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Electromagnetic media as, for instance, imperfect dielectrics, semiconductors, and materials with
magnetic losses, have time-~and frequency-! dependent permittivity, magnetic permeability, and
electric conductivity, and, therefore, energy dissipation and pulse distortion occurs. The
electromagnetic Umov–Poynting’s theorem is reinterpreted in light of the theory of viscoelasticity
in order to define the stored and dissipated energy densities in the time domain. A simple dielectric
relaxation model equivalent to a viscoelastic mechanical model illustrates the analogy that identifies
electric field with stress, electric induction with strain, dielectric permittivity with reciprocal bulk
modulus, and resistance with viscosity. ©1999 Acoustical Society of America.
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INTRODUCTION

Energy-balance equations are important for characte
ing the energy stored and the transport properties in a fi
However, the definition of stored~free! energy and energy
dissipation rate is controversial, both in electromagnetis1

and viscoelasticity.2 The problem is particularly intriguing in
the time domain, since different definitions may give t
same time-average value for harmonic fields. This ambig
is not present when the constitutive relation can be descr
in terms of springs and dashpots~e.g., Refs. 3 and 4!. That is,
when the system can be defined in terms of internal varia
and the relaxation function has an exponential form5

Christensen6 and Golden and Graham7 give a general expres
sion of the viscoelastic energy densities which is consis
with the mechanical model description.

Formal analogies, in the mathematical sense, exist
tween electromagnetism and other fields like mechanics8 and
viscoelasticity. In this case, Carcione and Cavallini,9 for in-
stance, show an analogy for vector wavefields and mate
properties that allows the acoustic and electromagnetic p
lems to be solved with the same analytical methodology
this work, the stored electric and magnetic energies are
fined in terms of the viscoelastic expression by using
analogy. The theory is applied to a simple dielectric rela
ation process that is mathematically equivalent to the Ze
model or standard linear solid viscoelastic rheology.10

It is important to point out that the theory cannot
applied to the whole range of electromagnetic~e.m.! prob-
lems, since a mathematical analogy may not necessarily
ply a physical analogy. In viscoelasticity, the real part of t
complex moduli ~describing pure deformation modes! is
positive, and the presence of intrinsic dissipation implies
locity dispersion and vice versa~Kramers–Kro¨nig
relations11,12!. These properties preclude the use of the the
for an ionized gas whose complex permittivity may, in som
cases, be negative~e.g., Ref. 13!, or for a lossless dispersiv

a!Electronic mail: carcione@gems755.ogs.trieste.it
626 J. Acoust. Soc. Am. 105 (2), Pt. 1, February 1999 0001-4966/9
z-
d.

ty
ed

es

nt

e-

ial
b-
n
e-
e
-
er

-

-

y
e

dielectric that does not satisfy the Kramers–Kro¨nig relations.
The definition of energy is important in a large numb

of applications where it is necessary to know how the ene
transferred by the e.m. field is related to the strength of
field. This context involves the whole electrical, radio, a
optical engineering, where the medium can be assumed
electrically and magnetically linear. In particular, the Deb
model has been applied to bioelectromagnetics14,15 in the
analysis of the response of biological tissues, and to g
physics, in the simulation of ground-penetrating radar wa
propagation through wet soils.16,17,18

I. MAXWELL’S EQUATIONS AND CONSTITUTIVE
RELATIONS

Maxwell’s equations for isotropic dispersive media,
the absence of external electric and magnetic currents, a

“3E52
]B

]t
, ~1!

“3H5
]D

]t
1J , ~2!

whereE is the electric field,H is the magnetic field,D is
the electric induction,B is the magnetic induction, andJ is
the conduction current. The symbol3 denotes the vecto
product.

For time-harmonic fields with time dependence exp(ivt),
wherev is the angular frequency, Eqs.~1! and ~2! read

“3E52 ivB, ~3!

“3H5 ivD1J, ~4!

respectively, whereE, D, H, and B are the corresponding
time-harmonic fields.

We consider constitutive relationsD~E! andB~H! of
the form

D5e*
]E

]t
~5!
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B5m*
]H

]t
~6!

