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Wave simulation in dissipative media
described by distributed-order fractional
time derivatives

Michele Caputo1,2 and José M Carcione3

Abstract

We develop and solve a dissipative model for the propagation and attenuation of two-dimensional dilatational waves,

using a new modeling algorithm based on distributed-order fractional time derivatives. We consider two distributions.

The first has n powers of the order of differentiation as the weight function, and the second is based on a generalized

Dirac’s comb function. The wave equation is solved with the fractional derivative by means of a generalization of the

Grünwald–Letnikov approximation. The modeling uses the Fourier method to compute the spatial derivatives, and

therefore can handle complex geometries and general material-property variability. We verify the results by comparison

with the two-dimensional analytical solution obtained for wave propagation in homogeneous media. Moreover, we

illustrate the use of the modeling algorithm by simulating waves in the presence of an interface separating two dissimilar

media.
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1. Introduction

Stress–strain relations based on fractional derivatives
provide a suitable model of seismic attenuation in
attenuating media. Caputo (1967), Caputo and
Mainardi (1971), Carcione et al. (2002) and Carcione
(2009) described the anelastic behavior of general mate-
rials over wide frequency ranges by using fractional
derivatives, in particular considering propagation with
constant-Q characteristics. Bland (1960) and
Kjartansson (1979) discuss such a linear attenuation
model, but the idea is much older (Scott-Blair, 1949).
Mainardi and Tomirotti (1997) interpreted the con-
stant-Q model in terms of fractional derivatives and
obtained its one-dimensional Green’s function based
on the Mittag–Leffler function. A hyperbolic power
law that can also be implemented using fractional deri-
vatives has been introduced by Hanyga and Seredyńska
(2003), who discuss the causal properties associated
with the model of Kjartansson (1979). The governing
equation becomes parabolic since the phase velocity as
a function of frequency has no upper bound.

The case of two-dimensional compressional (P)-
wave propagation in heterogeneous media has been
solved by Carcione et al. (2002). Instead of time deri-
vatives of order two, they used derivatives of order
2� q with 0< q< 1 in the dilatation formulation of
the wave equation, and order q in the dilatation–
stress formulation. The case of two-dimensional propa-
gation of P and shear (S) waves has been developed and
solved numerically by Carcione (2009). Here, we extend
the theory and the algorithm to model the propagation
and attenuation of P waves, where the stress–strain
relation is described by distributed-order fractional
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derivatives, i.e. the derivatives are integrated with
respect to the order of differentiation. Compared with
the single-derivative case, this generalization introduces
one more parameter and allows us to model more gen-
eral variations of the phase velocity and quality factor
as a function of frequency. The idea has already been
described by Caputo (1967) and further developed in
Caputo (1995, 2001). Mainardi et al. (2007, 2008) dis-
cuss the fractional diffusion of double order and of
uniformly distributed order and obtain the fundamen-
tal solutions in terms of the Mittag–Leffler functions.
Fractional differential equations consisting of sums of
fractional-order derivatives have been extensively stu-
died by Podlubny (1999). Here, we consider a conti-
nuum spectrum of orders based on n powers of the
order of differentiation and a discrete distribution
based on Dirac’s comb function.

Fractional derivatives can be computed with the
Grünwald–Letnikov (GL) approximation (Grünwald,
1867; Letnikov, 1868; Caputo, 1967), which is an exten-
sion of the standard finite-difference (FD) approxima-
tion for derivatives of integer order (Grünwald, 1867;
Letnikov, 1868; Gorenflo, 1997). Unlike the standard
operator of differentiation, the fractional operator
increases in length as time increases, since it must
keep the memory effects. However, after a given time
period the operator can be truncated (short memory
principle). The presence of the distributed-order
derivatives requires the generalization of the GL
approximation.

