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Poisson’s ratio at high pore pressure
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ABSTRACT

Laboratory investigations suggest that a precise relationship exists between Poisson’s
ratio, pore pressure and fluid type. Values of Poisson’s ratio for dry samples are
significantly smaller than those for fluid-saturated samples. The values are anomal-
ously high for high pore pressure, with the possibility of differentiating between gas-
saturated, brine-saturated and oil-saturated porous rocks.

The present study considers two overpressure models, based on oil/gas conversion
and disequilibrium compaction, to obtain Poisson’s ratio versus differential pressure
(confining pressure minus pore pressure). The model results are in good agreement
with experiments. Poisson’s ratio is approximately constant at high differential
pressures and increases (decreases) for saturated (dry) rocks at low differential
pressures. Fluid type can be determined at all differential pressures from Poisson’s
ratio. The analysis is extended to the anisotropic case by computing the three
Poisson’s ratios of a transversely isotropic rock versus differential pressure. While
one of them is practically independent of effective pressure, the others increase with
increasing pore pressure. Experiments performed on cores under different pressure
conditions, and calibration of the models with these data, provide a tool for

inverting pore pressure from seismic data.

INTRODUCTION

Knowledge of pore pressure when using seismic data helps in
planning the drilling process to control potentially danger-
ous, abnormally high pressures. One of the parameters most
sensitive to rock lithology is Poisson’s ratio v, given by

A o=

where Vp and Vs are the compressional- and shear-wave

velocities. This formula shows clearly that v increases with
a. Alternatively, Poisson’s ratio may be expressed in terms of
elastic parameters as

=3 () ?
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where K denotes bulk modulus (a measure of incompress-
ibility) and u denotes shear modulus. Thus, v increases with
the ratio K/u, and since stability requirements dictate that K
and u be positive, it can also be seen from this formula that
—1 < v < 1/2. These limits correspond to a solid of very high
rigidity (4 — oo) and to a fluid (1 — 0), respectively.

As can be appreciated in Fig. 1, v is sensitive to micropore
structure and fluid type (Tatham 1982; Tao, King and Nabi-
Bidhendi 1995; Khazanehdari, McCann and Sothcott 1998,
paper presented at conference on pressure regimes in sedi-
mentary basins and their prediction, Del Lago resort, Lake
Conroe, TX, USA). In samples of equal porosity, it is the
aspect ratio of the cracks and pores and the saturating fluid
which determine v. Rocks containing mainly round voids
(stiff pores) do not show major variations in v with effective
stress. Closure of microcracks (compliant pores) will increase
the bulk modulus K more than the shear modulus p, assum-
ing a random distribution of these pores; hence, in dry rocks,

Poisson’s ratio increases with increasing differential pressure
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Figure 1 Plot of Poisson’s ratio versus differential pressure for differ-
ent pore-fluid types (Khazanehdari e al. 1998, as in text).

(see Fig. 1). In saturated rocks, the compliant pores become
stiff, so that Poisson’s ratio hardly changes as the pore
pressure increases. Laboratory experiments show that v for a
dry sample is significantly smaller than that of the fluid-
saturated sample. Moreover, v increases with increasing pore
pressure and decreasing differential pressure. At zero differen-
tial pressure, Vs is zero, because the rock is hydrocracked (and
hasnorigidity), but Vpisnotzero (even fora completely cracked
rock), therefore a should be infinite and v — 1/2. Note that v
is a function of the ratio of compressional-wave velocity to
shear-wave velocity. This relationship removes the effect of
the density, eliminating a possible uncertainty. Various phys-
ical processes cause anomalous pressures on an underground
fluid. The two most common causes are chemical cracking,
i.e. oil-to-gas conversion, and non-equilibrium or disequilib-
rium compaction. Oil-to-gas cracking may increase the pore
pressure so that it reaches or exceeds the lithostatic pressure
(Luo and Vasseur 1996). Oil can be generated from kerogen-
rich source rocks and it can then migrate through a carrier
bed to a sandstone reservoir rock. If the reservoir is sealed on
all sides by an impermeable shale or limestone, then the
condition of a closed system will be satisfied for gas gener-
ation. Recalling that “much of the oil and gas has been
generated from source rocks inside deep (>3000 m or
9840 ft) seal-bounded fluid compartments” (Hunt 1990),
we may argue that this condition can be found in most
sedimentary basins (Bradley 1975) and, specifically, in the
southern North Sea where gas is contained in Rotliegende
reservoirs originated from Carboniferous source rocks.

