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Electromagnetic media as, for instance, imperfect dielectrics, semiconductors, and materials with
magnetic losses, have timénd frequency-dependent permittivity, magnetic permeability, and
electric conductivity, and, therefore, energy dissipation and pulse distortion occurs. The
electromagnetic Umov—Poynting’s theorem is reinterpreted in light of the theory of viscoelasticity
in order to define the stored and dissipated energy densities in the time domain. A simple dielectric
relaxation model equivalent to a viscoelastic mechanical model illustrates the analogy that identifies
electric field with stress, electric induction with strain, dielectric permittivity with reciprocal bulk
modulus, and resistance with viscosity. 199 Acoustical Society of America.
[S0001-496629)04801-9

PACS numbers: 43.20.Bi, 43.20.WBEC]

INTRODUCTION dielectric that does not satisfy the Kramers—Kigprelations.
The definition of energy is important in a large number

Energy-balance equations are important for characterizef applications where it is necessary to know how the energy
ing the energy stored and the transport properties in a fieldransferred by the e.m. field is related to the strength of the
However, the definition of storetfree) energy and energy field. This context involves the whole electrical, radio, and
dissipation rate is controversial, both in electromagneétismoptical engineering, where the medium can be assumed di-
and viscoelasticity. The problem is particularly intriguing in electrically and magnetically linear. In particular, the Debye
the time domain, since different definitions may give themodel has been applied to bioelectromagnétitsin the
same time-average value for harmonic fields. This ambiguitynalysis of the response of biological tissues, and to geo-
is not present when the constitutive relation can be describephysics, in the simulation of ground-penetrating radar wave
in terms of springs and dashpdisg., Refs. 3 and)4Thatis, propagation through wet soit&"18
when the system can be defined in terms of internal variables
and the relaxation function has an exponential form.
Christensefiand Golden and Grahdrgive a general expres- |- MAXWELL'S EQUATIONS AND CONSTITUTIVE

sion of the viscoelastic energy densities which is consisterfRELATIONS

with the mechanical model description. Maxwell's equations for isotropic dispersive media, in

Formal analogies, in the mathematical sense, exist b&he absence of external electric and magnetic currents, are
tween electromagnetism and other fields like mech&mind

viscoelasticity. In this case, Carcione and Cavaflifor in- X L= — % 1)
stance, show an analogy for vector wavefields and material at’

properties that allows the acoustic and electromagnetic prob- 9D

lems to be solved with the same analytical methodology. In v x.97= 0_\t+7 )

this work, the stored electric and magnetic energies are de-

fined in terms of the viscoelastic expression by using thevhere & is the electric field, 77 is the magnetic fieldZ is
analogy. The theory is applied to a simple dielectric relaxthe electric induction,7 is the magnetic induction, ang is
ation process that is mathematically equivalent to the Zenethe conduction current. The symba! denotes the vector
model or standard linear solid viscoelastic rheoldyy. product.

It is important to point out that the theory cannot be  For time-harmonic fields with time dependence s
applied to the whole range of electromagnetom) prob-  wherew is the angular frequency, Eqdl) and (2) read
lems, since a mathematical analogy may not necessarily im- _
ply a physical analogy. In viscoelasticity, the real part of the VXE=—iwB, )
complex moduli (describing pure deformation modes VXxH=iwD+J, (4)
positive, and the presence of intrinsic dissipation implies ve- ) )
locity dispersion and vice versa(Kramers—Kfmig respectively, where&e, D, H, andB are the corresponding

relationd™*3. These properties preclude the use of the theoryiMe-harmonic fields. o o
for an ionized gas whose complex permittivity may, in some & consider constitutive relatioris(#) and.(.77) of

cases, be negative.g., Ref. 13 or for a lossless dispersive e form

o
T o D= ex—- )
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and

0.7

= u*
A=

(6)

(i.e., nonmoving media where € and u are the dielectric
permittivity and magnetic permeability functions, ahdle-
notes time convolution. Similarly, generalized Ohm’s law
can be written as

9E

T=o* —, (7)

whereo is the conductivity function.
For harmonic fields, the constitutive relations read

D=.7 ﬁ) E, B=7 a—”)H, (8)
( ot ( ot
and
=7 ‘?0) E ©)
' ot '

where .7 (-) is the Fourier transform operator. For conve-

respectively. The time-average energy densities are such that
7 Re(¢€)|E|?=Re(u,) stored (di)electric

1
2

7 Re(11)|H|?=Re(up)

o Y Im(o)|E|?=Im(u,) stored electric

stored magnetic

7 Im(€)|E|?=Im(u,) dissipated(di)electric (17)

3 o ' Re(o)|E|?=Re(u,) dissipated electric

3 Im(w)|H|?=Im(u,,) dissipated magnetic,
where

u,= 30 J*-E=j0 'o*|E|? (18)

is the (complex electric energy density.

