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ABSTRACT
Seismic acquisition can be costly and inefficient when using spiked geophones. In most
cases, such as the desert, the most practical solution is the use of flat bases, where
geophone-ground coupling is based on an optimal choice of the mass and area of
contact between the receiver and the ground. This optimization is necessary since areas
covered by sand are loose sediments and poor coupling occurs. Other cases include
ground coupling in stiff pavements, for instance urban areas and ocean-bottom nodes.
We consider three different approaches to analyse coupling and model the geophone
with a flat base (plate) resting on an elastic half-space. Two existing models, based
on the full-wave theory, which we refer to as the Wolf and Hoover-O’Brien models,
predict a different behaviour with respect to the novel method introduced in this work.
This method is based on the transmission coefficient of upgoing waves impinging in
the geophone-ground contact, where the ground is described as an anelastic half-
space. The boundary conditions at the contact have already been used to model
fractures and are shown here to provide the equation of the damped oscillator. This
fracture-contact model depends on the stiffness characteristic of the contact between
the geophone base plate and the ground. The transmission coefficient from the ground
to the plate increases for increasing weight and decreasing base plate area. The new
model predicts that the resonant frequency is independent of the geophone weight
and plate radius, while the recorded energy increases with increasing weight and
decreasing base plate area (as shown from our own experiments and measurements by
Krohn) which is contrary to the theories developed by Wolf and Hoover-O’Brien. The
transient response is obtained by an inverse Fourier transform. Optimal geophone-
ground coupling and energy transmission are required, the first concept meaning that
the geophone is following the motion of the ground and the second one that the
signal is detectable. As a final example, we simulate seismic acquisition based on the
novel theory, showing the differences between optimal and poor ground-to-geophone
energy transmission.

Key words: Geophone coupling, Transmission coefficient, Anelasticity, Resonant fre-
quency.

INTRODUCTION

Seismic acquisition in the desert, where receivers have to be de-
ployed over areas covered by sand, could be performed more

∗E-mail: jcarcione@inogs.it

efficiently with the use of land streamers, since the planting of
spiked geophones is costly. Another situation where the use of
flat bases is relevant in the deployment of ocean-bottom seis-
mometers or ‘ocean-bottom nodes’ (Beaudoin and Reasnor
2010). The autonomous character of these devices facilitates
good coupling with the sea-bed, unlike ocean-bottom cables,
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where the coupling is affected by the tension in the cable. On
the other hand, geophones mounted to iron base plates have
been used with success on paved surfaces (Miller, Tsoflias and
Steeples 2009).

Basically, coupling conditions can be defined on the ba-
sis of high-and low-resonance frequencies, respectively. The
optimal case occurs when the seismic frequency response has
an amplitude near unity and a coupling phase lag near zero.
In this frequency range the geophone response follows the
ground motion. There have been a few works on the the-
ory of geophone-ground coupling, starting from Wolf (1944),
who obtained the equation of motion of the system (a damped
oscillator) assuming a ground described by a Poisson medium.
In the Wolf model, the geophone is represented by a cylinder
placed on the surface of an elastic solid. The elastic restor-
ing forces are determined by the area of contact between the
weight and the surface of the solid and by the elastic moduli
of the solid, while the damping force is due to emission of
elastic waves by the oscillating weight. Later, Lamer (1970)
and Hoover and O’Brien (1980) generalized Wolf’s equation.
These authors obtained an integral equation for the amplitude
of the geophone motion, which depends on the geophone mass
and radius of the base. As before, the damping results from
the wave scattering at the base. The Hoover-O’Brien model
establishes that a small mass with large bases produces high-
resonant frequencies and relatively large damping, while a
large mass with smaller bases has low-resonant frequencies
and a smaller amount of damping. Krohn (1984) studied the
geophone-ground system by using a phenomenological model,
represented by a mass coupled to the ground by a Kelvin-Voigt
mechanical model (a parallel connection of a spring and a
dashpot) (see Hoover and O’Brien 1980). One of the main
conclusions is that the resonant frequency is insensitive to
changes in the mass or diameter of the geophones, which dis-
agrees with the results of the Wolf and Hoover-O’Brien mod-
els. The resonant frequency depends mainly on the ground
properties. Finally, Drijkoningen et al. (2006) introduced the
effect of the spike, which does not apply here.

Land streamers have been used in snow covered areas
(Eiken et al. 1989) and on roads and fields (van der Veen et al.