The overpressure model considers a reservoir, initially at

hydrostatic pressure, that, due to the sealed condition,

develops pore pressures higher than hydrostatic during
burial. Carcione and Gangi (2000a) developed a simple
model to calculate the excess pore pressure and rock acoustic
properties as a function of the fraction of oil converted to
gas. In the next section we develop this approach further.

Disequilibrium compaction or mechanical compaction dis-
equilibrium is a consequence of a rapid deposition compared
to the time required for expelling the fluids from the pore
space by gravitational compaction. In this situation, the
fluids carry part of the load that would be held by grain
contacts, and abnormal pore pressures develop in the pore
space. A description of this mechanism has been given by
Rubey and Hubbert (1959). Recently, Carcione and Gangi
(2000b) obtained the seismic properties of the rock versus
pore and confining pressures. The seismic attributes are cal-
culated using a modification of Biot’s theory for partially
saturated, porous solids. The mixture gas/oil or oil/brine
behaves as a composite fluid with properties depending on
the constants of the constituents and their relative con-
centrations. The bulk modulus is obtained by Wood’s aver-
aging, and the density and viscosity by arithmetic averaging
(Berryman, Thigpen and Chin 1988).

The main aim of this paper is to investigate the sensitivity
of Poisson’s ratio to changes in differential pressure and fluid
composition, generated by oil-to-gas conversion and non-
equilibrium compaction. To this end, the models introduced
by Carcione and Gangi (2000a,b) are considered in the next
two sections. The analysis of Poisson’s ratio is extended in
the final section to the anisotropic case, which arises when
increasing pore pressure induces a preponderance of crack
openings perpendicular to the minimum iz sifu principal
stress. The rock can then be approximated by a transversely
isotropic medium, with a horizontal symmetry axis if the
minimum stress is in the horizontal direction. In this case,
three main Poisson’s ratios can be defined. Their dependences
on confining and pore pressure are obtained using Biot’s
anisotropic theory (Carcione 1996; Cheng 1997).

OVERPRESSURE DUE TO CRACKING

Let us assume a reservoir at initial depth z;, with lithostatic
confining pressure p;, hydrostatic pore pressure p; = pyy; and
temperature T;. The model developed by Carcione and Gangi
(2000a) vyields, at depth z > z;, the pore pressure p, the
confining pressure p. and the temperature T. The lithostatic
pressure at depth z for an average sediment density p is equal
to p. = pgz, where g is the acceleration due to gravity.

The hydrostatic pore pressure is approximately py = p,,gz,
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where p,, is the density of brine. For a constant sediment
burial rate S and a constant geothermal gradient G, the
temperature variation of a particular sediment volume is
T =Ty + Gz, where z = St, with a surface temperature Ty
at time ¢ = 0.

The mass of convertible oil changes with time ¢ at a rate
proportional to the mass itself. Assuming a first-order kinetic
reaction (Luo and Vasseur 1996; Berg and Gangi 1999) and a
reaction rate following the Arrhenius equation, it can be
shown that the oil-to-gas conversion factor is given by

F(T) =1 —exp[¥(T;) — ¥(T)], 3)
with

_ ATexp[-E/(RT)]

Qg%ﬁfiifmﬁT‘ 4)

where A is the oil-gas reaction rate at infinite temperature,
H = GS, R is the gas constant, T; is the initial temperature
and E is the activation energy (Carcione and Gangi 2000a).

The excess pore pressure at depth z is p — py, where p is
the pore pressure when a fraction F of oil has been converted
to gas (F=0 and p = p; = py at time ;). In general, com-
pressional- and shear-wave velocities depend on the effective
pressure p. = p. — np, where n <1 is the effective-stress
coefficient. Note that the effective pressure equals the con-
fining pressure at zero pore pressure. It is found that n ~ 1
for static measurements of the compressibilities (Zimmerman,
Somerton and King 1986), while n is approximately lin-
early dependent on the differential pressure py = p. —p in
dynamic experiments (Gangi and Carlson 1996; Prasad and
Manghnani 1997):

n=mny—nypq, (5)

where the coefficients 79 and 7, are constant. The concept of
an effective-stress coefficient is implicit in the stress—strain
relationships of Biot’s theory, corresponding to static bulk
deformations (Todd and Simmons 1972).

