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ABSTRACT

Carcione, J.M., Boehm, G. and Marchetti, A., 1994, Simulation of CMP seismic sections. Journal
of Seismic Exploration, 3: 381-396.

In the design of data-processing techniques it is often necessary to compute a zero-offset
section of a given geological model in order to test the performance of the algorithm. In this work,
we compare different approaches to obtaining a zero-offset or CMP seismic section from synthetic
data. The correct but expensive way is to compute a set of common-shot seismograms and perform
the CMP stacking. As is well known, this procedure attenuates multiple reflections and other
undesirable incoherent and coberent noise. A first approximation to the stacked section is the
common-offset section calculated with the nearest receiver. This approach avoids the velocity
analysis and stacking stages. A cheaper way is to compute the response of the model to & plane wave
coming from the surface, The resulting section contains more diffractions and multiple events than
the stacked section. Finally, a better approximation is obtained with the so-called exploding reflector
technique which is free of multiples and diffractions, although this approach is less efficient in terms
of memory storage and computer time. The plane wave and exploding reflector approaches are also
compared in the elastic case where an appropriate equation based on constant P and S impedances
has been obtained. As expected, both techniques show dissimilar results since the responses depend
in this case on the nature (radiation pattern) of the source and the presence of mode conversion in
the plane wave seismograms.

KEY WORDS: CMP section, plane wave response, exploding reflector, data processing.

INTRODUCTION

Forward modelling techniques have a variety of applications in
geophysical prospecting. For instance, they are useful to demonstrate the
consistency of interpretation of real seismic data, to provide synthetic
seismograms for testing processing algorithms and acquisition parameters, and
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as a didactic tool to teach the geophysicist wave-propagation phenomena. An
excellent example of the application of modelling to processing and
interpretation is given by Kelly et al. (1982). In this work they assume a model
containing a hydrocarbon reservoir, generate a set of common shots, produce
the stacked section with several degrees of folding, and apply to this section a
variety of processing algorithms. Moreover, they show how, with the use of
snapshots, the events corresponding to the different material interfaces can be
followed as they propagate through the model. Recently, Fagin (1992) published
a series of case histories which illustrate how modelling can be used to better
define complex structures. In particular, Morse, Purnell and Medwedeff
compare synthetic data generated with the exploding reflector wave equation to
the CMP stack of synthetic shot records.

In this paper we compare different techniques for computing a zero-offset
seismic section. Two efficient ways, which avoid calculation of the
common-shot synthetic records, are the plane-wave, and the exploding-reflector
techniques. The first consists in sending a horizontal homogeneous plane wave
down from the surface and recording the response of the model at the surface.
In the exploding-reflector method (Baysal, Kosloff and Sherwood, 1984), each
reflection point in the subsurface explodes at t = 0 with a magnitude
proportional to the normal incidence reflection coefficient. The equation used
in this case is a modification of the full wave equation where the impedance is
constant over the whole model space. In this way, multiple reflections are
avoided and the recorded events are primary energy. Moreover, the method
generates normal-incidence reflections, i.e., those having identical downgoing
and upgoing wave paths. The results from both methods are compared to the
CMP stacked section and to common-offset sections obtained from the closest
receivers. In the elastic case, we compare plane-wave and exploding-reflector
seismograms due to vertical impulse sources.

THE WAVE EQUATION
Acoustic rheology
The constitutive equation representing a (2-D) acoustic medium is
— 2
-p = pce (0
where p(x,z,1) is the pressure field, €(x,z,1) is the dilatation, p(x,z) is the density
and c{x,z) is the wave velocity. On the other hand, the equations of conservation

of linear momentum {or Newton’s equations) are

- @p/lox) = o(du, f3?) + f, {2a)
and
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~(0ploz) = o(Pu, /3) + f, ' (2b)

where (u,,u,) is the displacement vector, and (f..f) is the body-force vector.
Dividing both sides of (2) by the density and taking the divergence yields

—~ (0/ax){(1/g) Bp/ax)} — (8182} {(1/0)(@p/oz)} =
@elo?) + @0 fo) + @oz)(E, /o) . Q)

Replacing the stress-strain relation (1) into the r.h.s. of equation (3), the explicit
form of the pressure-wave equation is

oc?[(8/8x) {(1/0)(0p/ax)} + (3/02){(1/0)(@ploz)}] = (@%plo?) + s (4)
where

s = —oc?[(3/ax)(f, fo) + (B/0z)(f, /o)) . (5)
For constant density, equation (4) simplifies to

