case (i.e., elastic
shale), H to an incident viscoelastic homogeneous wave, and
I to an incident inhomogeneous wave with the characteristics
indicated in Figure 1.
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shale. The elastic velocities are higher than the viscoelastic ve-
locities since the elastic limit corresponds to the high-frequency
limit. The attenuation of the reflected qP-wave is shown in Fig-
ure 4. For an incident homogeneous wave (H), the variations
with angle are solely because of the anisotropic effects. On the
contrary, the variations for the (I ) curve are attributable to the
inhomogeneous character of the wave. It can be shown that a
similar trend is obtained for an isotropic shale.

The interference coefficients, displayed in Figure 5, are the
result of the interaction of the stress and particle velocity fields
of the incident and reflected qP-waves. Much of the energy flow
is because of interference beyond the elastic critical angle. For
some incident angles, the interference coefficients can have the
same magnitude as the reflection coefficients.

To complete the reflection problem, Figures 6–8 show the
corresponding curves for the reflected qS-wave resulting from
an incident qP-wave. As can be appreciated, mode conversion
and anelastic effects are significant beyond the elastic critical
angle.

The values of the shale quality factor in Table 1 correspond
to a very unconsolidated sea-floor sediment. Typical values for
marine sediments can be found in Hamilton (1972), with com-
pressional quality factors of approximately 30 (S-wave quality
factors are not reported). Let us consider Q1= 30 and Q2= 10,
which are close to the values measured by McDonal et al.

FIG. 3. Comparison between the energy velocities of the re-
flected qP-wave for the three cases indicated in Figure 2.

FIG.4. Comparison between the attenuation magnitudes of the
reflected qP-wave for the three cases indicated in Figure 2.

(1958) in Pierre Shale. Figure 9 compares the absolute values
of the qP-wave reflection coefficients and the corresponding
phase angles for the three cases illustrated in Figure 2. As can
be appreciated, the differences are still important, mainly at
supercritical angles.

FIG. 5. Comparison between the interference coefficients of
the incident homogeneous (H) and inhomogeneous (I ) waves.
The coefficients correspond to the interaction of the stress and
particle velocity fields of the incident and reflected qP-waves.

FIG. 6. Comparison between the absolute values of the RPS
reflection coefficients together with the corresponding phase
angles. The different cases are indicated in Figure 2.
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FIG. 7. Comparison between the attenuation magnitudes of
the reflected qS-wave as the result of an incident qP-wave. The
different cases are indicated in Figure 2.

FIG. 8. Comparison between the interference coefficients for
incident homogeneous (H) and inhomogeneous (I ) waves. The
coefficients correspond to the interaction of the stress and
particle velocity fields of the incident qP-wave and reflected
qS-wave.

CONCLUSIONS

AVO studies in the presence of a highly attenuating ocean
bottom (e.g., unconsolidated sediments) should not be based
on forward models and processing techniques that assume sim-
plified rheologies or neglect the vector attenuation character
of the seismic pulse. These properties affect not only the anal-
ysis of the shallow layers but also the inversion of the deeper
reflectors.

Amplitude and phase differences are significant at super-
critical angles. Variations of the attenuation depend on both
the anisotropic properties and the inhomogeneity of the wave.
Moreover, for certain offsets, energy flows produced by inter-
ference of stress and particle velocity can be comparable to the
energy flux of the reflected waves, an effect that does not occur
in perfect elasticity.

The analysis does not take into account the amplitude vari-
ations with angle of the incident inhomogeneous wave gener-
ated at the ocean bottom. This is an additional effect to consider
in the AVO inversion process.

FIG. 9. Comparison of the absolute values of the RP P reflection
coefficients and the corresponding phase angles for the three
cases indicated in Figure 2, with a sea-floor attenuation defined
by Q1 = 30 and Q2 = 10.
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