We assume the following functional form for the pore
compressibility ¢, as a function of effective pressure p:

p=cy +B exp(—%)7 (6)

where ¢;°, f and p* are coefficients obtained by fitting the
experimental data. This function describes very accurately
the compressibility ¢, as a function of the effective pressure
pe (Zimmerman et al. 1986), and the same functional
dependence relates wet-rock ultrasonic velocities to effective
pressure (Prasad and Manghnani 1997).
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We assume that the medium is fully saturated with oil and
that, before oil/gas conversion occurs, the initial pressure p; is
hydrostatic. Equating mass and volume fractions in the pore
space yields the relationship between the oil-to-gas conver-
sion factor F and the pore pressure p (Carcione and Gangi
2000a):

Fe exp[E(Ap) + ap, AT] — exp(—coAp + o, AT)
pn/pg(p7 T) - exp(—CoAP + OCOAT)

; (7)
where

E(p) =~ bpct ' |exo (< 00) —exo(<0) ] (8)
P, is the oil density and p, is the gas density at depth z,
obtained from the van der Waals equation, ¢, is the oil
compressibility, o, is the thermal expansion of oil,
Ap = p — p; is the pore-pressure increase, Ap. = pe — pei 1S
np), AT =T — T;

is the temperature increase and «;, is the thermal expansion of

the effective pressure increase (pej = pei —

the pore space.

With a surface temperature of 25 °C, a temperature gradi-
ent G of 25°C/km, a sedimentation rate S of 0.08 km/m.y.
(m.y.: million years) and a reservoir at depth z; = 2km, we
obtain #; = 25 m.y. and T; = 75 °C. After 75 m.y., the depth of
burial is 8 km, geological time is 100 m.y. and the tempera-
ture is 225°C. On the other hand, if p = 2400kg/m3, the
confining pressure has increased from 47 MPa to approxi-
mately 188 MPa and the initial pore pressure is p; ~ 20 MPa
(assuming p,, = 1000 kg/m?3). If no conversion takes place,
the final pore pressure would be the hydrostatic pressure at
8 km, i.e. approximately 78 MPa. We assume that the gener-
ated gas does not go into solution in the oil. It has been
shown by Carcione and Gangi (2000a) that if this happens
the results are practically the same, since the volume increase
of the live oil is close to that of the dead oil/free gas mixture.

The experimental data for oil-saturated sandstone are
available in Winkler (1985) (note that Winkler calls the
differential pressure the effective stress). The experiments
on dry samples correspond to zero pore pressure. Best-fit
approximations of the dry-rock compressibility and shear

modulus versus confining pressure are

K, '[GPa™'] = 0.064 + 0.122 exp _be[MPa] )
m 6.48
and
137 _b[MPa]
Un|GPa] = 13.7 — 8.5 exp< 914 ) (10)
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Figure 2 Best-fit plots of pore compressibility ¢, and matrix com-
pressibility K;! obtained from the experimental data for Berea sand-
stone published by Winkler (1985, Figs 3 and 4, Tables 4 and 7).

and ¢, in Gpa ! is given by (6), with o =0.155 GPa™!,
B =0.6GPa~! and p*=6.48 MPa. The pore compressibility
¢p has been obtained from the dry-rock bulk modulus by
assuming that the porosity is that at hydrostatic pore pres-
sure. The best-fit plots for ¢, and K,! are shown in Fig. 2.

In order to obtain the moduli for different combinations of
the confining and pore pressures, we make the substitution
pe — Pe = pec — n(pu + Ap), where we assume, following
Gangi and Carlson (1996), that # depends on differential
pressure according to (5) with 79 = 1 and #; = 0.014 MPa™!.
This dependence of 7 on differential pressure is in good
agreement with the experimental values corresponding to
the compressional-wave velocity obtained by Prasad and
Manghnani (1997).