~i.e., nonmoving media!, where e and m are the dielectric
permittivity and magnetic permeability functions, and* de-
notes time convolution. Similarly, generalized Ohm’s la
can be written as

J5s*
]E

]t
, ~7!

wheres is the conductivity function.
For harmonic fields, the constitutive relations read

D5F S ]e

]t DE, B5F S ]m

]t DH, ~8!

and

J5F S ]s

]t DE, ~9!

where F ~•! is the Fourier transform operator. For conv
nience, the medium properties are denoted by the same
bols, in both the time and the frequency domains, i.e.,

F S ]e

]t D→e,...,etc...

II. UMOV–POYNTING’S THEOREM FOR HARMONIC
FIELDS

The scalar product of the complex conjugate of Eq.~4!
with E, use of “•(E3H* )5(“3E)•H* 2E•(“3H* ),
and substitution of Eq.~3! gives Umov–Poynting’s theorem
for harmonic fields,

2“–P5 1
2 J* –E22iv~ue2um!, ~10!

where

P5 1
2E3H* ~11!

is the complex Umov–Poynting vector, and

ue5 1
4E–D* , um5 1

4B–H* , ~12!

are the harmonic~complex! ~di!electric and magnetic energ
densities. The symbol* denotes complex conjugate.

Substitution of the constitutive relations~8! and~9! into
Eq. ~10! yields

2i“–P52v~eT* uEu22muHu2!, ~13!

where

eT5e2
i

v
s. ~14!

Taking real and imaginary parts of~13! gives

2 Im~“–P!5v@Re~eT!uEu22Re~m!uHu2#

5power energy density, ~15!

2 Re~“–P!5v@ Im~eT!uEu21Im~m!uHu2#

5rate of dissipated energy, ~16!
627 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
m-

respectively. The time-average energy densities are such
1
4 Re~e!uEu25Re~ue! stored ~di!electric

2 1
2 v21 Im~s!uEu25Im~us! stored electric

1
4 Re~m!uHu25Re~um! stored magnetic

~17!1
4 Im~e!uEu25Im~ue! dissipated~di!electric

1
2 v21 Re~s!uEu25Re~us! dissipated electric

1
4 Im~m!uHu25Im~um! dissipated magnetic,

where

us5 1
2v

21J* –E5 1
2v

21s* uEu2 ~18!

is the ~complex! electric energy density.

III. ENERGY DEFINITION IN ELECTROMAGNETISM

Time-average energies for harmonic fields are precis
defined. Let us consider, for instance, the formulation of
energy balance equation given in Oughstun and Sherm1

Upon taking the scalar product of Eq.~1! with H and Eq.
~2! with E and taking the difference, Oughstun and Sherm
~Ref. 1, Eq. 2.2.5! obtain

2“–P 5J–E1
]U

]t
, ~19!

whereP 5E3H is the Umov–Poynting vector andU is
the total energy per unit volume given by

U5Ue1Um , ~20!

with

]Ue

]t
5E•

]D

]t
, ~21!

the time rate of~di! electric energy density, and

]Um

]t
5H•

]B

]t
, ~22!

the time rate of magnetic energy density.
The time average of the scalar product of two harmo

vector fields, with the same oscillation frequency, is given

^A–B&5 1
2 Re~A•B* !. ~23!

Note that taking the time average of Eqs.~19! yields

2^“–P &5 1
2 Re~J* •E!12v@ Im~ue!2Im~um!#, ~24!

which can be obtained from Eq.~10! by taking its real part.
Equation~24! gives the balance of the rate of dissipated e
ergy density and is equivalent to Eq.~16!.

We now review some of the statements discussed
Oughstun and Sherman.1

~1! Poynting’s theoremprovides a mathematically consis
tent formulation of energy flow~p. 24!. This does not
preclude the existence of an alternative formulation. F
instance, Jeffreys19 gives an alternative energy balanc
627J. M. Carcione: Energy in lossy electromagnetic media
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on.
implying a new interpretation of the Poynting vector~see
also the interesting discussion in Robinson20 and
Jeffreys21!.

~2! ... it cannot be definitely concluded that the time rate
energy flow at a point is uniquely given by the value
the Poynting vector at that point, for one may add to t
Poynting vector any solenoidal vector field without a
fecting the statement of conservation of energy... ~p. 26!.
In fact, as the authors state, there is no strictly va
justification for the accepted interpretation of the Poy
ting vector.