2001). It was found that land streamers can obtain compa-
rable results to traditional spiked geophones (Dimech 2010).
Moura and Senos Matias (2012) used coupling blocks made of
several materials with a constant area of contact. They found
that cement blocks with a weight of 7 kg yield comparable
results to the spiked geophones, although it is clear from their
Figs 9 and 10 that a weight of 1 kg performs equally well. One
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Figure 1 Geophone-ground coupling represented by a cylinder of ra-
dius a mass M, density ρ1 and Young modulus Y1 in contact with
an elastic half-space of density ρ2 and plane-wave modulus E2. The
lateral stresses vanish at the cylinder and the force acting on the con-
tact is F , where g is the gravity constant. The boundary condition
at the contact describes an imperfect bonding in terms of the specific
normal stiffness κ and specific normal viscosity η. Optimum coupling
is achieved when the energy transmission coefficient T of the upgoing
waves is maximum.

of the challenges of designing a land streamer is to guarantee
a desirable coupling of the geophone with the ground.

In this work, we investigate three approaches to analyse
geophone-ground coupling. We first represent the system by
using the Wolf and Hoover-O’Brien models (Models 1 and
2), which are based on a wave-theory approach and allow
an explicit description of the system response as a function
of the geophone and ground properties. We then develop
Model 3, which is based on the transmission coefficient of
the upgoing waves arriving at the geophone-ground inter-
face, described by a displacement/particle-velocity boundary
condition, already used to model wave propagation through
fractures (Schoenberg 1980; Carcione 1996). The ground is
modelled as a nearly-constant Q viscoelastic solid, based on
continuum spectra of Zener mechanical models (e.g., Carcione
2007). The transmission coefficient can be cast in terms of the
mass and area of the geophone, represented by a cylinder. We
then derive the equation describing the motion (displacement)
of the geophone, which corresponds to the classical damped
harmonic oscillator. The equivalent mechanical model is the
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Kelvin-Voigt viscoelastic solid (a parallel connection between
a spring and a dashpot), where the parameters can be written
in terms of the mass, area of the cylinder and stiffness char-
acteristic of the contact between the base plate and ground.
The last parameter can be obtained from data reported by
Washburn and Wiley (1941).

MODELS BASED ON T H E WA V E EQUATION

Two models are reported in the literature regarding flat bases
(Wolf 1944; Hoover and O’Brien 1980). These models are
based on the calculation of the full wavefield as wave scat-
tering at the contact between the geophone and the ground.
We consider a cylinder of radius a (the geophone) in contact
with a homogeneous and isotropic half-space (the ground),
as shown in Fig. 1. By simplicity, we denote the stress σzz,
strain εzz and displacement uz by σ , ε and u, respectively,
such that (σi , εi , ui ), i = 1,2 denotes the field at the cylinder
and ground, respectively and (x, y, z) is the position vector.
The medium properties are indicated by ρi (mass density), vi

(wave velocity) λi and μi (Lamé constants), Ei = λi + 2μi and
Yi = μi (3λi + 2μi )/(λi + μi ) (Young modulus). Moreover,

I1 =
√

ρ1Y1, and I2 =
√

ρ2 E2 (1)

are characteristic impedances of the cylinder and ground, re-
spectively, as we shall see below.

The Wolf theory (Model 1)

Wolf (1944) considered the following radial distribution of
vertical stress on the base (see Fig. 1):

σ = − F

2πa
√

a2 − r2
, for r < a,

σ = 0, for r ≥ a, (2)

where F is an harmonic force. This is then replaced by the
inertia of the weight. Wolf (1944) assumed that the displace-
ment of the weight is equal to the average displacement pro-
duced by the assumed distribution of stress on the surface of
the solid. The equation of motion obtained by Wolf (1944)
is an approximation, under the assumption of a Poisson loss-
less ground (λ = μ) and to second-order in the displacement.
It is:

(M + 0.82ρ2a3)ü1 + 2.43I2a2u̇1 + 1.778aE2u1 = 0, (3)

where u1 is the displacement averaged over the base of the
cylinder and M is the mass of the cylinder. A dot above a
variable denotes time differentiation.