IIl. ENERGY DEFINITION IN ELECTROMAGNETISM

Time-average energies for harmonic fields are precisely
defined. Let us consider, for instance, the formulation of the

nience, the medium properties are denoted by the same syranergy balance equation given in Oughstun and Shefman.

bols, in both the time and the frequency domains, i.e.,

Il. UMOV-POYNTING'S THEOREM FOR HARMONIC
FIELDS

de

E)HE,...,etC...

The scalar product of the complex conjugate of .
with E, use of V-(ExH*)=(VXE)-H* —E-(VxH*),
and substitution of Eq3) gives Umov—Poynting’s theorem

for harmonic fields,

—V.P=1J*.E-2iw(Us—Up), (10
where

P=1EXH* (11
is the complex Umov—Poynting vector, and

Ue=3E-D*, u,=3B-H*, (12

are the harmoni¢complex (di)electric and magnetic energy
densities. The symbdl denotes complex conjugate.

Substitution of the constitutive relatio8) and(9) into
Eq. (10) yields

20V -P=—w(eX|E|2— u|H|?), (13
where
[
c=e—o. (14)
Taking real and imaginary parts ¢£3) gives
2 1m(V -P)= w[Re(e1)|E|*—Re(u)[H|?]
=power energy density, (15
2 Re(V-P) = w[Im(e7)|E|*+Im(u)[H|?]
=rate of dissipated energy, (16
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Upon taking the scalar product of E(l) with .77 and Eq.
(2) with ¢ and taking the difference, Oughstun and Sherman
(Ref. 1, Eq. 2.2.50btain
) _du
—V~;’/=:7-5+E, (19
where = &x.77 is the Umov—Poynting vector and is
the total energy per unit volume given by

U=Ug+U,, (20
with
e 0T o1
PR @
the time rate ofdi) electric energy density, and
WUnm . 9.5 -
T @22

the time rate of magnetic energy density.
The time average of the scalar product of two harmonic
vector fields, with the same oscillation frequency, is given by

(A4 7)= L Re(A-B*). (23)

Note that taking the time average of Eq$9) yields
—(V-’)= ; Re(J*-E)+ 20[Im(ue) —Im(uy)], (24)

which can be obtained from EL0) by taking its real part.
Equation(24) gives the balance of the rate of dissipated en-
ergy density and is equivalent to E{.6).

We now review some of the statements discussed by
Oughstun and Sherman.

(1) Poynting’s theorenprovides a mathematically consis-
tent formulation of energy flowp. 24). This does not
preclude the existence of an alternative formulation. For
instance, Jeffreys gives an alternative energy balance,
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implying a new interpretation of the Poynting vecteee  density is by no means the only possible oifgee

also the interesting discussion in Robingbrand  Rabotnov?? p. 72. Moreover, as we shall see below, the

Jeffreyg?). general expression of the free energy is not uniquely deter-
(2) ... it cannot be definitely concluded that the time rate ofmined by the relaxation function.

energy flow at a point is uniquely given by the value of Differentiating W, yields

the Poynting vector at that point, for one may add to the MW e

Poynting vector any solenoidal vector field without af- e_ 9~ J' K(t— 75,007 (7,)d 7,

fecting the statement of conservation of enerdp. 26). at at
In fact, as the authors state, there is no strictly valid
justification for the accepted interpretation of the Poyn- f J — K(t— — )T (7y)
ting vector. —o) e Ot
3) ... one cannot, in general, express the electric ener
@ n 9 XP ! 9y -7 (gty)dr, dr,. 28)

density and the dissipation separately in terms of the
dielectric permittivity and electrical conductivity of a The constitutive relatioris) can be rewritten as
dispersive mediungp. 31). In the general caspg.e., the

time-d i tio9)], iti t ible t t ) 0T
ime-domain equatiofil9)], it is not possible to separate sepr 2 29