Table 1 indicates the properties for Berea sandstone and
the different fluids, with the values corresponding to those at
the initial (hydrostatic) pore pressure. The oil density and oil
bulk modulus are assumed to be pressure independent. The
oil and gas viscosities (7, and 7,) as a function of tempera-
ture and pore pressure are taken from Luo and Vasseur
(1996). Other properties required by Biot’s theory are the
grain density p,, the grain bulk modulus Kj, the grain rigidity
U, the brine viscosity 7, the rock porosity ¢ and the rock
permeability .

Although (3) and (4) indicate that the high activation
energy requires either a long time to elapse or deep burial,
of the order of 4.5 to 5km, before appreciable fractions of
conversion occur, significant fractional conversions occur at
3km. The pore-pressure build-up with depth is shown in
Fig. 3. The pressure rapidly increases for very small fractions
of oil converted to gas; after approximately 4% conversion,

Table 1 Rock properties

Grain ps = 2650kg/m’
K, =37GPa
s = 39 GPa
oil po = 700kg/m’>
K, = 0.57GPa
Qo =35 x107*°C!
o = 440 cP
Gas 1y = 0.012cP
Water pw = 1040 kg/m’
Ky =2.25GPa
ay =7.7 x1074°C™!
Nw = 1.8¢cP
Matrix K, =1545GPa
fim = 13.48 GPa
¢ =10.203

#=10""2m?
ap=3x107*°C!

1cP =0.001Pas.

Pressure (MPa)
0 50 100 150 200
l l

0 : 0
\
\
\\
20
2 \\
\
— \ -
c \ 40 >
2 \ £
£ 4~ 2 °
o N I
2 N\ 60 =
\\
6_
AN 80
\
\
.. \
8 . AN 100

Figure 3 Pore-pressure build-up with depth and deposition time
(continuous line). The hydrostatic and lithostatic pressure are repre-
sented by dotted and broken lines, respectively.

the pore pressure equals the confining pressure. The pore-
pressure curve has no physical meaning for values exceeding
the confining pressure (in this case, below 4.2km depth),
since the reservoir is fractured by the excess pore pressure
and the fluid is released. The model does not take this process
into account.

Curves of low-frequency Poisson’s ratio versus differential
pressure, obtained from Biot’s theory (Berryman et al. 1988;
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Figure 4 Poisson’s ratio versus differential pressure for overpressure
due to cracking. The continuous line corresponds to the rock satur-
ated with oil and gas, and the dotted line corresponds to the dry rock
(the open circles are experimental values for the dry rock).

Carcione and Gangi 2000a,b), are shown in Fig. 4. The
continuous line corresponds to the rock saturated with oil
and gas, and the dotted line to the dry rock. The open circles
are the experimental values of Poisson’s ratio. According to
Gassmann’s equation (e.g. Mavko, Mukerji and Dvorkin
1998), the bulk modulus is higher in saturated rocks than
in dry ones; and the same is then true for Poisson’s ratio,
according to (2). Our model also predicts a higher v for the
saturated rock, mainly at low differential pressures, i.e. at
very high pore-fluid pressures. In the saturated case at low
differential pressures, v increases with increasing pore pres-
sure (i.e. decreasing differential pressure), since the pore fluid
opens the compliant pores (microcracks). Conversely, in the
dry case the microcracks close with increasing confining

pressure, since the pore pressure vanishes.

ABNORMAL PRESSURE DUE TO
DISEQUILIBRIUM COMPACTION

The case of non-equilibrium compaction is that in which the
sedimentation rate is so rapid that the pore fluids do not have
a chance to ‘escape’. We assume that the pore space is filled
with organic material and brine, and that the compressibil-
ities of the organics and brine are independent of pressure
and temperature, while the compressibility of the rock is
independent of temperature but is dependent on pressure.
At the initial time #, corresponding to depth z;, the volume
of rock behaves as a closed system. It can be shown that by
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equating mass and volume fractions in the pore space
(Carcione and Gangi 2000b), we obtain

exp[E(Ap) 4+ 4, AT] = Sy exp(—cwAp + oy AT)
+ (1 — Swi) exp(—coAp + a,AT), (11)

where S,; denotes the initial brine saturation, ¢, denotes
brine compressibility and oy, denotes thermal expansion of
brine.

The solution of (11) gives the pore pressure p as a function
with AT=T-T; =
G(z—=zi) = GS(t —t;) for a constant geothermal gradient

of depth and deposition time,
and a constant sediment burial rate.