In the first part of this work we introduce the stress–
strain relation and calculate the complex moduli, phase
velocities, and attenuation and quality factors versus
frequency. We then recast the wave equation in the
time-domain in terms of fractional derivatives and
obtain the GL approximation. Then, we verify the
accuracy of the time discretization by comparing the
exact and the FD phase velocities and attenuation fac-
tors. The model is discretized on a mesh, and the spatial
derivatives are calculated with the Fourier method by
using the fast Fourier transform (FFT). This approxi-
mation is infinitely accurate for band-limited periodic
functions with cutoff spatial wavenumbers smaller than
the cutoff wavenumbers of the mesh. Finally, we test
the modeling algorithm with an analytical solution for
a two-dimensional homogeneous medium, and illus-
trate the method with a numerical simulation in inho-
mogeneous media.

2. The stress–strain relation for a single
derivative

Caputo (1967), Caputo and Mainardi (1971), Carcione
et al. (2002) and Carcione (2009) described and com-
puted the anelastic behavior of many materials over

wide frequency ranges by using fractional derivatives.
The corresponding stress (�)–strain (e) relation for a
given deformation is

� ¼M
@q�

@tq
, 0 � q � 1, ð1Þ

where M is a pseudo-stiffness, which is a stiffness for
q¼ 0 and a viscosity for q¼ 1. The limits q¼ 0 and
q¼ 1 give Hooke’s law and the constitutive relation of
a dashpot (Carcione, 2007).

In the frequency domain, we obtain

� ¼ �M�, ð2Þ

where

�M ¼Mpq, p ¼ i! ð3Þ

is the complex stiffness, with o the angular frequency.
We may write,

M ¼M0!
�q
0 ð4Þ

(Carcione, 2009), where o0 is a reference frequency.
Then,

�M ¼M0
i!

!0

� �q

, ð5Þ

Note that M has the units [Pa sq]. The complex mod-
ulus (equation 5) vanishes at zero angular frequency,
thus the quasi-static elastic limit is not represented
by this model. Hence, applications should be restricted
to band-limited sources with a nonzero dominant
frequency.

The quality factor Q quantifies the amount of dis-
sipated energy. It is defined as Q¼Re(v2)/Im(v2)
(e.g. Carcione (2007, equation 2.120)), where v2 ¼
½Mði!=!0Þ

q
�=�, with v the complex velocity, � the

mass density, and ‘‘Re’’ and ‘‘Im’’ denote real and ima-
ginary parts, respectively. We obtain

Q ¼
1

tanð�q=2Þ
, ð6Þ

which is constant (independent of frequency). If Q is
infinite there is no dissipation (q¼ 0).

3. The stress–strain relation for
distributed orders of derivatives

The stress–strain relation (equation 1) is generalized to
the case when the fractional-order derivatives are
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integrated with respect to the order of differentiation,
i.e. we consider a spectrum of derivatives,

� ¼M0

Z b

a

sðzÞ
@z�

@tz
dz ð7Þ

(Caputo, 1967, 2001), where 0� a� b� 1 and s(z) is the
distribution of the derivatives. If s(z)¼ d(z� q), we
obtain equation 1. The introduction of one more para-
meter (a and b instead of z) renders the stress–strain
relation more flexible because it includes a variety of
memory mechanisms and is more apt to represent the
dispersion acting with several different relaxations (e.g.
anelastic relaxation mechanisms or spectral lines in the
case of dielectric media). We consider two main cases,
namely the case s(z)¼ zn and a generalized Dirac’s
comb function. In the first case, a continuous spectrum
can be represented, while the second distribution may
describe a physical process with well-defined wave-like
and diffusion-like behavior depending on the discrete
values assumed.