Equation (3) holds for M � ρ2a3 and has the oscillator
form:

mü1 + ηu̇1 + κu1 = 0, (4)

where m is mass per unit area, η is a viscosity per unit length
and κ is a stiffness per unit length. In this case,

κ = 1.778aE2,

η = 2.43I2a2, (5)

and

ω0 ≡
√

κ

m
= 1.332

√
aE2

M + 0.82ρ2a3
(6)

and

η̄ ≡ η√
κm

= 1.822

√
ρ2a3

M
(7)

are the resonance frequency and viscosity parameter respec-
tively. This model can be useful to obtain the density and seis-
mic velocity of the ground, knowing the resonant frequency
f0 = ω0/(2π ) and damping parameter η̄. From equations (6)
and (7) we obtain:

ρ2 = η̄2 M
3.32a3

(8)

and

v2 = 8.66a f0

η̄

√
1 + 0.25η̄2. (9)

The Hoover-O’Brien theory (Model 2)

The theory developed by Hoover and O’Brien (1980) also
considers an infinitely rigid geophone over an elastic half-
space. The amplitude of the geophone motion is:

U =
[
1 + Mρ2ω

4

πμ2
2a

∫ ∞

0

k1 J1(ak)
R(k)

dk
]−1

, (10)

where ω is the angular frequency, k is the wavenumber, J1 is
the first-order Bessel function of the first kind,

R(k) = (2k2 − k2
S)2 − 4k2k1k2 (11)

is the Rayleigh function and

k1 =
√

k2 − k2
P , k > kP , k2

P = ρω2/E2

= i
√

k2
P − k2, k < kP ,

k2 =
√

k2 − k2
S, k > kS, k2

S = ρω2/μ2

= i
√

k2
S − k2 k < kS .

(12)
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Equation (10) is solved in the appendix by using a different
method as that of Hoover and O’Brien (1980). Equation (6)
(the Wolf model) indicates that the resonant frequency in-
creases with increasing plate radius (for M � ρ2a3). The same
property is predicted by the theory developed by Hoover and
O’Brien (1980). The novel model presented in the next section
predicts a constant resonance frequency.

M O D E L 3

Model 3 is introduced in this work. It is based on a boundary
condition used to describe fractures and involves the trans-
mission coefficient of the upgoing seismic waves impinging in
the geophone-ground contact.

Stress-strain relations

Referring to Fig. 1, ignoring shear stresses and shear deforma-
tions, the stress-strain relation can be written as:

σxx = Eεxx + λ(εyy + εzz),
σyy = Eεyy + λ(εxx + εzz),
σzz = Eεzz + λ(εxx + εyy)

(13)

(e.g., Carcione 2007), where:

εxx = ∂xux, εyy = ∂yuy, εzz = ∂zuz, (14)

with (ux, uy, uz) being the displacement vector. The symbol ∂

indicates spatial partial differentiation.
The cylinder is laterally free implying σxx = σyy = 0.

By symmetry εxx = εyy and therefore εxx = −[λ1/(E1 + λ1)]εzz

from equation (13). Since σzz = E1εzz + 2λ1εxx, we obtain:

σzz = Y1εzz. (15)

We assume εxx = εyy = 0 under the effect of the weight
of the cylinder, meaning that the medium surrounding the
ground under the cylinder generates a reaction stress, com-
pensating possible motions along the horizontal direction.
Hence

σzz = E2εzz, (16)

in the ground.
Since we consider unconsolidated grounds, such as ar-

eas covered by sand, wave attenuation can be significant. We
replace:

E2 → E2(1 + iQ−1) (17)

where Q is the quality factor, which is assumed to be con-
stant with frequency and i = √−1. The medium is therefore
represented by an anelastic half-space.

Boundary conditions

The boundary conditions at the base of the cylinder/ground
interface depend on the weight of the cylinder and spans from
lack of bonding at zero weight to perfect (welded) bond-
ing at infinite weight. This effect can be modelled by the
displacement/particle-velocity discontinuity boundary condi-
tion:

κ[uz] + η[u̇z] = σzz,[
σzz

] = 0,
(18)

where u̇z is the particle velocity and κ and η are the specific
normal stiffnesses and normal viscosity, which have dimen-
sions of stiffness and viscosity per unit length, respectively.
The brackets denote discontinuities across the interface, such
that for a field variable φ, it is [φ] = φ2 − φ1, where ‘1’ refers
to the cylinder and ‘2’ to the ground. In the frequency domain,
equation (18) involves the complex stiffness κ + iωη, where ω

is the angular frequency. There is energy loss at the inter-
face and corresponds to the damped oscillator as we shall see
later. This model was used by Carcione (1996, 1998, 2007)
and Carcione and Picotti (2012) to obtain the reflection and
transmission coefficients of fractures and cracks.

Experimental values of κ for fractures can be found, for
instance, in Pyrak-Nolte, Xu and Haley (1992). The material
is aluminium and the experiments were performed at a fre-
quency of 1 MHz. Normal stresses between 0–30 MPa imply
values of κ from 7–30 GPa/mm, approximately. Fioravante
et al. (1999) performed tests on sand-aluminium contacts un-
der varying normal stress. A typical value for Toyoura sand
is 1 MPa/mm for a normal stress of 50 kPa (equivalent to
a weight of 392 kg at the Earth’s surface). In general the κ

values in this work range from 0–100 kPa/mm.