The dry-rock moduli for the sandstone are those given by
Winkler (1985), illustrated in the previous example (Table 1
also indicates the properties for brine). The pore-pressure
profiles with depth for S, =0 (label 1), Sy = 0.5 (label 2)
and Sy, = 1 (label 3), are shown in Fig. 5, where the continu-
ous lines represent the hydrostatic and lithostatic pressures.
The rock is underpressured for full oil saturation, and
increasing brine saturation implies overpressure. The pore-
pressure profile depends on the compressibility and thermal
expansion coefficient of the mixture filling the pore space.
Rocks saturated with fluids of high compressibility and low
thermal expansion coefficient are generally underpressured,
and rocks saturated with fluids of low compressibility and
high thermal expansion coefficient are generally over-
pressured, and can be seismically ‘visible’ (Carcione and
Gangi 2000b).
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Figure 5 Pore-pressure build-up with depth and deposition time for
full oil saturation (S,, = 0, label 1), 50% oil saturation (S,, = 0.5,
label 2) and full brine saturation (S, = 1, label 3). The hydrostatic
and lithostatic pressures are represented by continuous lines.
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Figure 6 Poisson’s ratio versus differential pressure for disequilib-
rium compaction. The open circles and black squares are the experi-
mental values for the oil-saturated and dry samples, obtained from
Winkler’s (1985) data. The curves correspond to the cases indicated
in Fig. 5. In the case of full brine saturation (label 3), the broken line
corresponds to the range 0 to 2km, where the rock is normally
pressured, and the continuous lines correspond to the range 2 to
8 km, where the rock is overpressured.

Figure 6 shows Poisson’s ratio versus differential pressure,
where the open circles and black squares are the experimen-
tal values for the dry and oil-saturated samples, obtained
from Winkler’s data. The curve labelled 2 corresponds to
saturation with 50% oil and 50% brine. This curve, the
broken line for brine (label 3) and that for oil (label 1)
correspond to the range from 0 to 2km at low differential
pressure, where the rock is normally pressured. The pore
pressure approaches the confining pressure at very shallow
depths, and the effect is exactly equivalent to that caused by
overpressuring at great depths, which is represented by the
continuous line for brine. The curves have the same qualita-
tive behaviour as in the case of overpressure due to cracking.
Moreover, Poisson’s ratio increases with increasing brine
saturation. The discrepancies between the experimental
values and curve 1 (full oil saturation) are due to the fact
that Winkler’s oil compressibility (2.16 GPa) is closer to brine
compressibility (2.25 GPa) than the value used in this work
(0.57 GPa). In fact, the points are close to the Poisson’s ratio
for full brine saturation.

The model could be improved by considering the fact that
the compressibility of oil depends on pressure and tempera-
ture. This is, however, a second-order effect. Indeed, the
results given by Batzle and Wang (1992) in their Figs 5 and
13 show that the density is almost a linear function of
temperature and pressure. This means that the above-

mentioned properties are approximately constant (see also
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Figure 7 Best-fit curves to (a) the dry-rock elastic constants and (b)

the density of Berea sandstone versus confining pressure p.. The
experimental data are from Lo et al. (1986).

Batzle and Wang’s (1992) Fig. 7, where the oil compressi-
bility remains almost constant when changing from low
temperature and low pressure to high temperature and high
pressure). Another influencing factor is the presence of
dissolved gas in the oil. However, Carcione and Gangi
(2000a) have shown that this factor is not important at the
depth under consideration.

OVERPRESSURE IN ANISOTROPIC ROCKS

A rock in the subsurface is subjected to a non-hydrostatic
state of stress: in general, the vertical stress is greater than the
horizontal stress, and this situation induces P- and S-wave
anisotropy in an otherwise isotropic rock. A proper analysis
of the dependence of Poisson’s ratio on pore pressure and
confining stress in anisotropic media requires a complete

experimental data set, i.e. dry-rock velocity measurements
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versus confining stress, and wet-rock velocity measurements
versus pore pressure and confining stress. In addition, the
density is required for simulating wave propagation. A com-
plete data set is, to our knowledge, not yet available in the
literature. We consider the dry-rock measurements in trans-
versely isotropic Berea sandstone obtained by Lo, Coyner
and Toksoz (1986) and obtain the effective stress coefficient
from Biot’s poro-elastic theory. Although Lo ez al.’s (1986)
data do not reflect the situation at depth, since their sample is
anisotropic at zero confining pressure and they applied an
isotropic confining stress, the results of the pore-pressure
analysis should, in principle, be equivalent to those obtained
from an anisotropic stress applied to an isotropic rock.