@plox?) + @%ploz?) = (LS NFPplar®) + s . ()
For a medium with homogeneous impedance the density can be written as

¢o=Kec , (7)

where K is a constant, Substitution of (7} into (4) gives the non-reflecting wave
equation

¢(d/9x) c(@p/dx) + c(0/0z) cldpldz) = Oplot® + s . (8)
This equation has the properties that the normal-incidence reflection coefficient
vanishes and that for homogeneous media it becomes the full acoustic wave
equation (6} (Baysal et al., 1984).

Elastic rheology

In 2-D space, the elastic stress-strain relations read

0, = olcke — 2c¥u, /9,) (9a)
0, = olce - 2c{0u,/9,) (9b)
g, = ocs{(ou, /9,)(0u,/8,) (9¢)
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where ¢, and cg are the compressional and shear-wave velocities. In order to
describe wave motion, relations (9a-c) are introduced into the force equilibrium
equations ‘

(0, /9x) + (B3, )/(0z) = o(0®u f0) + f, (10a)
(80, /0x) + (90,)/(0z) = old®u, /%) + £, . (10b)

For homogeneous impedance regions, gcp and pcg are constants. In this case,
following the same procedure to obtain (8), the non-reflecting elastic-wave
equation is

cp(0/8x)cp{(Ou, 10x) + (Bu, /92)} — 2¢4(8/8x)cg(du, /3z)

+ cg(0/0z)cg{(0u, /0z) + (Bu, /Ox)} = S /o + s, (11a)
and

cpl{0/9z)cp{ (Qu, fox} + (u,/oz)} — 2c4(8/8z)cs(0u, /9x)

+ cg(@/ax)cgdQu, /3z) + Qu /ox)} = Fu lo? + s, (11b)

where s, = f, /o and s, = f,/p. Equations (11a-b) have also been obtained by
Selvi (1991).

The time integration of equations (4) and (8) is carried out with a second-
order (staggered) differencing technique. On the other hand, the elastic
equations (10a-b) are solved with the rapid expansion method (REM)(Kosloff
etal., 1989). The spatial derivatives are computed by using the Fourier method.
The spectral coefficients of the wavefield are computed with the Fast Fourier
Transform (FFT), based on a vectorized version of the mixed-radix FFT
(Temperton, 1983). This differential operator is infinitely accurated up to the
Nyquist wavenumber, which corresponds to a spatial wavelength of two grid
points. This means that if our source is band-limited, the algorithm is free of
numerical dispersion, provided that the grid spacing is chosen Dy < ¢, /2f, ..,
with f,,,, the cut-off frequency and ¢, the minimum phase velocity in the mesh.
In order to eliminate wraparound effects from the boundaries of the mesh,
produced by the periodic properties of the Fourier method), the modelling
includes an absorbing strip along these boundaries (Kosloff and Kosloff, 1986).

SIMULATIONS

The first geological model is illustrated in Fig. 1, where the
compressional velocities are indicated in km/s (the density is constant). The
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velocity anomaly at the center of the model (the velocity field is linearly
interpolated from 3.5 to 2.8 m/s} is a challenge for most ray-tracing techniques:
the anomaly produces an energy-focusing effect with the corresponding caustics.
The number of grid points to obtain the common-shots records and the plane-
wave response are N, = 800 and N, = 180, with a uniform grid spacing of DX
= DZ = 15 m. These choices imply that the mesh propagates a wavelet with
a maximum frequency of f,,, = Cun/2Dn, = 06.7 Hz, where ¢, is the
minimum phase velocity and D,,,is the maximum grid spacing. The source is
introduced as follows: numerically, a 1-D space delta is given by 1/DY (Y =
X or Z). This comes from the fact that each spatial sample is represented by a
sinc function with argument axy/DY. The integral of this function is precisely
DY. Introduction of a discrete delta will alias the wavenumbers beyond the
Nyquist (z/DY) to the lower wavenumbers. However, if the source time
function h{t) is band-limited with cut-off frequency f,, the wavenumbers greater
than k, = 2afy/c,,, are automatically filtered. The following source function is
used:

hit) = e 28 0-0) oog[2af (t—1,)] 12)

where f; = 60 Hz and t; = 50 ms is a constant time delay introduced for
causality considerations. The amplitude spectrum of h(t} is

hiw) = a(w/2)(1/Q, Yexpliot, Hexp{ — (x/2)(1 —/Q, )* }
+ exp{ = (T2 1 +0/Q 11 (13)

where , = 2xf;. The amplitude spectrum of the source is represented in Fig.2,
where it is clear that the dominant frequency is 30 Hz.