Reflection and transmission coefficient

Using compact notation, the stress-strain relations (15) and
(16) and boundary condition (18) read:

σ1 = Y1ε1,

σ2 = E2ε2,

κ(u2 − u1) = σ1 = σ2 = σ,

(19)
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where we assumed η = 0. Let us consider the plane-wave
solution with an incident wave on the cylinder coming from
the soil,

u1 = T exp[i(ωt + k1z)],
u2 = exp[i(ωt + k2z)] + Rexp[i(ωt − k2z)],

(20)

where t is the time variable, R and T are the reflection and
transmission coefficients, and

k1 = ω

v1
, and k2 = ω

v2
(21)

are the wavenumbers, with

v1 =
√

Y1

ρ1
and v2 =

√
E2

ρ2
(22)

the wave velocities.
From equation (14) we have at z = 0,

ε1 = ik1T exp(iωt),
ε2 = ik2(1 − R) exp(iωt),

(23)

and equation (19) gives:

σ1 = ik1Y1T exp(iωt),
σ2 = ik2 E2(1 − R) exp(iωt).

(24)

The third boundary condition (19) yields two equations with
the two unknowns R and T,

κ(1 + R − T) = iI1ωT,

I1T = I2(1 − R),
(25)

where I1 and I2 are defined in equation (1). The solution is:

R = I2 − I1 + iγ
I1 + I2 + iγ

, γ = ωI1 I2

κ
,

T = 2I2

I1 + I2 + iγ
.

(26)

The welded interface is obtained for κ → ∞ (γ · 0) and the
uncoupled case for κ → 0 (γ · ∞), for which R = 1 and
T = 0. In the case of a particle-velocity discontinuity also,
κ should be replaced with κ + iωη in equation (26).

The transmission coefficient is an amplitude scale fac-
tor, which varies slowly at low frequencies. Keeping constant
the stiffness κ of the interface ground-plate, the transmis-
sion coefficient is 2I2/(I1 + I2) at ω = 0 and zero at high
frequencies. Maximum transmission at ω = 0 occurs when
the plate and the ground have the same properties. In this
case, T = 2/(1 + √

E/Y) = 2/(1 + √
6/5) ≈ 0.95 for a Pois-

son medium (λ = μ).

Specific normal stiffness and energy transmission coefficient

Empirical models used for fractures relate the specific normal
stiffness to the closure of a joint, c (Jiang et al. 2009). Normal
stiffness and normal stress are related by:

κ = −dσ

dc
, (27)

with

c = c0 − 1
b

ln
(

σ

σ0

)
, (28)

where c0 is the aperture (or gap between the two sides of a
joint) at a reference normal stress σ0 and b is a fitting parame-
ter that implicitly contains the properties of the medium. This
parameter was termed ‘stiffness characteristic’ by Zangerl
et al. (2008) and is indicated as dkn/dσ ′

n in their paper. For
instance, Zangerl et al. (2008) reported 57 1/mm for Pinawa
granite, 68-141 1/mm for Dolerite and 25-113 1/mm for gran-
ite gneiss. Here, we obtain values from experimental data in
the range [13,1050] 1/mm. Particularly, since b can be ob-
tained from experiments, this parameter can be appropriate
to model the joint properties between the plate and the soil
solely based on physics.

We obtain from equations (27) and (28),

κ = bσ, (29)

showing that the curve of normal stiffness versus normal stress
is linear and passes through the origin (i.e., zero stiffness at
zero normal stress) (Zangerl et al. 2008). Since the normal
stress is:

σ = P
πa2

= Mg
πa2

= mg, m = M
πa2

, (30)

where P is the weight of the cylinder, m is mass per unit area
and g = 9.81 m/s2, we have:

κ = bP
πa2

= bmg. (31)

Therefore, the stiffness is proportional to the cylinder mass
and inversely proportional to its radius squared. We note here
that weight P is actually a force given in newtons in the SI
system, i.e, it is the weight at the surface of the Earth. How-
ever, we indicate P in kilograms, since this is common use,
although it is not strictly correct.

We consider the energy transmission coefficient:

T = I1

Re(I2)
|T|2 = 4I1|I2|2

Re(I2)[I1 + Re(I2)]2 + [γ + Im(I2)]2
(32)

(e.g., Pilant 1979; Carcione 2007), such that |R|2 + T ≈ 1,
where we have used equation (26); ‘Re’ and ‘Im’ take real and
imaginary parts, respectively.

