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Modeling acoustic waves generated by a localized source is always vexed by the nagging problem
of spurious reflections and wraparound arising when the wavefront reaches the boundary of the
numerical mesh. This difficulty may be circumvented by using a very large computational domain,
which is very inefficient, or can be tackled by using some kind of absorbing boundary technique,
which has not yet found a universally satisfactory solution. In this work, the wave equation is
modified by introducing a term that is nonzero only in a narrow strip near the boundary. Then, a
splitting technique permits to compute part of the solution analytically (hence, at no computational
cost), while an application of Weyl’s formula for the exponential of a matrix leads to a second-order
accurate scheme that completes the algorithm. An application to SH seismic wave modeling shows
that the performance of the present method is competitive with standard ones. Moreover, there is
evidence for a potential application to the modeling of wave propagation in porous media, where
stiff differential equations arise.

1. Introduction

The problem of absorbing nonphysical reflections or wraparound from the boundaries of

a numerical mesh has been extensively investigated. For instance, some authors1–3 use a

Gaussian or an exponential decaying factor in a region surrounding the model. This approach

is suggested by the fact that, when all the properties of the medium are constant in space,

the solution represents travelling waves that are exponentially attenuated in space, with all

frequency components equally attenuated.4

The aim of the present work is to justify the choice of an exponential damping function

in the light of a splitting method applied to the wave equation, by showing that it is related

to a physical solution of the problem. Moreover, the absorbing-layer problem is solved in

closed analytical form in the sense that the solution is not affected by the accuracy of the

polynomial expansion of the evolution operator within the computational domain. Finally,

we apply Weyl’s formula to design a numerical algorithm that solves the problem of wave
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propagation in the absorbing strip more accurately than the original technique by Cerjan

and coworkers,1 yet demanding a small increase of computational cost.

2. The Wave Equation and the Absorbing Layer

Wave propagation in a linear medium, including anisotropic and attenuation effects, and

describing motion in a porous material,5–7 can be expressed in mathematical form as a

first-order vector differential equation in time

∂u

∂t
=Mu + f , (2.1)

where u(t, x) is the unknown time-dependent d-dimensional vector field, M is a time-

independent linear differential operator containing the spatial derivatives and material prop-

erties, and f(t, x) is (essentially) the body force vector. The formal solution of Eq. (2.1) is

given by

u(t, x) = e(t−t0)Mu(t0, x) +

∫ t−t0

0
eτMf(t− τ, x)dτ . (2.2)

Putting in the previous equation t = k∆t, t0 = (k−1)∆t and introducing uk(x) = u(k∆t, x),

we get the numerical time-marching algorithm

uk(x) = e∆tMuk−1(x) +

∫ ∆t

0
eτMf(k∆t− τ, x)dτ . (2.3)

If the forcing term f does not vary much during a time-step of duration ∆t, then the

integrand factor f(k∆t − τ, x) may be approximated with the time-independent vector

function fk−1(x) = f((k − 1/2)∆t, x), so that the convolution integral can be computed

analytically, and algorithm (2.3) simplifies to

uk(x) = e∆tM(uk−1(x)−M−1fk−1(x))−M−1fk−1(x) . (2.4)

From this equation, it is clear that we need to compute a single exponential of an operator

once for all and, at each time step, solve a single linear system of first-order differential

equations, namelyMv(x) = fk−1(x).

The numerical solution of the problem on a numerical mesh of N points requires the

spatial discretization of the model and the calculation of the spatial derivatives with a

discrete differential operator. In other words, from now on we represent function uk with

the (d×N)-dimensional vector uk of its sampled values, and operatorM with a matrix M.

In order to eliminate reflections or wraparound from the boundaries of the numerical

mesh, an absorbing strip is implemented at the boundaries of the grid. This is achieved by

replacing in Eq. (2.1) the operator M with Γ +M, where Γ is a space-dependent algebraic

operator describing the absorption,4 i.e. Γ is zero everywhere except in a narrow band

adjacent to the boundary where it is negative. Accordingly, matrix M is substituted with

G+M, where G is the discretized version of operator Γ, and thus a diagonal matrix whose

nonzero entries are the values γ1, . . . , γN of a friction coefficient γ at the nodes of the
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mesh. The recursive algorithm (2.3) then becomes, after discretization and inclusion of the

absorbing boundary,

uk = e∆t(G+M)uk−1 +

∫ ∆t

0
eτ(G+M)f(k∆t− τ)dτ . (2.5)

Thus, a naive implementation of algorithms (2.3) or (2.4) would be to approximate

matrix exponentials by means of a truncated Taylor series expansion of the kind

eA = I + A +
1

2!
A2 +

1

3!
A3 + · · · (2.6)

and then to substitute A with ∆t(G + M), or similar, in the expansion. But one can do

better, as we shall see in the next section.

