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Abstract The equations governing linear wuave
propagation in viscoelastie media, either
single-phase or multiphase, can be uritten as

a single first-order matricial differential

equation in time. ‘The formal solution is the
evolution operator elfl! acting on the initial
condition vector, uhere M is a linear operator

matrix containing the spatial derivatlives and
medium properties, and t is the time variable.
The problem is solved numerically approximating
the evolution operator by an optimal polynomial
expansion depending on the location of the
pigenvalues of M in the complex frequenoy
plane., The eigenvalue analysis is carried out
for the anisotropic-viscoelastic and porous
viscoacoustic constitutive relations and
respective limiting rheologies. For ecach case
an optimal expansion of the evolution operator
iz identified, which provides highly accurate
solutions and {fast convergence compared to
Taylor expansion or temporal differencing.

1. INTRODUCTION

Linear viscoclasticity provides a general
framevwork for describing the anelastic effects
in wave propagation, i.e., the canversion aof
part of the enorgy into heat, and the
dispersion of the wave field Fourier components
With increasing time. A dissipation model which
is consistent with real materials is the
general standard linear splid whieh is based
on a spectrum of relaxation mechanisms,
lowever, implementation of this rheology in the
time-domain is not strajghtforuard due to the
presence of convolutional kernels (Bolzimann's
superpositlion principle). To avoid the time
convolutions, it is necessary to introduce into

the foermulation additional variables, called
memory variables in virtue of their nature
[1])- [5] . The wave equation of the medium can

be written as a first-order differential

eguation in time as

U =HU 4 F, (1
where U is a vewlor whose components are the
unknown variables, M is an operator matrix

the spatial derivatives ond material
and F is the bedy forece veclor.

containing
properties,
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time differentiation is
dot convention. The
(1) ecorrectly describes

In (1) and elseuhere,
indicated with the
differential equation

the anelastic effects in wave propagation
within the framework of linear responsc theory.
The solution of (1] subject 1o the
initial condition
U(t = 0)=Ug (2)
is formally given by
t
1,1(1):5’t Mu[,+ [ e’"ﬂ(t—-r) dz. (3)
‘0
In equation (3), el is called the evolution

of the system. solving [(3) requires
approximation for the spalial
which is achieved by the Fourier
pseudospectral method 7 Thus, eguations
{13, (21 and (3) should be replaced by the
discretized equivalent equations.
The numerical solution is pbtained by an
optimal expansion of the evolution operator as
polynomials, whose region of convergenoe
depends on the gpatial matrix H, particularly
on the loeatien of its eigenvalues in the
complex frequency plane. The form of ¥ depends
on the rheology and the unknown variables.

Let a plane wave solution {p equation (1)
be of the form

operator
a suitable
derivatives,

fm gt G —RH, @)
where x is the position variable, wp i8 the
complex frequency, and k is the real wavenumber
vector. substituting C(4) into (1), and

considering constant material properties and
s2pro body forces, yields an eigenvalue egualion
for the eigenvalues 4= iwg. The determinant
of the system must be zero in order for up te
have a non-zero value. Therefore,

det[M — A1) =0, (5)

Fourier transform of 1

where H is the spatial
the

, and 1 is the identity matrix. Hereafter.
complex plane of the cigenvalues is ealled the
z —plane. Equation (5) determines the
gigenvalues of M in the Fourier meihod
approximation. Actually. the discretize’
equation should be used, but (5) represents

relatively good approximation.
The eigenvalues are analyzed in
5 for the following rheologies:

seotif
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= Anisotropic-elastic

- lsotropic-elastic

— PDROUS 1SOTROPIC=VISCOACOUSTIC
= Bipot-acoustic

- Isotropie~viscoacoustic

The eigenvalue distribution defines the
domain where the evolution operator is
approximated by a suitable (rapidly converging)
polynomial expansion. For each case, a brief
revien of the numerical integration techniques
is given in Section 3. The methods are the
following:

—= Taylor expansion

= Chebychev Spectral method

= Rapid expansion method

= Polynomial interpolation
through conformal mapping

= Polynomial interpolation
by residum minimization

1. HAVE EQUATIONS AND EIGENVALUES OF 1

Anisotropic=viscoelastic theology

in order to implement Boltzmann's principle in
the generalized Hooke's lad, two relaxation
funetions based on the standard linear solid
rheology are considered. One relaxation
function describes the anelastic properties of
the quasi-dilatational mode, and the other is
related to the quasi-shear mode. This can be
done by forcing the mean stress to depend on
the firast relaxation function, and the
deviatoric components on the second (in this
case, at least for some coordinate system, and
usually along symmeiry axes of the materiall.
Horeover, +the resulting rheological relation
gives Hooke's law in the anisotropic-elastic
limit, and the isotropic-viscoelastic rheology
in the isotropic-anelastic limit [3]), [5]. The
equation of motion of a tvo=-dimensional
anisotropice-viscoelastic medium is formed wWith
the following equations [1]:

i) The equation of momentum conservalion:

VeT=pi+1, (&)
where TT = [Ty Tas Tas Ty Tes Telm
[dxx' Oyyr Ogpe Oyos Oyos ny] is the stress
vector, wWith @35, i,i=1,...,3 the stress
components. Defining the position vector by
x=(X; ¥ Z)s u(x, t) and f(x., t) denote the
displacement and body force vaectors,
respectively; p(x) is the density, and V»* is a

divergence operator defined by

aléx 0 0 0 afdz ay
VevVig=| 0 90y 0o 83z 0 9fox
0 0 d/dz aldy ajdx 0

ii) Tha siress-strain relations:

T
T] = [‘AIJ + ﬂr]“?’”u‘f,]s‘] ik fl.(||‘)_| E Cg; » (7}
1=1
Where Tod =ik and e ]2
5T = (57, 55, 83, 844 S5, Sg) =
(fyss Cyyr Eogr 20puws 2ixms 20yy] 8 the strain
vector, Hith Eifr s mk paia B the strain
components; 091 are memory variables relaled

to the L,
anelastic

quasi-dilatational
modes (ve=2); and A;y; and AQ)

mechanisms whieh describe
characteristics of
mode (v=1),

the
the

and quasi-shear
are functions of

the I,3=1;...,6 of the

elasticities o5,

Ly
medium. Finally, My, =[1- ¢ (1-<\/{])). where
¥ and 1Y are material relaxation times,

Implieit summation over repeated indices is
assumed .

iii) the memory variable equations:
&8} = 50,1 - oG}l
where ¢, =(1 - T&“Ph‘g'i)hg} £

l=Xsuoes Ly (&)

Equations (&), (7)) and (B) are the basis
for the numerieal solution algorithm. For
simplicity, a tuo-dimensional

transversely-isotropic
axis parallel 1o

medium  wWith symmetry
the z-axis is considered.

Then, e;3, ©zz., ©1y and cgg define the elastic
characteristics of the medium. Choosing one
relaxation mechanism for aach mode
(Ll-LGlfl. the unknoun variable vector is
given by
T % ‘
US = [uy, Uy, Oy, g, 0, 82, €3], (9)
where elne&_]-fa{-agf; 93=Eﬁ—ef‘;,2f. and
e3-e§Q. in terms of the memory variables. The
spatial operator is

0 0 1 0 0 1] 0

0 0 0 1 0 0 0

Mgy M3p 0 0 Mgglige Maq
M= Mgy Hop 0 0 Mgg Hag Mg s (1m

Mgy H52 0 OHgg O

HE!J. M&ED o o "ﬁﬁ 0

Hyy a0 0 0 0 Mg
Hith

ﬂH31 = djéx [(I’.}ll = D)+ (D - Gss)ﬂul + c:}SHUEJ Al
iz (eggMy o) Aldz,
MHzo = 3jdx [(0]3 + 2055 — D)+ (D — egrltyy - cggly o]

dlaz 4 dldz (ﬂSSH“E) dlax,

Mzg = 7dx (D = cgg), Mze = 4ji% cgg, filzgg =
dléz cgg.
Mgy = dfdz [(013 + 2egg — n+ (D - 055"1“, - ﬂssHuE]

Aex + dlix (GSSHIIEJ oz,
ﬁ"qz = r?}-’?z. [{GSS - D) RS (D - 055)}1“1 i USSH“:‘_‘:] "‘I"'Z +
ajix (ﬂss]iu;u_l) alfx,

P.Hrls = gfdz (D = Ggle .HH(l‘? = = Aldz G5,

Meq = dlix egg,

H.Sl = l'.f‘ll Aldx, NS? o r'fll f}”.‘?y,, ]"ISS = o ]"-(ﬂ-]\'
Hﬁl = (,12 Ao, Hﬁf-! = = r’f|2 ('ill'r'i'?” "{:l’.‘ - lh,sf:‘l'
M?l = rj)z aldz, H?E - u’l:__, afix, MT'? - e ljw‘f,__'z}.
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The subindex 1

where D= (o) + cz33)/@. denoting
a physical mechanism has been omilted Afor
simplicity. In the anisotropic-elaslic limit,
i.e., when Tp)—-ﬂﬁ. and the memory variables

vanish, egquation (2.2) become looke's lau. In
the isotropie-viscoelastic Timit, Gy .
Ggz =4 +2: » ©1g—4 and cgg— i, with / and u
the Lame constanis, and 7 becomes the

isotropie-viscoelastic rheology [5].