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13
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The damped oscillator

A wave equation of the form (4) can easily be obtained
for the system shown in Fig. 1. Newton’s second law
P = πa2σ = Mü1, combined with the displacement/particle-
velocity boundary condition:

κ(u2 − u1) + η(u̇2 − u̇1) = σ, (33)

(see Fig. 1) yields:

mü1 + ηu̇1 + κu1 = ηu̇2 + κu2. (34)

Assuming a harmonic ground oscillation with unit amplitude:

u2 = exp(iωt), (35)

we obtain the solution:

u1 = U exp(iωt), (36)

where U is the amplitude at the geophone. Its expression is
the geophone-ground coupling response, which is given by:

U = 1 + i(ω/ω0)η̄
1 − (ω/ω0)2 + i(ω/ω0)η̄

, (37)

where ω0 and η̄ are defined in equations (6) and (7), respec-
tively. In this case,

ω0 =
√

bg and η̄ = πa2η

ω0 M
, (38)

using equation (31). The undamped resonant frequency ω0 is
constant, in agreement with Krohn (1984), who concluded
that there is no change in the resonance frequency for dif-
ferently sized bases. Moreover, the resonant frequency is in-
dependent of the mass. This disagrees with the theoretical
predictions of Hoover and O’Brien (1980) but agrees with the
experimental results of Krohn (1984) (her Fig. 12). She stated
“In spite of the increase in resonant frequency in the past, nei-
ther Washburn and Wiley (1941) who measured the coupling
for geophones of 11 to 27 lb, nor Fail, Grau and Lavergne
(1962) who measured coupling for geophones of 300 to 500
g, saw much change with mass. It is possible that the resonant
frequency is influenced by large changes in size and mass but
is fairly insensitive to only doubling the mass.” As mentioned
above, the medium properties enter implicitly in the fitting
parameter b (see Table 1 in Zangerl et al. 2008).

Equation (37) is the expression given by Hoover and
O’Brien (1980), which has been derived here from the bound-
ary condition used to model fractures and cracks (Schoenberg
1980; Carcione 1996). That equation (37) also describes the

Table 1 Properties of different grounds (from Washburn and Wiley
1941).

fp Up f0 f ′
0 κ η̄ b

Ground (Hz) (Hz) (Hz) (kPa/mm) (1/mm)

Pure dry sand 130 2 140 133 43.4 0.60 78.6
Dry black gumbo 125 1.7 139 129 42.9 0.76 77.6
Dry sand clay

(plowed)
67 2.9 69 68 10.6 0.37 19.2

Hard grassy
ground

200 3.1 205 202 93.8 0.34 169.8

Dry sand clay
loam

110 2.5 115 112 29.3 0.44 53

Damp sticky
gumbo
(plowed)

80 1.6 91 82 18.2 0.85 33

Wet sandy mud 70 2.2 74 71 12.2 0.52 22.1
Very wet sandy

mud
56 3.2 57 56 7.3 0.33 13.3

Wet spongy loam 70 2.4 73 71 12 0.47 21.7
Asphalt road 470 1.9 509 482 576.7 0.64 1044

Notes: a = 5.36 cm; P = 5 kg.

behaviour of Models 1 and 2 is not surprising but the param-
eters are different and this implies a different behaviour. The
displacement amplitude |U| and related phase determine the
response of the geophone. Since the incident seismic-wave am-
plitude is unity, |U| = 1 and phase equal to zero indicates that
the geophone is following exactly the motion of the ground.
This is the optimal situation.

The maximum amplitude, corresponding to equation
(37), occurs at the frequency:

ωp = ω0

η̄

√√
1 + 2η̄2 − 1. (39)

Its value is:

Up = η̄2√
η̄4 + 2

(√
1 + 2η̄2 − η̄2 − 1

) . (40)

Hence, from the experimental curve we can measure ωp and
Up and obtain ω0 and η̄ from equations (39) and (40).

The transient response corresponding to equation (34)
can be obtained by assuming an impulse in the ground of the
form u2 = δ(t), where δ is Dirac’s function. The solution is
given by the inverse Fourier transform,

u1(t) = F−1[U(ω)], (41)

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13
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where U is given in equation (37). Using the Fourier-transform
pairs:

exp(−αt) sin(ω′
0t)H(t) ⇔ ω′

0

ω′
0

2 + (α + iω)2
,

exp(−αt) cos(ω′
0t)H(t) ⇔ α + iω

ω′
0

2 + (α + iω)2
, (42)

where H is the Heaviside function, we obtain:

u1(t) =
(

ω0

ω′
0

) [
ω′

0η̄ cos(ω′
0t) + ω0

(
1 − η̄2

2

)
sin(ω′

0t)
]

exp(−η̄ω0t/2)H(t), (43)

where

ω′
0 = 2π f ′

0 = ω0

√
1 − η̄2/4, (44)

assuming under-damped oscillations, i.e., η̄ < 2.
The internal mechanism of the geophone is also described

as a damped oscillator and can be included in equation (37),
which becomes:

U = (ω/ω1)2[1 + i(ω/ω0)η̄]
[1 − (ω/ω1)2 + i(ω/ω1)η̄1][1 − (ω/ω0)2 + i(ω/ω0)η̄]

, (45)

according to Krohn (1984), where ω1 and η̄1 are the resonant
frequency and damping parameter of the geophone.