~3! ... one cannot, in general, express the electric ene
density and the dissipation separately in terms of
dielectric permittivity and electrical conductivity of
dispersive medium~p. 31!. In the general case@i.e., the
time-domain equation~19!#, it is not possible to separat
the stored energies from the dissipated energies. Rela
ue andUe gives @see Eq.~2.2.38!#,

Im~ue!5
1

2v K]Ue

]t L, ~25!

and no relationship of this type for the real part ofue .
The same reasoning applies to the magnetic energy.
present in the next section an alternative definition wh
energy can be, in principle, separated between stored
dissipated.

~4! For time-harmonic fields, the separation is shown in E
~17!. However, there is no relation between the tim
average energies defined in Eq.~17! and the time aver-
ages ofUe , Um ~p. 36!. In the next section, a link be
tween harmonic energy densities and transient ene
densities is obtained.

Note that Oughstun and Sherman@Ref. 1, Eq.~2.1.19!#
use an exp(2ivt) time dependence.

IV. UMOV–POYNTING’S THEOREM FOR TRANSIENT
FIELDS

Poynting’s theorem~19!, omitting Oughstun and Sher
man’s interpretation of the energies, is

2“–P 5J–E1E•

]D

]t
1H•

]B

]t
. ~26!

Let us consider a stored~di!electric ~free! energy density of
the form

We~ t !5
1

2 E
2`

t E
2`

t

K~ t2t1 ,t2t2!

3D8~t1!–D8~t2!dt1 dt2 , ~27!

where the prime denotes the first-order derivative with
spect to the argument. Hunter~Ref. 3, p. 545! and Golden
and Graham~Ref. 7, p. 12! define a similar form for the
linear viscoelastic case. The underlying assumptions are
the dielectric properties of the medium do not vary with tim
~nonaging material!, and, as in the lossless case, the ene
density is quadratic in the electric field. Moreover, the e
pression includes a dependence on the history of the ele
field. However, it is important to note that the above assum
tion as to the structure of the formula for the free ene
628 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
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density is by no means the only possible one~see
Rabotnov,22 p. 72!. Moreover, as we shall see below, th
general expression of the free energy is not uniquely de
mined by the relaxation function.

DifferentiatingWe yields

]We

]t
5

]D

]t
•E

2`

t

K~ t2t2,0!D8~t2!dt2

1
1

2 E
2`

t E
2`

t ]

]t
K~ t2t1 ,t2t2!D8~t1!

•D8~gt2!dt1 dt2 . ~28!

The constitutive relation~5! can be rewritten as

E5b*
]D

]t
, ~29!

whereb(t) is the dielectric impermeability function, satisfy
ing

]e

]t *
]b

]t
5d~ t !, e`b`5e0b051, e~v!b~v!51,

~30!

with the subindices̀ and 0 corresponding to the limitst
→0 andt→`, respectively. If

b~ t !5K~ t,0!H~ t !, ~31!

whereH(t) is the Heaviside function, then,

E
2`

t

K~ t2t2,0!D8~t2!dt25E~ t !, ~32!

and ~28! becomes

E–

]D

]t
5

]We

]t
1De , ~33!

where

De~ t !52
1

2 E
2`

t E
2`

t ]

]t
K~ t2t1 ,t2t2!

3D8~t1!–D8~t2!dt1 dt2 ~34!

is the rate of dissipation of~di! electric energy density. Note
that the relation~31! does not determine the stored energ
i.e., this can not be obtained from the constitutive relati
However, if we assume that

K~ t,t1!5G~ t1t1!, ~35!

such that

b~ t !5G~ t !H~ t !, ~36!

this choice will suffice to determineK, and

We~ t !5
1

2 E
2`

t E
2`

t

G~2t2t12t2!D8~t1!

–D8~t2!dt1 dt2 , ~37!
628J. M. Carcione: Energy in lossy electromagnetic media
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De~ t !52E
2`

t E
2`

t

G8~2t2t12t2!D8~t1!

–D8~t2!dt1 dt2 . ~38!

Equation ~35! is consistent with the corresponding theo
implied by mechanical models.6 Breuer and Onat23 discuss
some realistic requirements from whichK(t,t1) must have
the reduced fromG(t1t1).

Let us calculate the time average of the stored ene
density for monochromatic fields. AlthoughD(2`) does
not vanish, the transient contained in~37! vanishes for suf-
ficiently large times, and this equation can be used to co
pute the average of time-harmonic fields. The change of v
ablest1→t2t1 andt2→t2t2 yields

We~ t !5
1

2 E
0

`E
0

`

G~t11t2!D8~ t2t1!

–D8~ t2t2!dt1 dt2 . ~39!

