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Short Note

Staggered mesh for the anisotropic and viscoelastic wave equation

José M. Carcione∗

INTRODUCTION

Computation of the spatial derivatives with nonlocal differ-
ential operators, such as the Fourier pseudospectral method,
may cause strong numerical artifacts in the form of noncausal
ringing. This situation happens when regular grids are used.
The problem is attacked by using a staggered pseudospectral
technique, with a different scheme for each rheological rela-
tion. The nature and causes of acausal ringing in regular grid
methods and the reasons why staggered-grid methods elimi-
nate this problem are explained in papers by Fornberg (1990)
and Özdenvar and McMechan (1996). Thus, the objective here
is not to propose a new method but to develop the algorithm
for the viscoelastic and transversely isotropic (VTI) wave equa-
tion, for which the technique can be implemented without in-
terpolation. The algorithm is illustrated for one physical sit-
uation that requires very high accuracy, such as a fluid-solid
interface, where very large contrasts in material properties oc-
cur. The staggered-grid solution is noise free in the dynamic
range where regular grids generate artifacts that may have am-
plitudes similar to those of physical arrivals.

THE WAVE EQUATION

The time-domain equations for propagation in a hetero-
geneous VTI medium can be found in Carcione (1995). The
anelasticity is described by the standard linear solid, also called
the Zener model, that gives relaxation and creep functions in
agreement with experimental results (Zener, 1948).

The notation in Carcione (1995) denotes the relaxed or low-
frequency limit stiffness coefficients as cI J and the unrelaxed
or high-frequency limit stiffness coefficients as ĉI J . To use the
standard notation and define the purely elastic limit in the un-
relaxed regime, we denote the unrelaxed coefficients by cI J

and the relaxed coefficients by c0
I J .

The 2-D velocity-stress equations for anelastic propagation
in the (x, z)-plane, assigning one relaxation mechanism to di-
latational anelastic deformations (ν= 1) and one relaxation
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mechanism to shear anelastic deformations (ν= 2), can be ex-
pressed by the following equations.

First are Newton’s equations:

σxx,x + σxz,z = ρv̇x + fx (1)

and

σxz,x + σzz,z = ρv̇z+ fz, (2)

where vx and vz are the particle velocities; σxx, σzz, and σxz are
the stress components; ρ is the density; and fx and fz are the
body forces. A dot above a variable denotes time differentia-
tion.

The constitutive equations are

σ̇xx = c11vx,x + c13vz,z+ K 0ε1 + 2c0
55ε2, (3)

σ̇zz= c13vx,x + c33vz,z+ K 0ε1 − 2c0
55ε2, (4)

and

σ̇xz = c55(vx,z+ vz,x)+ c0
55ε3, (5)

where ε1, ε2 and ε3 are memory variables. The value

K 0 = 1
2

(
c0

11 + c0
33

)− c0
55. (6)

The relaxed stiffnesses are

c0
11 = c11 − D + Kη1 + c55η2, (7)

c0
33 = c33 − D + Kη1 + c55η2, (8)

c0
13 = c13 − D + Kη1 + c55(2− η2), (9)

and

c0
55 = c55η2, (10)

with

K = D − c55, D = 1
2 (c11 + c33) (11)
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and

ην = τ
(ν)
σ

τ
(ν)
ε

· (12)

The values τ (ν)
σ and τ (ν)

ε are material relaxation times, corre-
sponding to dilatational and shear deformations.

The constitutive equations satisfy the condition that the
mean stress depends only on the dilatational relaxation func-
tion in any coordinate system. (The trace of the stress tensor
should be invariant under coordinate transformations.) More-
over, the deviatoric stresses solely depend on the shear relax-
ation function (Carcione, 1995).

The memory variable equations are

ε̇1 = 1

τ
(1)
σ

[(
1− η−1

1

)
(vx,x + vz,z)− ε1

]
, (13)

ε̇2 = 1

2τ (2)
σ

[(
1− η−1

2

)
(vx,x − vz,z)− 2ε2

]
, (14)

and

ε̇3 = 1

τ
(2)
σ

[(
1− η−1

2

)
(vx,z+ vz,x)− ε3

]
. (15)

STAGGERED MESH AND CALCULATION OF THE SPATIAL
DERIVATIVES

On a regular grid the field components and material proper-
ties are represented at each grid point, say, represented by the
symbol ♠. On a staggered grid, variables and material proper-
ties are defined at half-grid points as indicated in the following
mesh:

♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
4 ♣ 4 ♣ 4 ♣ 4 ♣
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦

such that

♠ (i, j ) σxx, σzz, ε1, ε2, cI J , K 0, c0
55, τ

(ν)
σ , ην,

(16)
♦ (

i + 1
2 , j

)
vx, fx, ρ,

1
(
i, j + 1

2

)
vz, fz, ρ,

and

♣
(
i + 1

2 , j + 1
2

)
σxz, ε3, c55, c0

55, τ
(2)
σ , η2.