R E S U L T S

Washburn and Wiley (1941) reported peak frequencies and
peak amplitudes for several grounds corresponding to a geo-
phone with a base area of 14 sq. in (a = 5.36 cm) and P = 5
kg (see their Table I). From Table I of Washburn and Wiley
(1941), we obtain the normal stiffness as:

κ = mω2
0 (46)

and the viscosity from equation (40), where we used equations
(6) and (39), based on equation (37). On the other hand, the
stiffness characteristic can be obtained from equation (38),

b = ω2
0

g
. (47)

The values of the various quantities are reported in Table 1,
where ωp = 2π fp and ω0 = 2π f0.

We consider a geophone plate with Y1 = 200 GPa and
ρ1 = 7850 kg/m3 (steel) and a sandy ground with a P-wave
velocity v2 = 200 m/s and density ρ2 = 1700 kg/m3, such that
E2 = ρ2v

2
2 (Hunt and Vriend 2010). We first consider the Wolf

model (Wolf 1944), given by equations (6), (38) and (45), i.e.,
including the geophone internal mechanism. The geophone

(a)

(b)

Figure 2 The Wolf theory (Wolf 1944) (Model 1). Geophone ampli-
tude (a) and phase (b) as a function of frequency.

constants are η̄1 = 1.4 and f1 = 10 Hz. Figure 2 shows the
amplitude (a) and phase (b) for a = 5.36 cm and P = 5 kg,
ρ2 = 1700 kg/m3, v2 = vP = 200 m/s and vS = vP/

√
3 (the

Wolf model holds for a Poisson medium.) The model predicts
f0 = 476 Hz and η̄ = 1.31 for the sand properties assumed
above. To obtain the resonant frequency and damping factor
reported in the first row of Table 1 (pure dry sand), we have
to use the ground properties ρ2 = 358 kg/m3 and v2 = 113
m/s (see equations (8) and (9)). This model predicts a very
low density for dry sand, whose value is in the range 1.6–
1.7 g/cm3. This is the reason why Wolf (1944) did not use
equation (8) to predict the density. If we assume a density ρ2

= 1700 kg/m3, the velocity to match the resonant frequency
is v2 = 59 m/s but it does not match the damping factor η̄

(we obtain a value of 1.3). The model of Hoover and O’Brien
(1980) is compared to that of Wolf (1944) in Fig. 3. In this
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(a)

(b)

Figure 3 Geophone amplitude (a) and phase (b) as a function of
frequency. Comparison between the Wolf (1944) and Hoover and
O’Brien (1980) theories (Models 1 and 2, respectively), based on
geophone characteristics reported in Washburn and Wiley (1941).

case, we use equation (37) for Model 1, i.e., the geophone
internal mechanism is not taken into account.

Let us now consider Model 3, where the attenuation pa-
rameter is assumed Q = 10. Moreover, b = 78.6 1/mm for
a sandy ground, according to Table 1. Figure 4 shows the
energy transmission coefficient (32) as a function of weight
(with a = 2 cm) (a) and radius (with P = Mg = 6 kg) (b) for
f = 50 Hz. The values of κ range from 0.08–10 kPa/mm with
varying weight (normal stress (weight/area) from 0.3–20 kPa)
and from 20–1500 kPa/mm with varying radii (normal stress
in the range 0.3 kPa–20 Pa) [see equation (31)]. In this par-
ticular case, the transmission coefficient increases with weight
and decreases abruptly between 2–3 cm radii, with a maxi-
mum transmission of 3.5% at small areas. The best situation

(a)

(b)

Figure 4 Model 3. Energy transmission coefficient as a function of
weight (a) and radius (b). The frequency is 50 Hz. The geophone plate
is made of steel.

happens when the geophone plate has the same properties of
the ground. In this case, ρ1 = ρ2 and Y1 = (5/6)ρ2v

2
2, where

we assumed a Poisson medium. The transmission coefficient
is shown in Fig. 5, where we can see that 100% of the energy
is transmitted. This model predicts more energy transmission
for increasing weight and decreasing base plate area.