the stored energies from the dissipated energies. Relating ot
ue andU, gives[see Eq(2.2.38], _ _ o N _ _
1 /oU where(t) is the dielectric impermeability function, satisfy-
= [T=e i
Im(ug)= >0 < F > (250 ing
and no relationship of this type for the real partwyf. de dIB
The same reasoning applies to the magnetic energy. We 3t * 5t _ 61, €xfz=eofo=1, e(w)B(w)=1,
present in the next section an alternative definition where (30)
energy can be, in principle, separated between stored and
dissipated. with the subindicese and 0 corresponding to the limits
(4) For time-harmonic fields, the separation is shown in Eq.—0 andt—c, respectively. If
(17). However, there is no relation between the time- B()=K(t,0H(1), (31)

average energies defined in EG7) and the time aver-
ages ofU,, Uy, (p. 36. In the next section, a link be- whereH(t) is the Heaviside function, then,
tween harmonic energy densities and transient energy

. . . t

densities is obtained. K(t—1,,0) 7" (75)drp= (1), (32)

Note that Oughstun and ShermiRef. 1, Eq.(2.1.19] o
use an exptiwt) time dependence. and (28) becomes
IV. UMOV-POYNTING’S THEOREM FOR TRANSIENT % 97 _We b 33
FIELDS > o T Tt T Pe (33

Poynting’s theoren(19), omitting Oughstun and Sher- ;nare
man’s interpretation of the energies, is

y _ 1t (t 9
oy 0.2 =__ _ — —
V.= gire — v (26) Deb="7 LJ,QO Kt mtom)
‘ ot ot

Let us consider a storedi)electric (free) energy density of XS (11)- L' (12)d7 dTy (34

the form is the rate of dissipation dfli) electric energy density. Note

1 [t [t that the relation(31) does not determine the stored energy,
(H=3 f j K(t=7,t=172) i.e., this can not be obtained from the constitutive relation.
However, if we assume that
XT' (1)L (15)d7y d73, 27

where the prime denotes the first-order derivative with re-

spect to the argument. HuntéRef. 3, p. 54% and Golden such that

and Graham(Ref. 7, p. 12 define a similar form for the

linear viscoelastic case. The underlying assumptions are that BH=G(H(1), (36)
the dielectric properties of the medium do not vary with t'meth|s choice will suffice to determini, and

(nonaging materig) and, as in the lossless case, the energy

density is quadratic in the electric field. Moreover, the ex- 1 (t [t
pression includes a dependence on the history of the electric We(1) LOJW
field. However, it is important to note that the above assump-

tion as to the structure of the formula for the free energy S (15)d7 d7y, (37)

K(t,Tl):G(t+ Tl), (35)

2t—7— 7)Y (71)
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vt , .78 IWp,
Do(t)=— G'(2t—71— 1) (71) T = at +Dpy, (46)
'g,(Tz)dTl dT2. (38) where
Equation (35) is consistent with the corresponding theory 1 J't f‘ L
implied by mechanical modefsBreuer and Onat discuss Wn()=7 | | F@tmm= )2 ()
some realistic requirements from whié(t,7;) must have .
the reduced fronG(t+ 7). 7' (Tp)dTy d7y, (47)
Let us calculate the time average of the stored energy t It
density for monochromatic fields. Althougtr(—<) does Dm(t)=—J J’ F'(2t—7y—75).7" (11)
not vanish, the transient contained (8i7) vanishes for suf- el
ficiently large times, and this equation can be used to com- A (1,)d7y drsp, (48)

pute the average of time-harmonic fields. The change of vari-

ablesty—t— 7, and r,—t— 7, yields

1 o (o
w5 [ [ etrr e

S (t—7y)d71 A7y, (39
Using (23), the time average of Eq39) is
<We>:%, w2|D|2
Xf j G(7m+7)codw(my—75)]d7m d7y.
0Jo
(40)

A new change of variables= r,+ 7, andv=1,— 7, gives

(W)= % (Jo2|D|2f:J‘_u G(u)coq wv)du dv

:%w|D|2f:G(u)sin(wu)du. (41)

From Eq.(36), and using integration by parts, we have that

=R B(w)]

il
Re{j( at

=G(OO)+wf:[G(t)—G(OO)]siert)dt.

(42)
Using the property
wfoo sin(wt)dt=1, (43
0
we obtain
ReB(w)]=0 f “G(sin(wh)dt. (44)
0

Substituting Eq(44) into Eq.(41), and sinceE= B(w)D, we
finally get

(We)=3|D|? Re[ B(w)]=Re(Ue). (49)

A similar calculation shows thaiD ) =2w Im(uy).