DISTANCE (krm)

DEPTH (km)

Fig. 1. Geological model containing an anticline-like structure and a velocity anomaly at the center.
The numbers indicate the compressional wave velocity in km/s. In the anomaly, the velocity field
is linearly interpolated from 3.5 to 2.8 mfs.
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Amplitude

fo/2 f (Hz)
Fig. 2. Amplitude spectrumn of the source. The dominant frequency is f; = 30 Hz.

The modelling program uses a mixed radix FFT routine with factors 2,
3, 4, 5 and 6 (Temperton, 1983). For first derivative calculations it is necessary
to use odd-based FFT’s. This is because even transforms have a Nyquist
component which does not posses the Hermitian property of the derivative (e.g.
that a derivative of an even function is odd, and viceversa). Therefore, grid
numbers are composed with factors 3 and 5. The solution is propagated to 2 s
with a time step dt = 1 ms. This value satisfies the stability condition of the
integration scheme, by which dt < D_;/A/2 ¢y = 2 ms.

In order to simulate eight-fold CMP acquisition, 63 records were
computed with the shot and 48 receivers moving from left to right in increments
of 135 m per shot. The distance between adjacent receivers is 45 m, i.e., an
array length of approximately 2 km. The position of the first shot is indicated
in Fig. 1 by a star. Two common-offset sections, obtained from the nearest and
farthest offsets, respectively, are illustrated in Fig. 3. The first one closely
resembles the geological structure and is an approximation to the stacked
section. In the second, the events are vertically compressed. Fig. 4 shows the
stacked section.The high amplitude at the anticline is probably due to a
constructive interference of the plane interface and anticline wavefields at fong
offsets (see Fig. 3).
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Fig. 4. Five-fold CMP section. 63 shots, 48 receivers, 2250 maximum offset. The high amplitude
at the anticline is probably due to a constructive interference of the plane interface and anticline
wavefields at far offsets (see Fig. 3).
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Fig. 5 displays the plane wave section. At the top of the seismogram the
plane wave direct response can be appreciated. The section shows notable
diffractions from the lower flanks of the anticline. Note that, as in the preceding
cases, the response of the lower interface, at the center of the model, can be
confused with the response of a syncline. This effect is caused by the presence
of the velocity anomaly. In general, the plane wave response contains noticeable
diffraction effects and weak multiple reflections. The presence of multiples
makes this approach suitable for testing multiple-suppression techniques, as
pointed out by Claerbout (1985, p. 358).

Fig. 6 shows the exploding reflector section, which is the solution of
equation (11). Since the velocities are halved, in order to propagate the same
pulse as in the preceding cases, we also halved the grid spacing, which implies
doubling the number of grid points in each direction (actually, to the nearest odd
number). Note that this makes the modelling more expensive than in the plane
wave case. In addition, the calculation of the spatial derivatives in equation (11}
is more time-consuming than in equation (9) (here, a second-order spatial
derivative is computed by using only two Fourier transforms). As mentioned in
the introduction, the strength of each reflector source is proportional to the
reflection coefficient at the reflection point. This produces a realistic distribution
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Fig. 6. Exploding reflector response, This seismogram resembles the stacked section more than the
plane wave seismogram.