Figure 7 shows the best-fit curves to the dry-rock elastic
constants (a) and density (b) of Berea sandstone versus con-
fining pressure p.. We obtain

c11 = 32.74 4 0.043 p. — 9.97 exp(—0.06 pc),
¢33 = 31.87 + 0.035 pe — 14.59 exp(—0.056 p.),
cas = 14.93 4+ 0.011 p. — 5.58 exp(—0.053 p.),
c12 = 3.06 + 0.01 pe — 0.26 exp(—0.25 pe),
c13 = 4.68 — 0.015 pe — 1.7 exp(—0.036 pe),

p = 21441+ 0.38 pc — 45 exp(—0.0226 pe),

(12)

where the elastic constants are given in GPa, the density in
kg/m’ and the confining pressure in MPa. Polar representa-
tions of the dry-rock energy velocities are shown in Figs
8(a,b) for p. = 0MPa and p. = 100 MPa, respectively. The
curves correspond to a plane perpendicular to the plane of
isotropy. Only one-quarter of the curves are shown, because
of symmetry considerations. The tick marks indicate the
polarization directions, with the points uniformly sampled
as a function of the phase angle (the symbol ‘q’ is an abbre-
viation for ‘quasi’: indeed, the polarization is neither exactly
perpendicular nor exactly parallel to the energy velocity
section). The energy velocities are calculated by using the
anisotropic poro-elastic stress—strain relationships (Cheng
1997), and by computing the eigenvalues of the Christoffel
matrix. The whole procedure for the 2D case has been given
by Carcione (1996). Note that, as expected, the wavefronts
are more anisotropic at zero confining pressure.

Three dynamic Poisson’s ratios, corresponding to different
directions can be obtained. Assume that the axis of symmetry
coincides with the z-axis, and denote the strain along the
Cartesian axes by &y, &yy and ;. Then the different Poisson’s
ratios are (Lo et al. 1986)

2
& C12€33 — C
v = vy o 12€33 13 (13)

2
éxx  C11€33 — C73
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Figure 8 Polar representations of the dry-rock energy velocities for
(a) pc = 0MPa and (b) p. = 100 MPa. The curves correspond to a
plane perpendicular to the plane of isotropy. Only one-quarter of the
curves are shown because of symmetry considerations. The tick
marks indicate the polarization directions.

&z _ci3(en —cn)

V) = (14)
Exx C€11€33 — 6%3 ’

if the sample is compressed along the x-direction, and
€ C1

vy =% : (15)

=
&2 €11 T C12

if the sample is compressed along the symmetry axis. These
Poisson’s ratios all tend to v when the medium is isotropic
(c11 =c33 =cra+2cas = pV3, c1a=c13=p(V}—2V2)).
Equations (13), (14) and (15) also give the expressions for
the wet-rock Poisson’s ratios.

We consider a sandstone at depth z = 3 km. If the average
sediment density is 2400kg/m’, the confining pressure is

© 2002 European Association of Geoscientists & Engineers, Geophysical Prospecting, 50, 97-106
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pc=70.6MPa and the hydrostatic pressure is py =
30.6 MPa (assuming p,, = 1040 kg/m’). With a surface tem-
perature of 25°C and a geothermal gradient G = 25°C/km,
we have a temperature T = 100°C.

In order to calculate the wet-rock Poisson’s ratios versus
pore and differential pressure, we must obtain the density
and elastic constants as a function of effective stress. The
concept of effective stress is implicit in Biot’s theory. Hooke’s
law (in Voigt notation) for anisotropic poro-elastic media can

be written as

'E]ICUS]—nlp, I,]Zl,...,G, (16)

where 1; is the total stress vector, g is the strain vector of the
porous frame and n; are the effective stress coefficients
(Cheng 1997). In this context, the effective stress is given
by te = cyjej, such that

Tel] = T1 + nip. (17)