In the next example, we consider equation (45), with a =
5.36 cm, b = 78.6 1/mm ( f0 = 140 Hz), η̄ = 0.60, η̄1 = 1.4 and
f1 = ω1/(2π ) = 10 Hz. The amplitude and phase are shown in
Fig. 6 (solid line). If η̄ = 1 (Krohn 1984), we have the dashed
line. The viscosity parameter η̄ has a significant influence in the
amplitude. At the low-frequency limit, the geophone amplifi-
cation is unity and the phase lag is zero, indicating a perfect
coupling between the geophone and the ground. As frequency
increases, the displacement becomes larger than the earth dis-
placement and the geophone motion begins to lag the ground
motion. As mentioned above, the resonant frequency of the
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(a)

(b)

Figure 5 Model 3. Energy transmission coefficient as a function of
weight (a) and radius (b). The frequency is 50 Hz. The geophone plate
has the same properties of the ground.

fracture model is independent of the weight and plate area
[see equation (38)]. In Fig. 6, we consider the internal mecha-
nism of the geophone, i.e., equation (45). On the other hand,
without this effect (equation (37)) (see Fig. 7), the phase lag
is approximately zero in a finite range of low frequencies till
100 Hz.

Geophone signals (43) for different grounds, correspond-
ing to the fracture model, are shown in Fig. 8. The damping
factor η̄ and resonant frequency ω0 were obtained from Table
1. Amplitude and resonant frequency increase as the ground
becomes stiffer. As mentioned above, since the resonant fre-
quency is independent of the plate weight and radius, the
signal is the same for varying weight and radii.

Resonant frequencies obtained from laboratory experi-
ments conducted at KACST are compared in Fig. 9 to the
predictions of Model 3 and the Wolf model (Wolf 1944). In

(a)

(b)

Figure 6 Model 3. Geophone amplitude for η̄ = 0.6 (solid line) and η̄

= 1 (dashed line). Moreover, a = 5.36 cm, b = 78.6 1/mm, η̄1 = 1.4
and f1 = ω1/(2π ) = 10 Hz.

our experiments, we used the ELVIS hardware system and
LabView software, which are tools for acquiring and process-
ing digital signals. ELVIS is a device provided by National
Instruments, containing a data-acquisition card as the funda-
mental core. We used a hammer as a source, whose strength is
calibrated by letting it fall from a certain height and the geo-
phones were manufactured by Geostuff. The stiffness char-
acteristic b was used as a free parameter regarding Model 3.
We considered b = 3.16/mm, ρ2 = 1700 kg/m3 and E2 = 1.7
× 10−4 GPa. This low value of the P-wave modulus of the
loose sand is used to scale the frequency values predicted by
the Wolf model to the real values. Figure 9(a) shows the fre-
quency as a function of the plate area. As can be appreciated,
the frequency is constant and can be predicted by Model 3,
while in this case the Wolf model predicts a decreasing fre-
quency with increasing area of the plate. However, the results
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(a)

(b)

Figure 7 Model 3. Same as Fig. 6, without the geophone internal
mechanism.

Figure 8 Model 3. Geophone signals (43) for different grounds and
a = 5.36 cm and P = 5 kg.

3

3

(a)

(b)

Figure 9 Resonant frequency as a function of the plate area
(the weight is 0.78 kg) (a) and weight of the plate (the area is 120
cm2) (b).

of the Wolf model have to be taken with caution since the
condition M � ρ2a3 is not satisfied. In this case, the oppo-
site trend occurs in view of equation (6). On the other hand,
Fig. 9(b) shows the frequency as a function of the weight of
the plate. Similarly, the constancy of the frequency is the main
trend while the Wolf model predicts a decreasing trend.

Finally, we simulate a seismic-acquisition experiment
based on the geophone-ground coupling theory developed in
this work, i.e., Model 3. The simulation algorithm, which con-
siders P-and S-waves, can be found in Kosloff and Carcione
(2010). We assume a vertical source with a central frequency
of 70 Hz and 25 receivers at the surface. The model consists
in a 1 m thickness surface sand layer with vP = 460 m/s, vS =
200 m/s, ρ = 1722 kg/m3, QP = 60 and QS = 50, overlying
a more consolidated layer with vP = 600 m/s, vS = 346 m/s,
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(a)

(b)

Figure 10 Model 3. Synthetic seismogram acquired with optimal (a)
and poor (b) ground-to-geophone transmission.

