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Simulation of ultrasonic waves in a natural sandstone

José M. Carcionef Bgrge Arnstent Fabio Cavallini$

Abstract

We use Biot’s theory to model microseismograms obtained at ultrasonic frequencieg
for a clean, clay-free sandstone. A qualitative match between the synthetic apq
experimental traces is obtained by using a viscoelastic formulation of the theory, The
modeling of the observed strong attenuation of the slow and shear waves requires the
generalization of the Biot moduli and viscosity /permeability factor to time-dependen
relaxation functions. The modeling algorithm is parameterized with the dry-rock bulk
and rigidity moduli and the tortuosity to match the observed travel-times and with the
quality factors associated to the relaxation functions to match the observed amplitudes,

1 Introduction

Acoustic experiments in the laboratory can be used to verify and calibrate a suitable theg
for computing synthetic seismograms. The experiment conducted by Kelder and Smeuld
[6] provides such a basis for theory and numerical-algorithm verification. They obf§
transmission microseismograms through a slab made of a clean and unconsolidated naty
sandstone, where all the events predicted by Biot’s theory can be observed. The experimg
provides, under controlled conditions, the travel times and relative amplitudes of the fj
and slow compressional waves and the shear wave (Figure 1).

We model the microseismograms by using Biot’s theory, introducing stiffness 4
viscodynamic dissipation based on viscoelastic theory, to model additional attenuafi
mechanisms. This approach was proposed by Carcione [3] to model relaxation mechanis|
arising from the interaction between the skeleton and the porefluid. In that case, il
Biot solid-grain/porefluid coupling modulus is generalized to a time-dependent relaxali
function. Here, we show that the experimental attenuation levels observed by Kelder a
Smeulder [6] can be modeled by making viscoelastic the rigidity modulus and the fli
viscosity /permeability factor, in addition to the above mentioned coupling modulus.
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Left: photomicrograph of the Nivelsteiner sandstone sample (after Kelder and

B¢ 1.
Smeulders [6]). Right: experimental setup, where FP denotes the fast compressional wave, SP

denotes the slow compressional wave and S denotes the shear wave.

9 Poroelastic equations of motion

The differential equations for an inhomogeneous, isotropic poroelastic medium under plane
strain conditions are given by [1, 3]

Tezt = PBugg+ (E—2p)v,, +aMe+ sg,
Teed = (B =200+ B0, ,+oMe43,,
Txzt = /L(va‘,,z + UZ,I) + Szz,
py = —Me+ sy,
(1) € = Q’(Ua;,:c + 7’2,2) + Gex+ G225

Tez,z T Taz,z
Tazg + Tez,z
—DPaz
P,

PUzt + Pfx ts
Pzt + Prqzt,
Pzt + MGz + L,
PfUzt + Mgzt + 2(1z;

where the first five equations are the stress/particle-velocity relations, the next two
equations are Biot/Newton’s differential equations, and the last two equations are dynamic
Darcy’s law; 7,4, 7., and 7., are the total stress components, p is the fluid pressure, the
v’s and the ¢’s are the solid and fluid (relative to the solid) particle velocities, and s, s.,
Sy, and sy are the external sources of stress, for the solid and the fluid, respectively. The
composite density is

p=(1—)ps+ dpy

with p, and ps the solid and fluid densities, respectively. Moreover, m = T'p;/¢ with 1" the
tortuosity, » is the fluid viscosity, and « is the permeability of the medium. Finally, the
elastic coefficients are given by

K
K’

4 K?
= Kn+ DKy
m

§/L, M =

D=Kl+¢K,K;'=1)], a=1-

with K,,, K, and K the bulk moduli of the drained matrix, solid and fluid, respectively;
¢ is the porosity, and g is the shear modulus of the drained (and saturated) matrix. The
Subscript “ 2” denotes d/0x.




130 SIMULATION OF WAVES IN A POROUS MEDIUM

3 Extension to the poroviscoelastic case

Viscoelasticity is introduced into Biot’s poroelastic equations for modeling attenuatig,
related to the potential energy (stiffness dissipation) and the kinetic energy (Viscodynamic
dissipation) [1, 2]. In the first case, the stiffnesses F, p and « are generalized to timg
dependent relaxation functions, which we denote, in general, by ¥(¢). We assume tha
1(0) = 1o equals the respective Biot modulus, i.e., we obtain Biot’s poroelastic constitutiy,
equations at high frequencies. Assume that the relaxation functions are described by a sing],
Zener model,
2) plt) = 0% |1+ (25 = 1) exp(-t/r) | HO),

Te Ty
where H(t) is the Heaviside function, and 7. and 7, are relaxation times. In the absence g
experimental values for attenuation versus frequency we consider the simplest model, that
is, a single relaxation peak for each modulus with peak frequency equal to the frequency of
the transducers. Viscoelasticity implies that multiplications of bulk moduli by field variableg
in equations (1) be replaced by time convolutions. For instance, in the first equation theg
products are E(vy g + v;,,), pv,, and ae. We substitute them by 1) * u;, where 1) denoteg
the relaxation function corresponding to E, u or M, u denotes vg z + v, ;, [4v;,, O €, and
* indicates time convolution. As in the single-phase viscoelastic case, we introduce memory
variables to avoid the time convolutions. Then, the terms ) * u; are replaced by 1ou +e,
where e is the memory variable. There are five memory variables related to the constitutive
equations, which satisfy the following differential equation:

(3) cumtho (- —)u- L

€ To To

On the other hand, viscodynamic dissipation introduces two additional memory variables
through the generalization of b = 7/ in equations (1) to a time-dependent viscodynamic
operator b(t). In this case, Darcy’s equations are obtained at the low frequency limit, i.e,
for t — oo [2].