3. The Splitting Method

Explicit time integration algorithms imply a polynomial expansion of the discretized evolu-

tion operator

exp[∆t(G + M)] . (3.1)

A Taylor integration algorithm, for instance, is based on expansion (2.6) of the exponential

function. Such an operation involves the choice of a given order of truncation of the series. An

nth-order expansion of the evolution operator (3.1) requires O(n) operations with G + M.

However, the absorbing operation can be solved in closed analytical form by splitting the

evolution operator, so that expansion (2.6) is applied to M alone. Indeed, it is well known8

that if any two matrices A and B both commute with their commutator, then they satisfy

Weyl’s formula (much used in quantum mechanics):

exp(A) exp(B) = exp(A + B + [A, B]/2) , (3.2)

where [A, B] = AB−BA is the commutator. We shall use Weyl’s formula in the equivalent

form

exp(A + B) = exp(A) exp(B) exp

(
−[A, B]

2

)
. (3.3)

In our case, matrices ∆tG and ∆tM satisfy the assumption of Weyl’s formula up to in-

finitesimals of order three as the time step ∆t tends to zero. Indeed we have

[∆tG, [∆tG, ∆tM]] = (∆t)3[G, [G, M]] (3.4)

[∆tM, [∆tG, ∆tM]] = (∆t)3[M, [G, M]] . (3.5)

Therefore, we may apply (with good approximation) Weyl’s formula (3.3) to obtain

exp(∆t(G + M)) ∼= exp(∆tG) exp(∆tM) exp

(
−(∆t)2[G, M]

2

)
(3.6)
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which is the cornerstone of our improved numerical implementation of the absorbing bound-

ary layer. In fact, using this formula, we may rearrange algorithm (2.5) as

uk = exp(∆tG) exp(∆tM) exp(−(∆t)2[G, M])uk−1

+

∫ ∆t

0
exp(τG) exp(τM) exp(−τ2[G, M])f(k∆t− τ)dτ . (3.7)

This method borrows from Cerjan et al.1 the heuristic idea of an absorbing boundary, but

there are substantial differences in the respective developments. While their approach is

essentially a numerical trick that modifies the discretized equations, here a damping term

is added to the original partial differential equations: this leads to a clear physical inter-

pretation, allows for a mathematical analysis of the technique, and makes the procedure

applicable also to finite elements (besides finite differences and spectral methods). Accord-

ingly, the present algorithm is more akin to that of Kosloff and Kosloff4 or Sochacki et al.,2,3

in so far as they modify the wave equation by adding a diffusive and, possibly, a damping

term in which suitable coefficients are switched to zero off the boundary zone. In the next

section, we shall go a step forward by applying the splitting method to such an equation:

this will yield a substantial part of the solution analytically. From Eq. (3.7), we recover the

procedure of Sochacki et al.2,3 by just disregarding exponentials containing (∆t)2 and τ2.

Their first-order algorithm is cheaper than the scheme obtained from Eq. (2.5) because in

the former, the effect of the absorbing layer consists in a simple componentwise multiplica-

tion by the nonzero scalar factors constituted by the entries exp(∆tγ1), . . . , exp(∆tγN ) of

the diagonal matrix exp(∆tG), and similarly for exp(τG), whereas the nondiagonal matrix

exponentials remain the same as in the undamped case.

On the other hand, the cost to be paid for the additional accuracy ensured by the second-

order algorithm (3.7) is not high, because the exponentials containing the commutator may

be computed analytically and exactly. Indeed, straightforward analytical computations show

that the commutator between the differential matrix operator M and the algebraic matrix

operator Γ is the simple algebraic matrix operator

C =

 0 γz/ρ γx/ρ

µγz 0 0

µγx 0 0

 , (3.8)

where a subscript denotes partial differentiation. Hence we get for any real number ξ, using

the Lagrange–Sylvester interpolation polynomial,9

exp(ξC) =
1

r2

(
1

2
exp(rξ)(C + rI) · C +

1

2
exp(−rξ)(C − rI) · C + r2I − C · C

)
(3.9)

where r =
√

(µ/ρ)(γ2
x + γ2

z ) and I is the identity, and then exp(−(∆t)2[G, M]/2) follows by

substituting C with its discretized version. Finally, we point out that it is not obvious how

to design a second order in time algorithm that produces an efficient absorbing boundary

layer in a natural way. For example, the leapfrog scheme seems the least apt to this purpose
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as the amplification factor of the Fourier mode used in the von Neumann stability analysis

is exactly 1 for the leapfrog scheme: In other words, the leapfrog scheme has no damping

whatever ∆t and ∆x may be.