Similarly, the magnetic term on the right-hand side r.h.s.

of Eq. (26) can be recasted as
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are the stored magnetic energy density and rate of dissipation
of magnetic energy density, respectively, such that
0.7

FO=y* ——,

= WO=FOH, (49)

with vy the magnetic impermeability function.

The rate of dissipated electric energy density can be de-
fined as

t t
p,0=-[" [ s@t-r-r)#(n)

&' (mp)d7y d7p, (50)
where
T=o* a—t’ a(t)=(t)H(t). (51)

Formally, the stored energy density due to the electric cur-
rents out of phase with the electric field, satisfies

W,
ot

o

=7-#-D,. (52
In terms of the energy densities, E§6) becomes

J
-V.7r= r (Wy+We+Wy)+D,+De+Dyp,, (653

and the correspondences with the averaged time-harmonic
values are

(We)=Re(Ue), (Wp)=Re(up),

(De)=20 Im(u),

(D,)=20 Re(u,), =
(Dm)=—2w Im(uy,).

Note that{ 7-&#) is equal to the rate of dissipated energy
density(D,), and that

IW,
L -

ot

in contrast with Oughstun and Sherman’s res@k). The
same property holds for the stored electric and magnetic en-
ergy densities.

There are other alternative time-domain expressions for
the energy densities whose time-average values coincide

J. M. Carcione: Energy in lossy electromagnetic media 629



e with 7 a parameter that introduces the dissipation. Note that

Ill ﬂ D2, €y is the static (low-frequency permittivity and e,
|“ |] =eo7,/7,=€,<¢, is the optical(high-frequency permit-
tivity.
— We have that
€] n D
|
m l —= e(t)=€p 1—| 1— —|exp(—t/7y) |H(1), (62
Dy Ty
&1 &y 1
e
,8(t)=G(t)H(t)=—[1—(1——1)exq—t/75)}H(t)
£ €0 Tz
" (63
and

FIG. 1. This electric circuit is equivalent to a purely dielectric relaxation

process, where, and e, are the capacitances, is a resistances is the 1+iwT
electric field, andZ is the electric induction. e(w)= Bfl(w) =€ - r'E (64)
Nl+iwr,)
with those given in Eq954), but fail to match the energy in Equation(64) can be rewritten as
the time domain. For instance, the following definition, o — e
0 €w
W,=3%-2, (56) lo)= €t g (65
as the storeddi) electric energy density, and For instance, the permittivity65) describes the response of
1 P72 4 polar molecules, such as water, to the e.m. fféfth.
De=5| & —/——<- , (57 Substituting Eq(63) into Eq. (29) and defining the in-
2 ot ot
ternal variable
as the rate of dissipation, satisfy E&3) and (W,)=(W,)
and (D;)=(D,). However,W, is not equal to the energy )= _ ( Ty
=¢ exp—tIt)H()*Z, ¢= 1-—,
stored in the capacitors for the Debye model given in the §(t)=¢ exnl TR Z, ¢ €0Tx Ty
next sectior{see Eqs(69) and(71)]. (66)
yields
V. EXAMPLE 1
c=— T+, (67)
It is well known that the Debye model used to describe €er
the behavior of dielectric materidfs is mathematically where¢ satisfies
equivalent to the Zener or standard linear solid model used in
viscoelasticity. The following example uses this model to Z_¢p-— (69)
illustrate the concepts presented in the previous section. at Ty
A. Debye-type dielectric model The (di)electric energy density is that stored in the ca-
Let us consider a capacit@, in parallel with a series pacitors,
connection between a capacit®; and a resistancB. This - 1
circuit obeys the following differential equation: We=261 YT+ 7, ZeZy (69
U+ ~_ 1 I+ ﬂ) (58) Wwhere &, and &, are the respective electric inductions.
a  C at Since Z,= €,&, Y=Y+ ,, ande.= €,, We obtain
whereU=¢V/dt, | is the currentV is the voltage, and T=— ek, (70)

-1
C=C;+C,, my=R|=—+ _) , 7m=C;R. (59  Where Eq(67) has been used. Note that the internal variable
C C is closely related to the electric field acting on the capacitor
From the point of view of a pure dielectric process, wein series with the dissipation element. Substitution of the
identify U with & and | with & (see Fig. 1 Hence, the electric fields into Eq.(69), and after some calculations,

dielectric relaxation model is yields
& 1 oY € (2 .
& —=— | _ —— . < (/)/7 .