Using ~23!, the time average of Eq.~39! is

^We&5 1
4 v2uDu2

3E
0

`E
0

`

G~t11t2!cos@v~t12t2!#dt1 dt2 .

~40!

A new change of variablesu5t11t2 andv5t12t2 gives

^We&5
1

8
v2uDu2E

0

`E
2u

u

G~u!cos~vv !du dv

5
1

4
vuDu2E

0

`

G~u!sin~vu!du. ~41!

From Eq.~36!, and using integration by parts, we have th

ReFF S ]b

]t D G5Re@b~v!#

5G~`!1vE
0

`

@G~ t !2G~`!#sin~vt !dt.

~42!

Using the property

vE
0

`

sin~vt !dt51, ~43!

we obtain

Re@b~v!#5vE
0

`

G~ t !sin~vt !dt. ~44!

Substituting Eq.~44! into Eq.~41!, and sinceE5b(v)D, we
finally get

^We&5 1
4uDu2 Re@b~v!#5Re~ue!. ~45!

A similar calculation shows that̂De&52v Im(ue).
Similarly, the magnetic term on the right-hand side r.h

of Eq. ~26! can be recasted as
629 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
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H–

]B

]t
5

]Wm

]t
1Dm , ~46!

where

Wm~ t !5
1

2 E
2`

t E
2`

t

F~2t2t12t2!B8~t1!

–B8~t2!dt1 dt2 , ~47!

Dm~ t !52E
2`

t E
2`

t

F8~2t2t12t2!B8~t1!

–B8~t2!dt1 dt2 , ~48!

are the stored magnetic energy density and rate of dissipa
of magnetic energy density, respectively, such that

H5g*
]B

]t
, g~ t !5F~ t !H~ t !, ~49!

with g the magnetic impermeability function.
The rate of dissipated electric energy density can be

fined as

Ds~ t !52E
2`

t E
2`

t

S~2t2t12t2!E8~t1!

–E8~t2!dt1 dt2 , ~50!

where

J5s*
]E

]t
, s~ t !5S~ t !H~ t !. ~51!

Formally, the stored energy density due to the electric c
rents out of phase with the electric field, satisfies

]Ws

]t
5J–E2Ds . ~52!

In terms of the energy densities, Eq.~26! becomes

2“–P 5
]

]t
~Ws1We1Wm!1Ds1De1Dm , ~53!

and the correspondences with the averaged time-harm
values are

^We&5Re~ue!, ^Wm&5Re~um!,

^De&52v Im~ue!,
~54!

^Ds&52v Re~us!,

^Dm&522v Im~um!.

Note that^J–E& is equal to the rate of dissipated ener
density^Ds&, and that

K ]We

]t L 50, ~55!

in contrast with Oughstun and Sherman’s result~25!. The
same property holds for the stored electric and magnetic
ergy densities.

There are other alternative time-domain expressions
the energy densities whose time-average values coin
629J. M. Carcione: Energy in lossy electromagnetic media
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with those given in Eqs.~54!, but fail to match the energy in
the time domain. For instance, the following definition,

We85 1
2E–D , ~56!

as the stored~di! electric energy density, and

De85
1

2 S E–

]D

]t
2D•

]E

]t D , ~57!

as the rate of dissipation, satisfy Eq.~53! and ^We8&5^We&
and ^De8&5^De&. However,We8 is not equal to the energ
stored in the capacitors for the Debye model given in
next section@see Eqs.~69! and ~71!#.

V. EXAMPLE

It is well known that the Debye model used to descr
the behavior of dielectric materials24 is mathematically
equivalent to the Zener or standard linear solid model use
viscoelasticity. The following example uses this model
illustrate the concepts presented in the previous section.

A. Debye-type dielectric model

Let us consider a capacitorC2 in parallel with a series
connection between a capacitorC1 and a resistanceR. This
circuit obeys the following differential equation:

U1tU

]U

]t
5

1

C S I 1t I

]I

]t D , ~58!

whereU5]V/]t, I is the current,V is the voltage, and

C5C11C2 , tU5RS 1

C1
1

1

C2
D 21

, t I5C1R. ~59!

From the point of view of a pure dielectric process, w
identify U with E and I with D ~see Fig. 1!. Hence, the
dielectric relaxation model is

E1tE

]E

]t
5

1

e0
S D1tD

]D

]t D , ~60!

where

e05e11e2 , tE5
1

h S 1

e1
1

1

e2
D 21

, tD5e1 /h, ~61!