3.1. The zn Case

We assume

sðzÞ ¼ N!�z0 zn, N ¼
nþ 1

bnþ1 � anþ1
, ð8Þ

where n is a natural number and N is a normalization
constant such that !z

0

R b
a sðzÞ dz ¼ 1. The quantity !�z0 is

included to avoid powers of p (or of !) having different
dimensions, which would be physically unacceptable
(see equation 4). The frequency-domain version of
equation 7 is

� ¼M0�

Z b

a

sðzÞ pz dz ¼M0�

Z b

a

Nznuz dz ¼ �M�, ð9Þ

u ¼ !�10 p ¼
i!

!0
, ð10Þ

�M ¼M0S, ð11Þ

and

SðuÞ ¼

Z b

a

Nznuz dz: ð12Þ

Here S is dimensionless and M0 is in units of Pa.

Using the property uz¼ exp(z ln u) and an indefinite
integral for the exponential function, we obtain

SðuÞ ¼ N
Xn
k¼0

ð�1Þkk!

ðln uÞkþ1
n
k

� �
ðubbn�k � uaan�kÞ: ð13Þ

The case n¼ 0 gives

SðuÞ ¼
N

ln u
ðub � uaÞ, N ¼

1

b� a
, ð14Þ

and the case n¼ 1 gives

SðuÞ ¼
N

ln u
b�

1

ln u

� �
ub � a�

1

ln u

� �
ua

� �
,

N ¼
2

b2 � a2
: ð15Þ

In the first case, all of the derivatives have the same
weight (uniform distribution).

3.2. The Generalized Dirac’s Comb Function

We define a generalized Dirac’s comb function, where
the delta functions are not equally spaced and each one
has a different weight,

sðzÞ ¼ !�z0

Xn
k¼1

ak�ðz� zkÞ, ð16Þ

where ak are the weights satisfying
Pn

k¼1 ak ¼ 1, and
a� zk� b. Then

SðuÞ ¼

Z b

a

Xn
k¼1

ak�ðz� zkÞu
z dz, ð17Þ

which simplifies to

SðuÞ ¼
Xn
k¼1

aku
zk : ð18Þ

4. Kinematics and energy balance

This analysis yields the measurable quantities, such as
the phase velocity, and the attenuation and quality
factors.

4.1. Complex velocity, Phase Velocity and
Attenuation Factor

As above, we define the complex velocity as

v ¼

ffiffiffiffiffi
�M

�

s
¼

ffiffiffiffiffiffiffiffiffiffi
M0S

�

s
: ð19Þ

Then, the phase velocity and attenuation factor are
obtained from the complex velocity as

vp ¼ Re v�1
� �	 
�1

and � ¼ �!Imðv�1Þ ð20Þ

(Carcione, 2007), respectively, where equation 11 has
been used.
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4.2. Quality Factor

The Umov–Poynting theorem or energy balance equa-
tion for harmonic fields in anelastic media is given by

div � p� i!ðV� KÞ þD ¼ 0 ð21Þ

(e.g. Carcione (2007, equation 4.57)), where p is the
complex power-flux vector, V is the strain (stored)
energy, K is the kinetic energy and D is the dissi-
pated energy. These are energy densities, i.e. time-
averaged energies in one cycle per unit volume.

The time-averaged strain energy density per cycle is
given by

V ¼
1

4
Reð �MÞj�j2 ð22Þ

(see Carcione (2007, equation 2.104)). For e¼ e0
exp(pt), we have

V ¼
1

4
Reð �MÞj�0j

2 ¼
1

4
M0ReðSÞj�0j

2: ð23Þ

The time-averaged dissipated energy density per cycle is
given by

D ¼
1

2
Imð �MÞj�j2 ð24Þ

(see Carcione (2007, equations 2.105, 4.85 and 4.114)).
For e¼ e0 exp(pt), we have

D ¼
1

2
Imð �MÞj�0j

2 ¼
1

2
M0ImðSÞj�0j

2: ð25Þ

The quality factor is defined as

Q ¼
2V

D
¼

Reð �MÞ

Imð �MÞ
¼

ReðSÞ

ImðSÞ
, ð26Þ

according to equation 11.