For  transversely  isotropic  media, 7y =mn, and
ny =ns =ng = 0. It is clear that no single pore pressure
value implies ¢y =0 for a hydrostatic confining stress
11 = —pe, I = 1,2,3. An approximation is to assume an aver-

age effective stress coefficient,

2ny +n3
i (18)
and an effective pressure p.=p.—np. In this case
(c1y + oy + c37)¢; = 0. Then, the elastic constants of the frame
versus pore and confining pressures are obtained from (12)
by substituting p. with p, and the wet-rock elastic constants
are obtained from the stress—strain relationship provided by
Cheng (1997). As before, the energy velocities follow from
the plane-wave theory developed by Carcione (1996). Polar
representations of the wet-rock energy velocities are shown
in Figs 9(a,b) for p = 5 MPa and p = 100 MPa, respectively.
The saturating fluid is brine. At high pore pressure (micro-
cracks open) the medium shows a higher degree of aniso-
tropy than at low pore pressure. Finally, Fig. 10 shows
Poisson’s ratio versus effective pressure for the rock saturated
with brine, oil and gas, compared with the dry-rock Poisson’s
ratios. While vy is practically independent of effective pres-
sure, v, and v3 increase with decreasing effective pressure
(increasing pore pressure). The effect is important and there-
fore the determination of these Poisson’s ratios enables us to
monitor abnormal pore-pressure conditions. It is clear, as in
the isotropic case, that it is possible to distinguish between
different saturating fluids using Poisson’s ratio as a diagnostic

parameter.
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Figure 9 Polar representations of the wet-rock energy velocities for
(a) p = 0 MPa and (b) p = 100 MPa. The saturating fluid is brine. The
curves corresponds to a plane perpendicular to the plane of isotropy.
Only one-quarter of the curves are shown because of symmetry
considerations. The tick marks indicate the polarization directions.

CONCLUSIONS

Laboratory measurements of wave velocities versus confining
and pore pressures give the relationships between Poisson’s
ratio and the in situ conditions (fluid composition, pore
pressure, etc.) of reservoir rocks, offering a basis for physical
and geological insight into the lithological interpretation of
seismic data.

The variations in Poisson’s ratio have been determined as a
function of excess pressure due to oil/gas conversion and
disequilibrium compaction. In the first case, Poisson’s ratio
increases significantly when only a small amount (about 4%)
of the oil is converted to gas. The effective pressure decreases
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Figure 10 Anisotropic Poisson’s ratios (a) o1 = v1, (b) 02 = v, and

(c) 03 = v3, for brine-, oil- and gas-saturated Berea sandstone versus

effective pressure, compared with the experimental dry-rock

Poisson’s ratios (Lo et al. 1986). The dashed line is the best-fit

curve to the dry-rock data.

since the pore pressure increases due to the conversion of the
high-density oil to the low-density gas. The case of disequi-
librium compaction shows that the fluid mixture filling the
pore space has a major influence on Poisson’s ratio and may
cause underpressure or overpressure, depending on its com-

pressibility. In fact, full oil saturation in the pore space

Poisson’s ratio at high pore pressure 105

implies a pore pressure lower than hydrostatic pressure. For
rocks under in situ conditions, Poisson’s ratio increases as
the differential pressure approaches zero. On the other
hand, the isotropic dry-rock Poisson’s ratio, obtained at
zero pore pressure, decreases with decreasing differential
(confining) pressure, but the effect is important at very low
differential pressures. The situation is different when aniso-
tropy is taken into account. In this case, two of the three
(dry- and wet-rock) Poisson’s ratios increase with decreasing
effective pressure, and the effect is important at all effective
pressures.

Using Poisson’s ratio as a diagnostic parameter of pore
pressure requires laboratory experiments on cores taken
from a well in the area of study. To summarize:

1 Obtain the dry-rock moduli versus confining pressure.
This gives the dependence of these moduli on effective pres-
sure, and implicitly includes microstructural information,
such as the effects of closing of compliant cracks.

2 Perform experiments on saturated samples for different
confining and pore pressures, in order to obtain the effective
stress coefficient 7. Alternatively, » can be approximately
estimated from Biot’s theory.

3 Compute the wave velocities and Poisson’s ratio for differ-
ent fluid compositions and saturations versus pore and con-
fining pressure.