FIG. 1. This electric circuit is equivalent to a purely dielectric relaxati
process, wheree1 and e2 are the capacitances,h is a resistance,E is the
electric field, andD is the electric induction.
630 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
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with h a parameter that introduces the dissipation. Note t
e0 is the static ~low-frequency! permittivity and e`

5e0tE /tD5e2,e0 is the optical~high-frequency! permit-
tivity.

We have that

e~ t !5e0F12S 12
tE

tD
Dexp~2t/tD!GH~ t !, ~62!

b~ t !5G~ t !H~ t !5
1

e0
F12S 12

tD

tE
Dexp~2t/tE!GH~ t !

~63!

and

e~v!5b21~v!5e0S 11 ivtE

11 ivtD
D . ~64!

Equation~64! can be rewritten as

e~v!5e`1
e02e`

11 ivtD

. ~65!

For instance, the permittivity~65! describes the response o
polar molecules, such as water, to the e.m. field.16,25

Substituting Eq.~63! into Eq. ~29! and defining the in-
ternal variable

j~ t !5f exp~2t/tE!H~ t !* D , f5
1

e0tE
S 12

tD

tE
D ,

~66!

yields

E5
1

e`
D1j, ~67!

wherej satisfies

]j

]t
5fD2

j

tE

. ~68!

The ~di!electric energy density is that stored in the c
pacitors,

We5
1

2e1
D1–D11

1

2e2
D2–D2 , ~69!

where D1 and D2 are the respective electric induction
SinceD25e2E , D5D11D2 , ande`5e2 , we obtain

D152e`j, ~70!

where Eq.~67! has been used. Note that the internal varia
is closely related to the electric field acting on the capac
in series with the dissipation element. Substitution of t
electric fields into Eq.~69!, and after some calculations
yields

We5
e`

2 F S e`

e02e`
D j•j1E–E G . ~71!

Let us verify that Eq.~37! is in agreement with Eq.~71!.
From Eqs.~63! and ~66! we have

G~ t !5e0
212ftE exp~2t/tE!. ~72!
630J. M. Carcione: Energy in lossy electromagnetic media
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Replacing Eq.~72! into Eq. ~37!, and after some algebra
yields

We5
1

2e0
D–D2

1

2
ftEFexpS 2

t

tE
DH~ t !*

]

]t
D~ t !G2

,

~73!

where the exponent 2 means the scalar product. Using
~66! and ~68! gives

We5
1

2e0
D–D2

1

2ftE

~ftED2j!•~ftED2j!.

~74!

Using e`tD5e0tE , and a few calculations, shows that th
expression in~74! is equal to the stored energy density~71!.
This equivalence can also be obtained by avoiding the us
internal variables. However, the introduction of these va
ables is a requirement to obtaining a complete differen
formulation of the e.m. equations. This formulation is t
basis of most simulation algorithms.17,18

The rate of dissipated energy density is

De5
1

h

]D1

]t
•

]D1

]t
, ~75!

which from Eqs.~70! and ~68! becomes

De5
1

h S e`

tE
D 2

~ftED2j!•~ftED2j!. ~76!

Taking into account the previous calculations, it is easy
show that substitution of Eq.~72! into Eq. ~38! gives Eq.
~76!.

B. Zener viscoelastic model

Fabrizio and Morro~Ref. 5, p. 42! define a viscoelastic
solid with internal variables, for which the free~stored! en-
ergy density can be uniquely determined. For simplicity,
only consider dilatational deformations, since this cho
does not affect the analysis of the problem. IfT is the hydro-
static stress,E is the dilatation~trace of the strain tensor! and
j is the internal variable, the constitutive relation and grow
equation are

T5b0E1j ~77!

and

]j

]t
52aj2bE, ~78!

respectively, wherea, b0 , andb are real and positive con
stants. Integration of~78! yields

j~ t !52b exp~2at !H~ t !* E~ t !. ~79!

It can be easily shown that Eqs.~77! and~78! correspond to
a Zener mechanical model consisting of a spring of cons
k15b0(211ab0 /b) in parallel with a dashpot of viscosit
n5b0

2/b, together in series connection with a spring of co
stantk25b0 ~Fig. 2!.