The relaxation times can be expressed in terms of a Q factor @y and a reference
frequency fo as

(4) Te=(2mfoQo) [y Q3+1+1], and 7, =71 — (nfoQo) "

4 Numerical algorithm

The use of a staggered mesh greatly improves the accuracy of the modeling algorithm [7, 4.
On a regular grid the field components and material properties are represented at each
grid point, while on a staggered grid, variables and material properties are also defined
at half-grid points. Material properties at half-grid points are computed by averaging
the values defined at regular points [4]. The first-order derivative computed with the
staggered differential operator is evaluated between grid points and uses even-based Fourier
transforms. The spatial derivatives are calculated with the fast Fourier transform (FFT).
This approximation is infinitely accurate for band-limited periodic functions with cutoff
spatial wavenumbers which are smaller than the cutoff wavenumbers of the mesh. Since
the presence of the slow compressional wave makes Biot’s differential equations stiff, a
time-splitting integration algorithm is used [5]. The stiff part is solved analytically and
the non-stiff part with an A-stable Crank-Nicolson scheme. This method possesses the
stability properties of implicit algorithms, but the solution can be obtained explicitly. It
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FiG. 2. Microseismogram obtained by Kelder and Smeulders [6] for Nivelsteiner sandstone as
a function of the angle of incidence 6. The events are the fast compressional wave (FP ), the shear
wave (S), the first multiple reflection of the fast compressional wave (FFP) and the slow wave (SP).
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F1G. 3. Numerical microseismogram corresponding to the experiment of Kelder and Smeulders
[6], obtained from Biot’s poroviscoelastic theory. The dominant frequency of the source is 500 kHz.

¢an be shown that the splitting technique and the Crank-Nicolson scheme have 2nd-order
accuracy.

9 Simulation

The Nivelsteiner-sandstone sample used by Kelder and Smeulders [6] in their experiment is
A Miocene quartz sand with very low clay content. It has an average grain distribution of
100-300 pm (Figure 1). For simplicity we assume that the grains are made of pure quartz.
We obtain the matrix properties by fitting the experimental data provided by Kelder and
Smeulders at 500 kHz, and assuming that the level of dissipation is that predicted by Biot’s
theory. Firstly, we compute the shear modulus of the dry rock, x, by fitting the shear-wave
Velocity of the saturated rock. Secondly, the dry-rock bulk modulus, K,,, is obtained by
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fitting the compressional velocity of the saturated rock. Finally, the tortuosity 7" is used a
a free parameter to fit the experimental slow-wave velocity.

The experimental setup is shown in Figure 1. A sample of Nivelsteiner sandstone A
mim thick, immersed in water, is mounted on a rotating table. The traces are obtaingg
for several values of the angle 6. The experimental results are shown in Figure 2, wheyg
the traces are plotted versus the angle of incidence §. A 2D cross section of this modg|
is discretized on a mesh with 238 x 238 grid points and a grid spacing Dx = Dz = (3
mm. Water is modeled by setting K,, = p =0, K; = Ky and ps = py. The source is
Ricker-type wavelet and has a central frequency of 500 kHz, and the algorithm uses a time
step of 0.03 ps and 3340 steps.

To model the same level of relative attenuation between the different events, v,
generalize p, M and b to relaxation functions, with Qf = 10, QS’I = 10 and Qg
= 2, respectively, and a relaxation-peak frequency of 250 kHz. Figure 3 shows thg
poroviscoelastic microseismograms. As can be appreciated, the relative amplitudes observeg
in Figure 3 are in good agreement with the experiment.

6 Conclusions

The observed wave attenuation in reservoir rocks can be due to several dissipation mecha.
nisms. Macroscopic and local fluid-flow mechanisms (Biot and squirt flow, respectively) are
two of them and, in principle, can be used to fit experimental data. However, these mech-
anisms are not enough to model the observed levels of attenuation. Moreover, the strong
dependence of these models on the microstructural features makes them not very reliable for
attenuation prediction. A practical model, which requires calibration with controlled acous-
tic experiments, is the viscoelastic model parameterized by reference frequencies and quality
factors associated to the stiffness-moduli and the viscosity /permeability factor. Laboratory
measurements of wave velocity and attenuation factor versus frequency provide the tool for
obtaining these empirical parameters and computing realistic synthetic seismograms.
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