The eigenvalues of H are obtained from
equation (5), where the following substitutlion:
djgx — iky, and gtz = ik, Hith ky, and kg

iy
the wavenumber components, gives H from H.
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Fig. 1. Eigenvalue distribution of Llhe spalial

matrix H in the complex frequency nplanc for the
different rheoclogies of a single-phase solid,

The eigenvalue disiribution for
rheologies is displayed in Fig. 1.
is a clayshale having
Tﬁl)kTiz)t:U.UDED g1, 1(l)mp.0027 571 and
rn:f}:G.DDES s=1, which give highest dissipalion
around {= 50 Hz g e The ejgenvalues
corresponds to Kk, =k, =10.16 m=1l. The negative
real part of 1he propagating modes is a
consequence of the anelastieclity, stronger Jor
the shear modes. The static modes arise {from
the dact that the formulation was done in the
time-domain; they are grouped approximatlely
around -1/t and -1/:2). The differences are
mainly due 1o anelaslicity which inlroduces the
statiec modes, since anisotropy only produces a
shift of 1he wave mode eigenvalues in  the
vertical direction. Section 3 analyzes Lhe
appropriate methods for each rheology.

the different
The material

Porous isotropi¢-viscpacoustic rheology
Invoking the gorrespondence principle, Riot
formally obtained an viscoelastic equalion of
motion whieh includes all possible dissipalion

mechanisms. The approach inveolves (he presence
of convolutional integrals which arise {from Lhe
replacemeni of the elastic coefficienls hy [ima
operators. When standard linear solid kernels
are considered for the +time operators., the
equation of motion of the
isolropie-viscoacoustic porous medium is given
by ithe following egquations [2]:

i) Biot equations:

p -p p i 0 0 1 %
ol P B - Y - B P
where p and py are the pressure fields of the
matrix-fluid system and {luid, respeatively; U
is the displacement of the solid; u is a veolorl
representing the flow of the fluid relative LO
the solid, and s and sy are body force veeclors.

{11)

The material properties are: po , ihe composite
density; pg. the solid density; py o Lhe fluid
density; m, the dtortuesity; u, the {iuid
viscosity; and K, the global permecabilily.
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ii) The stress-strain relations:

L
[ V1 V2 4 {[En] b 1][«:21]
[Pf] ["3’2 b |LL +lzl_ﬁ1 oo (a1 10" g
where e and [ are the dilatation fields of the
gsolid matrix, and fluid relative to the solid,

respectively; and ey}, esy, {5y, and (3| are
memory variables. y;=-(A+R+2Q), fin = (@ + RYf

and wa-mﬂe. where A, R, and @ are 1lhe
classical Biot elastic coefficients, and [ is
the porosity.
iii) The memory variable equations:
; (11)
€11 b1 0 ["-‘]_ 1lltg j} [911], (12a)
[(51]'[“ day [ Le) 7o T iYL ts
é21| . |~ 21 ol[e]_ 1 1[“21], (13h)
[521] [” v21 1] @) L2
a
for j T L, A uhere
bry = — YLl = fBelyeln),  r=1,3, with Y
and (]} relaxation fimes.
In the one-dimensional ease with L=1, the
unknown veetor U has nine components,
UT=(e, £, &, & —w. ey, l3. €2, {2]. (16)
The spatial matrix M for consiant material
properties is given by
0 0 1 0 0 ] 0 i} i]
] 0 0 1 0 0 ] ] 0
Mgy HMzgp O 0 HMzg HMgg Mzy Hzg Hazg
Hqp HMgp O 0 Mugg Mae Mgy Mg Moo
M=[Mgy Hgs O 0 Mgg MNgg Mgy Msg Hgols
Hey 0 a 1] 0 Hee 0 0 0
0 “72 0 0 0 0 NTT 0 ]
HB]. 0 0 1} 0 0 0 HBE 0
1] ng 0 0 0 0 0 0 HggJ
(eq. (15)), where

yHzy = (Mg + pgilial A,
¥ Hzs = (pgy/Kidfdx,

yHgo =[mio — prirg] A

¥Hgg mma, ¥ Hzgq = = pg As Y Mzg = - py A,
yHzg =mA,

YMa1 =Logiy + plial 4, yMap = [pgilp = phz] A

¥ Mo = (pnf1) 8/éx,

YHae =ngds YMag=—pA, yHag=—p A, vHag=ppd,
¥ Mgy = Lpgthy + pirod 2jo%, y Mgp = [pgtho — prig] “17%,
¥y Hgg = pi) /K,
YMge = pg 20%.  yHgg =—pdldst, yHgg== /7 ix,
Y Hgg = pyg 8/fx,