The relaxed and unrelaxed moduli are

G`5b02b/a, G05b0 , ~80!
631 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
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respectively, and the relaxation times are

tE5b0~ab02b!21, tT51/a ~tE.tT!. ~81!

The relaxation function is

G~ t !5a21@ab02b1b exp~2at !#. ~82!

Assuming that the potential energy is stored in the sprin
we have that

We5 1
2~k1E1

21k2E2
2!, ~83!

whereE1 andE2 are the dilatations of the springs. SinceT
5k2E2 andE5E11E2 , and using~77!, we obtain

E152j/b0 , E25E1j/b0 . ~84!

Note that the internal variable is closely related to the d
tation on the spring that is in parallel with the dashpot. Su
stitution of the dilatations into Eq.~83! yields

We5
1

2 F S a

b
2

1

b0
D j21

1

b0
~b0E1j!2G . ~85!

For isothermal processes, the free energy coincides w
the stored energy. In general, the free energy is not uni
~Ref. 5, p. 57!. However, for exponential relaxation function
having one internal variable, like the Zener model, the f
energy is unique.26

Day’s free energy for Zener systems~Ref. 5, p. 61! is

cD5
1

2
G`E21

1

2 H ~G02G`!21/2

3E
0

`

G8~s!@E~ t !2E~ t2s!#dsJ 2

, ~86!

whereG8 is the first-order derivative of the relaxation fun
tion. Since

E
0

`

G8~s!ds52b/a, E
0

`

G8~s!E~ t2s!ds5j,

and using Eq.~80!, Eq. ~86! becomes

cD5
1

2 S b02
b

a DE21
b

2a S E1
a

b
j D 2

5We . ~87!

FIG. 2. The Zener viscoelastic model is mathematically equivalent to
electric circuit represented in Fig. 1.k1 andk2 are the springs constants,n is
the viscosity of the dashpot,E is the strain, andT is the stress.
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This equation differs from the particular form obtained
Fabrizio and Morro~Ref. 5, p. 61! when only dilatational
deformations are considered. The cause is a notation err
the book’s equation.27

The rate of energy density dissipated in the dashpot

De5nS ]E1

]t D 2

, ~88!

which from Eqs.~84! and ~78! becomes

De5
1

b
~aj1bE!2. ~89!

C. Mathematical analogy

The mathematics of the viscoelastic problem is the sa
as for the dielectric relaxation model previously introduce
since the mathematical equivalence identifiesE with stressT
andD with strainE. Then, from the analogy between stre
and electric field, strain and electric induction, internal va
ables, and bulk modulus and dielectric impermeabil
Day’s free energy~86! in the electromagnetic case reads

cD5
1

2e`
D–D1

1

2 H S 1

e0
2

1

e`
D 21/2

3E
0

`

G8~s!@D~ t !2D~ t2s!#dsJ 2

, ~90!

where the exponent 2 means the scalar product.
Comparing Eqs.~72! and ~82! we obtain the equiva-

lences

b

a
5

1

e`
2

1

e0
, b05

1

e`
, a5

1

tE

. ~91!

Substituting these equivalences into Eq.~85!, the electro-
magnetic stored energy density~71! is obtained.

On the other hand, applying the analogy and substitu
the equivalences~91! into Eq. ~89!, yields the electromag
netic rate of dissipated energy density~76!.

The complete correspondence between the dielectric
the viscoelastic models is

fields properties

E ↔ T e` ↔ b0
21

D ↔ E tD ↔ tE

E1 ↔ T1 tE ↔ tT ,

E2 ↔ T2 h ↔ n21

D1 ↔ E1 e1 ↔ k1
21

D2 ↔ E2 e2 ↔ k2
21

j ↔ j

~92!

where the symbols can be identified in Figs. 1 and 2.

VI. REMARKS

It is important to keep in mind that Eq.~37! holds when
D(t→`)50, an assumption that is violated by tim
632 J. Acoust. Soc. Am., Vol. 105, No. 2, Pt. 1, February 1999
in

e
,

-
,

g

nd

harmonic fields. However, after the transient regime~large
times after application of the field!, the time average ofWe

gives ^ue&, and, for Debye-type dielectric processes~expo-
nential relaxation functions!, We is the energy stored in the
capacitors.

Day’s free energy@Eq. ~90!# is unique for exponentia
dielectric functions with one internal variable. Actuall
Day’s free energy is a particular form of Eq.~37!. Both en-
ergies coincide for Debye-type dielectric processes.
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