Material properties at half-grid points ♦, ♣, and 4 are com-
puted by averaging the values defined at regular points♠. The
averaging is chosen in such a way to reduce the error between
the numerical solution corresponding to an interface aligned
with the numerical grid and the equivalent solution obtained
with a regular grid. Minimum ringing amplitudes for the exam-
ple illustrated in the next section are obtained when the aver-
ages are computed as follows. The density at points ♦ and4 is

ρ
i+ 1

2 , j = 1
2

(ρ i, j + ρ i+1, j ) (17)

and

ρ
i, j+ 1

2 = 1
2

(
ρ i, j + ρ i, j+1), (18)

respectively. The value c55 at points ♣ is(
c

i+ 1
2 , j +

1
2

55

)−1
= 1

4

[(
ci, j

55

)−1 + (ci+1, j
55

)−1

+ (ci, j+1
55

)−1 + (ci+1, j+1
55

)−1
]
; (19)

and c0
55 is c55 (Røsten et al., 1996). The values τ (2)

σ and η2 are
a simple arithmetic averaging of the form

ai+ 1
2 , j+

1
2 = 1

4
(ai, j + ai+1, j + ai, j+1 + ai+1, j+1). (20)

A review of the artifacts and numerical instabilities caused by
the Fourier differential operator when using a regular grid can
be found in Özdenvar and McMechan (1996, 1997). As they
show, the use of a staggered grid overcomes these problems.
The first-order derivative computed with the staggered
differential operator is evaluated between grid points and
uses even-based Fourier transforms. The standard first-order
differential operator along the x-direction is

Dxφ =
kx(N)∑
kx=0

ikxφ̃(kx) exp(ikxx), (21)

where φ̃ is the Fourier transform of φ and kx(N) is the
Nyquist wavenumber. Staggered operators, which evaluate
the derivatives between grid points, are given by

D±x φ =
kx(N)∑
kx=0

ikx exp(±ikx1x/2)φ̃(kx) exp(ikxx), (22)

where 1x is the grid spacing.
The staggered viscoelastic equations can be written as

♦ D+x σxx + D−z σxz = ρv̇x + fx,

4 D−x σxz+ D+z σzz= ρv̇z+ fz,

♠ σ̇xx = c11 D−x vx + c13 D−z vz+ K 0ε1 + 2c0
55ε2,

♠ σ̇zz= c13 D−x vx + c33 D−z vz+ K 0ε1 − 2c0
55ε2,

(23)
♣ σ̇xz = c55

(
D+z vx + D+x vz

)+ c0
55ε3,

♠ ε̇1 = 1

τ
(1)
σ

[(
1− η−1

1

)(
D−x vx + D−z vz

)− ε1
]
,

♠ ε̇2 = 1

2τ (2)
σ

[(
1− η−1

2

)(
D−x vx − D−z vz

)− 2ε2
]
,

and

♣ ε̇3 = 1

τ
(2)
σ

[(
1− η−1

2

)(
D+z vx + D+x vz

)
− ε3

]
.

EXAMPLE

The fluid-solid interface is one of the most extreme
cases where the differential operator introduces a noncausal
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ringing noise, generated by discontinuities in the material
properties. Consider an interface where Vf = 1500 m/s and
ρ f = 1000 kg/m3 are the velocities and density of the fluid,
respectively. The properties of the (VTI) solid half-space are
VP =

√
c33/ρ= 2000 m/s, the vertical velocity of the compres-

sional wave; VS=
√

c55/ρ= 1150 m/s, the shear velocity; ε= 0.3
and δ= 0.1 are the anisotropy parameters (Thomsen, 1986);
and ρ f = 2000 kg/m3, the density. In addition, the medium is
viscoelastic with quality factors QP = 60 and QS= 35. Note that

FIG. 1. Snapshot of the vertical particle velocity on (a) a reg-
ular grid and (b) a staggered grid. The source, with a central
frequency of 25 Hz, is located 820 m above the fluid–solid in-
terface. The grid size is 91× 91, and the spacing is 20 m.

the wave velocities correspond to the unrelaxed state of the
medium.

We consider a regular grid of 91× 91 points and a staggered
grid of 88× 88 points, both with a grid spacing of 20 m. Figure 1
compares the respective snapshots caused by a dilatational
source located 280 m above the fluid–solid interface. As can
be appreciated, the staggered differential operator does not
generate the ringing. To verify that late time ringing is not gen-
erated, the time history along a vertical line perpendicular to

FIG. 2. Time history along a vertical line perpendicular to the
fluid–solid interface, where (a) corresponds to the regular grid
and (b) corresponds to the staggered grid.
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the interface is illustrated in Figure 2, where (a) corresponds
to the regular grid and (b) corresponds to the staggered grid.
The calculations on a standard grid show strong ringing, which
is not present in the staggered mesh.
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