4. Example

We consider the two-dimensional SH wave equation. Newton’s second law (as generalized to

continua by Cauchy, Green, and others) and Hooke’s law yield the velocity-stress formula-

tion:

∂v

∂t
=

1

ρ

(
∂σzy
∂z

+
∂σxy
∂x

)
+ f + γv , (4.1)

∂σzy

∂t
= µ

∂v

∂z
+ γσzy ,

∂σxy

∂t
= µ

∂v

∂x
+ γσxy , (4.2)

where v is the particle velocity, σ denotes stress, f is the body force, and γ(x, z) ≤ 0 is the

friction coefficient describing the absorbing layer. In matrix form, we obtain equation

∂u

∂t
= (Γ +M)u + f , (4.3)

with

u = [v, σzy, σxy]
>, f = [f, 0, 0]> , (4.4)

and

M =

 0 ρ−1∂z ρ−1∂x

µ∂z 0 0

µ∂x 0 0

 , Γ =

γ 0 0

0 γ 0

0 0 γ

 . (4.5)

The following spatial dependence for γ is chosen,4

γ = − U0

cosh2(α · n)
(4.6)

where U0 is a constant, α is a decay factor and n denotes the distance in number of grid

points from the boundary.

The model is illustrated in Fig. 1, where the wave velocities and density are indicated.

They are related to the rigidity modulus µ by the relation ρV 2 = µ. The calculations use a

grid size of 81 × 81 with dx = dz = 20 m. The point source (indicated by a star in Fig. 1)

is a Ricker wavelet with a central frequency of 25 Hz. The spatial derivatives are solved by

the Fourier method.5 Optimal absorbing parameters are nmax = 18, α = 0.11 m−1, and

U0 =
AVmax

dmin
, (4.7)

where A = 0.35, Vmax is the maximum velocity in the mesh, and dmin is the minimum

grid size. The need of a thick absorbing layer is in qualitative agreement with what happens
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Fig. 1. Computational domain and material properties of the medium under study.

with other methods: For example, it has been pointed out10 that the method of the Perfectly

Matched Layer (PML) also requires relatively large absorbing layers for accuracy at lower

frequencies. Unfortunately, a thorough theoretical comparison of the present method with

the PML method can hardly be accomplished, because the PML method introduces auxiliary

variables (with no physical meaning) that substantially alter the governing equations.10 On

the other hand, resorting to extensive numerical experimentation with both methods about

different benchmark problems on different computing environments would require a huge

amount of work: As such, it is outside the scope of this preliminary study.
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Fig. 2. Snapshots of the wavefield computed without any nonreflecting boundary condition. Reflections from
the boundary of the computational domain are quite evident.
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Fig. 3. Snapshots of the wavefield computed with our absorbing-layer technique. Reflections from the bound-
ary of the computational domain are completely absent.

Figure 2 shows amplitude snapshots, at progressive times, of a simulation in which no

absorbing boundary or layer has been implemented. In this case, spurious reflections and

substantial wraparound effects are visible. For comparison, Fig. 3 shows the correspond-

ing snapshots for a model in which we implemented our absorbing-layer technique, thus

suppressing all spurious reflections.

5. Conclusions

The splitting method applied to wave equation can be used to solve the absorbing layer

problem without any further approximation. The exponential decay function, extensively

used as a damper of nonphysical reflections and wraparound, naturally arises as a physical

solution of the evolution problem.

When using an nth-order expansion of the evolution operator, the absorbing operation

requires n×N multiplications, where N is the number of grid points inside the absorbing

layer, and additional memory storage for the absorbing strips. The splitting method reduces

the number of operations toN . There is no contradiction in using a high-order approximation

of the evolution matrix (3.1) in the interior of the computational domain and a second-order

(or even a first-order) scheme in the boundary layer: While we want to know the solution

accurately in the interior, any gross approximation (provided it decays without reflection) is

good enough in the absorbing layer. However, in principle, such a change of approximation

order might generate spurious reflections and hence decrease the efficiency of the absorbing

layer; but, for a fine enough mesh, this effect is not noticed.

An example, based on the two-dimensional SH wave equation, illustrates the effectiveness

of this technique.
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Finally, we argue that Weyl’s formula may also be used for solving stiff wave propagation

problems as, for instance, modeling of Biot-type waves. In this case, the eigenvalues of the

propagation matrix have negative real parts and differ greatly in magnitude. The solution

to be computed is slowly varying, but perturbations exist that are rapidly damped. The

perturbation is the slow wave which, in the presence of fluid viscosity, presents a diffusive

character. The resulting algorithm will have, in general, second-order accuracy.
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