ρ = 2000 kg/m3, QP = 100 and QS = 80. The geophone
weight and plate radius are 1 kg and 3 cm, respectively. In
this case, the energy transmission from the soil to the geo-
phone is assumed to be

√
T , where T is given in equation (32)

[T (γ = 0) corresponds to a welded interface or optimal trans-
mission, according to equation (26)]. The transmission coef-
ficient T at each geophone is obtained by assuming a range
of stiffness characteristic b from 40–4000 1/mm, weighted at
each geophone by 25 random numbers between 0–1. Figure 10
shows the synthetic seismogram of the vertical particle-
velocity component acquired with optimal transmission (no
weights) (a) and poor (b) energy transmission. We have to dis-
tinguish between geological and non-geological effects. This
example holds for a specific soil and given radius and weight
of the plate. If the soil changes along the seismic line, the
amplitude will change according to the soil (geological) prop-
erties. If the effective area of contact changes along the line the

amplitude is affected. This fact and changes in the base plate
weight are related to non-geological amplitude variations.

CONCLUSIONS

Three models are proposed to estimate the geophone-ground
coupling for circular base plates of varying radii and weight.
Two existing models, based on the full-wave theory and de-
veloped by Wolf and Hoover and O’Brien, predict that the
resonant frequency increases with increasing plate radius. A
new model introduced in this work considers that the plate-
ground contact is based on a boundary condition modelling
partial coupling and leading to the damped oscillator equa-
tion of motion. The resonant frequency is independent of the
geophone weight and plate radius, while the recorded energy
increases with increasing weight and decreasing base plate
area (as predicted from our own experiments and measure-
ments by Krohn).

The main model parameters describing the coupling and
the damped oscillations, i.e., the resonant frequency and
damping constant, can be obtained from measurements of
peak frequencies and amplitudes. Moreover, we compute geo-
phone signals for different grounds and varying plate radii
based on the first model. Since the resonant frequency is inde-
pendent of the plate weight, the signal is the same for varying
weight. Finally, we simulate seismic acquisition with optimal
and poor energy transmission from the ground to the geo-
phone, based on the geophone-ground coupling model devel-
oped in this work. The examples regard land streamers. In the
case of ocean-bottom sensors, the effective weight and mass
could be different because of buoyancy.
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APPENDIX

A NEW SOLUTION OF THE HOOVER AND
O’BRIEN EQUATION

Rayleigh function (11) has a root at the Rayleigh
wavenumber k = kR = ω/vR, where vR is the Rayleigh-wave
velocity. R = 0 can be re-written as:

q3 − 8q2 + (24 − 16r2)q − 16(1 − r2) = 0, r = vS/vP ,

q = (vR/vS)2 (A1)

(e.g., Carcione 2007), where vP = v2 and vS are the P- and
S-wave velocities of the ground.

Equation (10) can be written in terms of dimensionless
quantities. Let us define:

k̂ = k
kP

(A2)

and the function

�(k̂) =
√

k̂2 − 1, k̂ ≥ 1,

= i
√

1 − k̂2, k̂ < 1.
(A3)

We obtain:

dk = rkSdk̂,

k1 = rkS�(k̂),
k2 = kS�(r k̂),
ka = pk̂,

p = ωa/vP ,

(A4)

so that:

R(k) = k4
S[(2k̂2r2 − 1)2 − 4k̂2r3�(k̂)�(r k̂)]. (A5)

Therefore, equation (10) can be written as:

U(E, r, p)

=
[

1 + Ap2
∫ ∞

0

�(k̂)J1(pk̂)

(2k̂2r2 − 1)2 − 4k̂2r3�(k̂)�(r k̂)
dk̂

]−1

, (A6)

where A = m/(πra3). The properties of the integrand in equa-
tion (A6) are such that it is purely imaginary for k̂ ∈ [0, 1],
fully complex for k̂ ∈ [1, 1/r ] and real for k̂ ∈ [1/r,∞]. Then,
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the real part is integrated as
∫ k̂R

1 (·)dk̂ + ∫ k̂∞
k̂R

(·)dk̂, to deal with

the singularity, where k̂R = kR/kP and k̂∞ = 200. The imag-
inary part is integrated as

∫ 1/r
0 (·)dk̂, The integrals are solved

with high accuracy using Gauss-Chebyshev integration with
dense sampling and shifting the singularity by re-writting
equation (A3) as:

�(k̂) =
√

k̂2 − (1 − iε), k̂ ≥ 1,

= i
√

(1 − iε) − k̂2, k̂ < 1.
(A7)

The value ε = 10−6 works very well. Alternatively, the method
proposed by Hoover and O’Brien (1980) in their appendix can
be used.
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