390 CARCIONE, BOEHM & MARCHETTI

of energy along the reflector, for instance, bright spots due to impedance
contrast should be reproduced. The exploding reflector section is clearly free of
multiple reflections and diffractions are attenuated with respect to the plane
wave response. Moreover, the response of the deeper interface below the
velocity anomaly closely resembles that of the stacked section, despite the fact
that the focussing effect of the anomaly may produce rays (in the stacked
section) that are not predicted by the exploding reflector model (see Claerbout,
1985, p. 11). To better illustrate the focussing effect, we show in Figs. 7a and
7b a normal-incidence ray tracing and the corresponding arrival time diagram.
As can be seen, the anomaly produces a syncline-type image of the lower
interface,
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Fig. 7. Zero-offset ray tracing (a) and arrival time diagram (b) of the model represented in Fig, 1,
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The second geological model is represented in Fig. 8, where the
compressional and shear velocities are indicated. A zero-offset ray tracing, and
its arrival time diagram, are shown in Figs. 9a and 9b, respectively. For a
better visual comparison with the full wave seismograms, the rays are delayed
by half the source duration. As is well known, since the focus of the syncline
is below the receiver line, the time response does not resemble the original
structure. The mesh to obtain the plane wave response has 125 x 125 points
and 15 m grid spacing in both directions. The source has a maximum frequency
of 50 Hz and consists of a vertical impulse at 300 m above the plane interface.
The response is displayed in Figs. 10a and 10b, corresponding to pressure
(divu) and shear (rotu) wave seismograms, respectively. The first seismogram
contains the P response of both the plane interface and the syncline, since the
energy from the source travels in the vertical direction. As expected, the plane
interface does not reflect shear waves, unlike the syncline whose response arise
from mode conversion (PS) at non-normal incidence angles, as can be
appreciated in Fig. 9.

DISTANCE (k)
.00 0.25 D.50 0.75 1.00 1.25 1.50 1.75

DEPTH (km)

Vp=4 km/s §
| Ve=2.31 ke /s

Fig. 8. Geological model consisting of a layer overlying a synclinal structure. The compressional
and shear wave velocities are indicated in the figure. The density is constant.
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DEPTH (km)

Two way time(s)

Fig. 9. Zero-offset ray tracing (a) and arrival time diagram (b) of the model represented in Fig. 8.
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Fig. 10. (a) Compressional (divu} and (b} shear (rotu) wave seismograms of the syncline model due
to a vertical plane wave source. The response of the anticline in (b) is due to mode conversion at

non-normal incident angles.
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On the other hand, the exploding reflector mesh has 243 x 243 grid
points and 7.5 m grid spacing. The source is again a vertical impulse at each
interface grid point. The response is shown in Figs. 1la and 11b which
correspond to the pressure and shear seismograms, respectively. As can be seen,
the response of the plane interface is compressional only since, as before, the
source does not radiate shear waves in the vertical direction. However, the
syncline produces shear waves out of the vertical direction, and its response can
be clearly seen in Fig. 11b. Comparing Figs. 10a and 11a, we note that the
syncline responses are different, mainly due to the presence of diffractions in
the plane wave case. The arrival times of the bow-tie reflections in Figs. 10a
and 11a differ by approximately 40 ms. From the arrival time diagram displayed
in Fig. 9a, it can be seen that the exploding reflector seismogram approaches
the zero-offset ray tracing plot better than the plane wave response. Another
difference is in the phase of the events, due to the fact that in the exploding -
reflector model there are no phase shifts since there are no reflections.

CONCLUSIONS

Wave equation synthetics are useful in recognizing patterns associated
with different types of structures, and predicting some of the drawbacks when
interpreting migrated and unmigrated sections of a given complex structure. As
shown in this work, the presence of a velocity anomaly over a flat interface may
produce some ambiguities in the final interpretation. This may be important
when testing migration algorithms which perform the time-to-depth conversion
of a seismic section. We compare two simulations of a zero-offset section which
avoid calculation of the common-shot records. The response of the model to a
horizontal plane wave contains noticeable diffractions and multiple reflections,
and could be useful to test the robustness of the migration algorithm in the
presence of these coherent noises. On the other hand, the exploding reflector is
free of multiples, and diffraction noise is weaker than in the plane wave case.
Moreover, the resulting section closely resembles the CMP section, in particular
in the region where the anomaly affects the response of the deeper interface.
The approach is useful in modelling or reverse-time migration when it is
necessary to avoid interlayer reverberations. In the elastic case, we compare
plane wave and exploding reflector seismograms of a syncline below a plane
interface. The modelling gives here the possibility of computing four kinds of
seismogram. These are the two displacement components, and the purely P and
purely S responses through the calculation of the divergence and curl of the
displacement vector, respectively. Mode conversion and diffractions in the plane
wave case accentuate the differences between the two approaches. Application
of elastic migration algorithms could produce very dissimilar results.
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