4 Identify the abnormal pressure mechanism in the area.

5 Use the proposed models to invert for pore pressure from
seismic and available well data.

It appears that the results of the present work have poten-
tial applications to rock physics (e.g. anisotropic properties),
petroleum engineering (overpressure prediction while
drilling) and geophysical interpretation (fluid-type recogni-

tion).

ACKNOWLEDGEMENTS

This work was partly supported by the European Union
under the project ‘Detection of overpressure zones with seis-
mic and well data’. Helpful remarks from the Associate
Editor, G. Diephuis, are gratefully acknowledged.

REFERENCES

Batzle M. and Wang Z. 1992. Seismic properties of pore fluids.
Geophysics 57, 1396-1408.

Berg R.R. and Gangi A.E 1999. Primary migration by oil-generation
microfracturing in low-permeability source rocks: application to
the Austin chalk, Texas. Bulletin of the American Association of
Petroleum Geologists 83, 727-756.

© 2002 European Association of Geoscientists & Engineers, Geophysical Prospecting, 50, 97-106



106 J.M. Carcione and F. Cavallini

Berryman J.G., Thigpen L. and Chin R.C.Y. 1988. Bulk elastic wave
propagation in partially saturated porous solids. Journal of the
Acoustical Society of America 84, 360-373.

Bradley ].S. 1975. Abnormal formation pressure. Bulletin of
the American Association of Petroleum Geologists 79,
957-973.

Carcione J.M. 1996. Wave propagation in anisotropic, saturated
porous media: plane wave theory and numerical simulation. Jour-
nal of the Acoustical Society of America 99, 2655-2666.

Carcione J.M. and Gangi A.F. 2000a. Gas generation and
overpressure: effects on seismic attributes. Geophysics 635,
1769-1779.

Carcione J.M. and Gangi A.F. 2000b. Non-equilibrium compaction
and abnormal pore-fluid pressures: effects on seismic attributes.
Geophysical Prospecting 48, 521-537.

Cheng A.H.-D. 1997. Material coefficients of anisotropic poroelas-
ticity. International Journal of Rock Mechanics, Mineral Science
and Geomechanics Abstracts 34, 199-205.

Gangi A.E. and Carlson R.L. 1996. An asperity-deformation model
for effective pressure. Tectonophysics 256, 241-251.

Hunt J.M. 1990. Generation and migration of petroleum from ab-
normally pressured fluid compartments. Bulletin of the American
Association of Petroleum Geologists 74, 1-12.

Lo T.W., Coyner K.B. and Tokstz M.N. 1986. Experimental deter-
mination of elastic anisotropy of Berea sandstone, Chicopea shale,
and Chelmsford granite. Geophysics 51, 164-171.

Luo X. and Vasseur G. 1996. Geopressuring mechanism of organic
matter cracking: numerical modeling. Bulletin of the American
Association of Petroleum Geologists 80, 856-874.

Mavko G., Mukerji T. and Dvorkin J. 1998. The Rock Physics
Handbook. Cambridge University Press.

Prasad M. and Manghnani M.H. 1997. Effects of pore and differen-
tial pressure on compressional wave velocity and quality factor in
Berea and Michigan sandstones. Geophysics 62, 1163-1176.

Rubey W.W. and Hubbert M.K. 1959. Role of fluid pressure mech-
anics of overthrust faulting, II. Overthrust belt in geosynclinal area
of Western Wyoming in light of fluid pressure hypothesis. Bulletin
of the Geological Society of America 70, 167-205.

Tao G., King M.S. and Nabi-Bidhendi M. 1995. Ultrasonic wave
propagation in dry and brine-saturated sandstones as a function of
effective stress: laboratory measurements and modelling. Geophys-
ical Prospecting 43, 299-327.

Tatham R.H. 1982. Vp/Vs and lithology. Geophysics 47, 336-344.

Todd T. and Simmons G. 1972. Effect of pore pressure on the
velocity of compressional waves in low-porosity rocks. Journal of
Geophysical Research 77, 3731-3743.

Winkler K.W. 1985. Dispersion analysis of velocity and attenuation
in Berea sandstone. Journal of Geophysical Research 90,
6793-6800.

Zimmerman R.W., Somerton W.H. and King M.S. 1986. Compress-
ibility of porous rocks. Journal of Geophysical Research 91,
12765-12777.

© 2002 European Association of Geoscientists & Engineers, Geophysical Prospecting, 50, 97-106