(2

1), i
Me1 =1, Mg =—1/h)" Myp =iz, MNoq=-1:0",

Mgy ==z, Mgg=-1/rG),

Hu)2=-¢.f?;_\. MHgg = =1,

Kith A= 02/x2 and y=pf —pm . Biot poroclastic

equations are obtained by taking
) = #f), r=1,3. Then, the memory varijables
vanish and  the unknown vector bocomes
T =[e, {. & (. —H] The equation {for a

viscoacoustie single-phase =solid is obtained
with py=0 and $p=dz=0; only one set of
relaxation times remains, corresponding to the

solid phase (¢y). The unknown vector in this
case is UT =[e, &, o]
- - 200
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=
z=plane (KHz)
®
L H—|-0
=100 &
| Fasl P=wave
e Slow P=wave
om
¥ Slalic modes
L-500
- - - 500
Biol—acouslic
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i i 0
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e L-500
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Fig. 2. Eigenvalue distributlion of 1 in the
complex frequency plane for 0 porous

viscoacoustic medium and limiting rheologies.
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Aax hy ik

Substitution of givos

transformed malrix H. Fig. 2 shous Llhe
cigenvalue distribution. One of them is =zero
(not plotted) since the fourtih and {ifth rous
af M are linearly dependent. The slow modes
present a guite di{fusive behaviour due to Lhe
Biot mechanism. They are not present in the
single-phase medium, uhose alienuation

eharacteristies are viscoelastic.
111, NUMERIGAL INTEGRATIOH HETHODS

To §llustrate the different techniques, a zero

souree term is considered for simplicity in
equation (13J. A detailed dJormulation with
spuroe  cal he {found in the respective
references. The formal solution le lhe sysiem
is then given by

ut) = et Hug, (16)
The numerical solution for general
inhomogeneous media requires a polynomial
representation of 1he evolulion operator. The
different methods are:

Taylor expansion A Taylor expansion of the

evolution operator up to the second order is

et o omt o 1n2e? (17
2

(173 into

{from U(t) gives

Replacing
U -1y

(161, and substracling

Uity = U =11+ 2t HUg. (e
This formula basically gives 1he cqualions for
second-order temporal differencing valid for
small t [7]. Although the region of convergence
of the Taylor expansion is the whole z-planc,
in order 1o have high accuracy, the lime siep
should be very small; more precisely,
At = OIN-2), using finite-order explicil schemes,
where N iz thd nember of grid points.

Chebychev spectral method This lechnigue makes
use of ihe following expansion of e® [11]:

K
z XN ]
2= Y CpIx(tR [__.]

£y k ]{( ]QH ih , (19)

k=10
where |z! =+tR, and =z Jlies eclose lo the
imaginary axis. CQ-l and Cp=2 for k=l, Jy
is 1he Bessel function of order k , and Qy are
modified Chebychev polynomials wuhich satlisfy
the recurrence relation
Qp.yis) = 25Qy(s) + Q) _yisl, Qp=1. Q;=s5. {20)
substituting tH for =z in (191, cguation (16)
becomes

K .

Uty= Y CrIgx(tRIOy|S-| Vg, 21

pa R0

k=]
The series has & rnpid convergence for K= tR,
uith K = OfN) The value of R should be chosen
larger than the range of 1lhe cigenvalues of
tH. Since this expansion converges for  Lhe
imaginary axis of ihe z-plano, il is

Anelastlic
rfficioncy

appropriate for the vlastic casa [7].
problems can he solved with loss
wsing a slight medification [a].