R P La mj) (60) W= <eo_ex)g e+ x} (72)
where Let us verify that Eq(37) is in agreement with Eq71).
1/1 1\-1 From Egs.(63) and (66) we have

wmare noy el e O Gl g e un 72
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Replacing Eq.(72) into Eq. (37), and after some algebra, B 4
yields
1 1 t d 2 2 B
= oy Cf— — . - —
We 7eq 8% > DTy exp( T;{)H(t)* 0 _/(t)} , Z,
1
(73 —/\/\,—
where the exponent 2 means the scalar product. Using Eqgs. ko
(66) and(68) gives 5 _\/\/\/_
W= ! YD ! 7 7z 1]
©=2e, 7Y m(dﬂ'z /= &) (P17, ). 1]
(74 T
Using e..7= g7, and a few calculations, shows that the L T |
1

expression in(74) is equal to the stored energy dengi#t).
This equivalence can also be obtained by avoiding the use @i, 2. The Zener viscoelastic model is mathematically equivalent to the
internal variables. However, the introduction of these vari-electric circuit represented in Fig. &, andk, are the springs constanisis
ables is a requirement to obtaining a complete differentialhe viscosity of the dashpak is the strain, and" is the stress.
formulation of the e.m. equations. This formulation is the
basis of most simulation algorithm&®

The rate of dissipated energy density is

N
ey gt ot

respectively, and the relaxation times are

e=Bo(@Bo—B) ", mr=la (7e>77). (81)
(79  The relaxation function is

which from Eqs.(70) and (68) becomes G(t)=a '[aBo— B+ B exp—ab)]. (82
1 (e \2 Assuming that the potential energy is stored in the springs,
De=77 (T—“’) (p7,T—&)-(pTs L~ E). (76)  we have that
&
We=3(kiE7+koE3), (83

Taking into account the previous calculations, it is easy to
show that substitution of Eq.72) into Eq. (38) gives Eq. whereE; andE, are the dilatations of the springs. Sirnte
(76). =k,E, andE=E;+E,, and using(77), we obtain

Ei=—¢&/Bo, E=E+¢&/Bo. (84)

Note that the internal variable is closely related to the dila-
tation on the spring that is in parallel with the dashpot. Sub-
Fabrizio and MorraRef. 5, P. 42 define a viscoelastic stitution of the dilatations into EC{83) y|e|ds
solid with internal variables, for which the fréstored en-
ergy density can be uniquely determined. For simplicity, we W= 1 (E_ i i
B Bo Bo

only consider dilatational deformations, since this choice 2
For isothermal processes, the free energy coincides with

does not affect the analysis of the problemT i the hydro-
static stress: is the dilatatior(trace of the strain tenspand 4 stored energy. In general, the free energy is not unique

¢is the internal variable, the constitutive relation and growth(Ref' 5, p. 57. However, for exponential relaxation functions

B. Zener viscoelastic model

&+ (BoE+6)?|. (85

equation are having one internal variable, like the Zener model, the free
T=BoE+¢& (77)  energy is uniqué®
and Day’s free energy for Zener systertRef. 5, p. 6} is
43 W :EG E2+E (Go—G.,) 112
— = aé—BE, (78) S D
respectively, wherey, 8y, and 8 are real and positive con- > JWG’(S)[E(t)—E(t—S)]dS ? (86)
stants. Integration of78) yields 0 ’
E(t)=—B exp(—at)H(t)*E(t). (799  whereG' is the first-order derivative of the relaxation func-

It can be easily shown that Eq§.7) and(78) correspond to tion. Since

a Zener mechanical model consisting of a spring of constant *
ki=Bo(—1+ aBy/B) in parallel with a dashpot of viscosity

G'(s)ds=—pg/a, f G'(s)E(t—s)ds=¢,
v=,8§/ﬂ, together in series connection with a spring of con-

0 0

stantk,= B, (Fig. 2). and using Eq(80), Eq. (86) becomes
The relaxed and unrelaxed moduli are 2
:E _é E2+£ E+E§ =W (87)
G.=Bo—Bla, Go=po, (80) Yo=3 | Py 2a B e
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This equation differs from the particular form obtained by harmonic fields. However, after the transient regitteege

Fabrizio and Morro(Ref. 5, p. 61 when only dilatational times after application of the fieldthe time average oV,

deformations are considered. The cause is a notation error gives(u,), and, for Debye-type dielectric procesdegpo-

the book’s equatiof’ nential relaxation functionsW, is the energy stored in the
The rate of energy density dissipated in the dashpot is capacitors.

Day’s free energyEq. (90)] is unique for exponential

2
De=v (9_El) , (88) dielectric functions with one internal variable. Actually,
at Day’s free energy is a particular form of E7). Both en-
which from Eqgs.(84) and(78) becomes ergies coincide for Debye-type dielectric processes.
1
De:lE (aé+BE)%. (89
C. Mathematical analogy K. E. Oughstun and G. C. ShermaElgctromagnetic Pulse Propagation

. . . . in Causal DielectricqSpringer-Verlag, New York, 1994
The mathematics of the viscoelastic problem is the sameg, Caviglia and A. Morro,lnhomogeneous Waves in Solids and Fluids

as for the dielectric relaxation model previously introduced, (world Scientific, Singapore, 1992
since the mathematical equivalence identiffiewith stressT ¥S. C. HunterMechanics of Continuous Mediaviley, New York, 1983.

and & with strainE. Then. from the anak)gy between stress 4F. Cavallini and J. M. Carcione, “Energy balance and inhomogeneous
) ' plane-wave analysis of a class of anisotropic viscoelastic constitutive

and electric field, strain and electric induction, internal vari- |5 » in Waves and Stability in Continuous Megiedited by S. Rionero
ables, and bulk modulus and dielectric impermeability, and T. RuggeriWorld Scientific, Singapore, 1994pp. 47-53.

Day's free energy(86) in the electromagnetic case reads 5M. Fabrizio and A. Morro Mathematical Problems in Linear Viscoelas-
ticity, Studies in Applied Mathematics Vol. 1£&SIAM, Philadelphia,

1 1(/1 1\ 1992.
l//D=2— Y- D+ E e 8R. M. ChristensenTheory of Viscoelasticity. An IntroductidAcademic,
€oo €0 €= New York, 197).
5 7J. M. Golden and G. A. C. GraharBoundary Value Problems in Linear
* - . Viscoelasticity(Springer-Verlag, New York, 1988
4 (t)— At —
X fo Gl(s)[ (1) -t S)]ds] ! (90) 8p. HammondEnergy Methods in Electromagnetigi@larendon, Oxford,
1981).
where the exponent 2 means the scalar product. 3. M. &afciof’:ﬂe ?nszl- fjga"ligg(iggsthe acoustic-electromagnetic anal-
: - N ogy,” Wave Motion 21, - .
Comparing Egs(72) and (82) we obtain the equiva 10C. Zener,Elasticity and Anelasticity of Metal€University of Chicago,
lences Chicago, 1948
1 1 1 1 1H, A. Kramers, “La diffusion de la lumiere par les atomes,” Atti Congr.
B_1 1 Boer am & 1) Intemn. Fisica, Com@, 545-557(1927).
a €y, 60’ 0 €, Ty 12R. Kronig, “On the theory of the dispersion of x-rays,” J. Opt. Soc. Am.

12, 547-557(1926.
Substituting these equivalences into Ef5), the electro- L. P. Felsen and N. MarcuvitzRadiation and Scattering of Waves

magnetic stored energy densiff/l) is obtained. (Prentice-Hall, Englewood Cliffs, NJ, 19¥3
14T M. Roberts and P. G. Petropoulus, “Asymptotics and energy estimates

On t_he other hanFj’ applying the _ana|0gy and substituting for electromagnetic pulses in dispersive media,” J. Opt. Soc. Aml3A
the equivalence$9l) into Eq. (89), yields the electromag-  1204-12171996.
netic rate of dissipated energy densi@). 15p, G. Petropoulos, “The wave hierarchy for propagation in relaxing di-

The complete correspondence between the dielectric angelectrics,” Wave Motion21, 253-262(1995.
G. Turner and A. F. Siggins, “Constaf attenuation of subsurface radar

the viscoelastic models is pulses,” Geophysics9, 1192—12001994).
173. M. Carcione, “Ground-penetrating radar: Wave theory and numerical

fields properties simulations in lossy anisotropic media,” Geophysi6%, 1664—1677
& o T €. o Bot (1996.
- 18T, Xu and G. A. McMechan, “GPR attenuation and its numerical simu-
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