910

Rapid expansion megthod In  the clastic case
where no {first time derivatives of tho

displacenents and memory variables are present,

the wave equation of the gsystem can Dbe
gxproessed as

== Lzll-i- ] {22y
where u is the displacement vector, 1 is the

body force vector, and - L% is a linear matrix
operator similar to M [2]. For zero body forces
the formal solution to (22) is

ut) = cos Lt u(0) + iil%Jlequ). (23
sdding solutions (23) for times 1 and —t, the
displacement time derivative can be eliminated,
and the displacement at time 1t becomes

uit) = — u{ —t) + 2 cos(Lt) u0). (24)
The methed uses the following expansion:

Kl2
cos Lt = kgoczk.lzk(tﬂmgk[w!ﬁl‘—]. (25)

This expansion represents an improvement over
the Chebychev spectral method since it contains

only even arder functions Qpy. however, it ocan
be used only for elastic problems [8].
Folynomial interpolation through canformal

mapping As shown in the previous secclion, in a
single-phase anclastic =solid, the cigenvalues
of H lie on a T-shaped domain D wWhich includes
the nesative real axis and the imaginary axis.
This approach is based on a polynomial
interpolation of the exponential function in
ihe complex domain D, on a set of points wWhich
{5 known to have maximal properties. This set,
knouwn as Fejer points, is found through a
conformal mapping botween the unit disc and the

domain of the eigenvalues D. In 1his way, the
interpolating polynomial is "almosi best"
[10].

Getting the Fejer points is as fallous: Let

yiu) be a conformal mapping from the u-plane to
z-space, whieh maps the complement of a dise
of radius & to the complement of D, where i is

the logarithmic ecapacity of D, given by the
limit d= |ylies)| » the prime denoling derivative
with rtespect to the argument. The analytic

expression for plu) corresponding lo lhe domain

D can be found in [L0). The same functlion ylud)
maps the complement of the unit disec 1o the
complement of the domain D.

Then, the Fejer points are
zj=yluj)y =0, .+ m—=1 where uy are the m
rpots of the equation um=4 , Wwith'm the degre€
of the polynomial. The set
[24)y §=0,...,m=] has maximal properties of
cenvergence. Then, the sequence of polynomials

Pn(z) of degree m found by interpolalion 10 an

arbitrary function f(z), analytic on D at the
points zj. converge maximally to f(z) on D, The
interpolating polynamial in Newton form is
Ppi(z) = apg + a1(2 — zglA an(z — zZgllm =211+ ...

+ap(z = zg). - (2= Zpo1)s (26)
vhere aj=flzg, ..., 251, =m0, s M=1. Aare
the divided differences. The approximating

polynomial is given by Pp(Ht) with f(z)=e®.

e

RS S

s ]

I T = PR I . -

e e e ek e o o o o - o




Polynomial interpolation by residum
minimization The preceding method requires a
conformal mapping from the unit di=e to +the
domain of the eigenvalues of M to find the
interpolating points. This new technique avoids

the conformal mapping by finding the
interpolating points automatically in an
optimal way [12]. Therefore, the method can

be applied for any general matrix M,
whalt the domain D.

The idea is 1o find the
by minimizing the Il

no matter

interpolating points
-norm of the error. It

is well known that the error of the
interpolation is
f(m)B

Ep(z) = £(2) — Pplz) = %Rm, (27a)
Wwith

m m=1
Rp(z) = I](z"zi—l)" E:akzk-bzm (27h)

=] k=0
and s the value for which f(s)-?w(s)—Em{s)mO.

The superindex (m) denotes the mqt derivative.
Substituting Mt for z in (27al) and using (161,
the error of the algorithm is

f(m)fs)
Em = TE"" where Iy = Rp(Mt)Ug. (28a - h)
Minimizing the Lo-norm  |Zq02 = Epe Tp) is
achieved by solving the following set of m
linear equationa:
-ffMﬁ2=u. i=0, am—1. (29)
This is equivalent +to solve the following
system:
DA = B, A (i Ny (30)
where
Dyj = () ~tug. v tug), (31a)
Bi=-—0ntﬂ_luo.(nnmuu), lgi,igsm. (31h)

After solving for A, the inlerpolating points
are obtained from the roots of Ry=). The
approximating polynomial is given by (26) wuith
f(z) = g2, Further research is required to
determine whether 1his technique improves the
efficiency uhen solving anclastic wave
propayation problems.
IV. CONCLUSIONS

This wWwork briefly revieus some of the theories
and algorithms for =solving wave propagation
problems in linear viscoelastic media. The
methods use spectlral techniques and solve Lhe
wave equation in the time-domain. A eonsistent
introduction of Boltzmann's after-effect
principle in the time-domain, for anisolropic
and porous media, in achipved by Lhe
introduction of memory variables. Some
additional assumptions are required in _the
anisotropie ecase for the determination of ‘the
constitutive relations. The cigenvalue
analysis for each rheology indicates that
specltral Chebychev melhods are suilable {or
elastic problems, and that polynominl
interpolation techniques are required uwhen ihe
medium is anelastie.
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