In isotropic media, the energy velocity, defined as the
power-flux vector Re(p) divided by the total energy
VþK, is equal to the phase velocity (Carcione, 2007).

5. Two-dimensional dynamical
equations

The conservation of linear momentum for a two-
dimensional linear anelastic medium, describing dilata-
tional deformations, can be written as

�@2t ui ¼ @i�, i ¼ 1ðxÞ, 2ð yÞ ð27Þ

(Auld, 1991; Carcione, 2007), where ui are the compo-
nents of the displacement vector and qi computes the
spatial derivative with respect to xi. The initial condi-
tions are ui(0, x)¼ 0, qtui(0, x)¼ 0, and ui(t, x)¼ 0, for
t< 0, where x is the position vector. The strain–displa-
cement relation is e¼ q1u1þ q2u2. Then, the complete
set of equations describing the propagation is

@2t u1 ¼ �
�1@1�,

@2t u2 ¼ �
�1@2�,

� ¼M0

Z b

a

sðzÞ
@z�

@tz
dzþ s,

� ¼ @1u1 þ @2u2, ð28Þ

where we have introduced a causal source term
s¼ s(t, x).

6. Numerical algorithm

6.1. The Fractional Derivative

The computation of the fractional derivative is based
on the GL approximation (Podlubny, 1999; Carcione
et al., 2002). As we show in the following, the imple-
mentation of the distributed orders of differentiation
requires a generalization of the backward GL
derivative.

The fractional derivative of order z of a function g is

@zg

@tz
� Dzg ¼

1

hz

XJ
j¼0

ð�1Þ j
z
j

� �
gðt� jhÞ, ð29Þ

where h is the time step, and J¼ t/h� 1. The derivation
of this expression can be found, for instance, in
Carcione et al. (2002). The fractional derivative of g
at time t depends on all of the previous values of g.
This is the memory property of the fractional deriva-
tive, related to field attenuation. The binomial coeffi-
cients are negligible for j exceeding an integer J. This
allows us to truncate the sum at j¼L, L� J, where L is
the effective memory length.

6.2. Generalized GL Derivative and Solution
Algorithm

Fractional derivatives of order z� 1 require large
memory resources and computational time, because
the decay of the binomial coefficients in equation 29
is slow (Carcione et al., 2002; Carcione, 2009), and
the effective memory length L is large. We increase
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the order of the derivative by applying a time derivative
of order m to equation 28. The result is

Dmþ2u1 ¼ �
�1@1� þDmf1,

Dmþ2u2 ¼ �
�1@2� þDmf2,

� ¼M0

Z b

a

sðzÞDmþz�dzþDms,

� ¼ @1u1 þ @2u2: ð30Þ

It is enough to take m¼ 1 to have a considerable saving
in memory storage compared with m¼ 0. In this case,
�¼ qt� is the stress rate.

We discretize equations 30 at t¼ nh with m¼ 1.
Using the notation un¼ u(nh), the left-hand side of
the first two equations can be approximated by

h3 D3ui
� �n

¼ unþ1i � 3uni þ 3un�1i � un�2i , i ¼ 1, 2, ð31Þ

where we have used a right-shifted FD expression for
the third derivative.

Using equation 29, the integral containing a GL dis-
tributed derivative in the third expression in equation
30 can be approximated as

Z b

a

sðzÞDmþzg dz �
1

hm

X
j¼0

Cmjgðt� jhÞ, ð32Þ

where

Cmj ¼ ð�1Þ
j

Z b

a

mþ z
j

� �
sðzÞ

hz
dz: ð33Þ

Then, from equations 30 and 32 we see that the third
expression in equation 30 can be approximated as

� ¼
M0

hm

XJ
j¼0

Cmj�ðt� jhÞ, ð34Þ

where

Cmj ¼ ð�1Þ
jN

Z b

a

mþ z
j

� �
zn

ð!0hÞ
z dz: ð35Þ

for the zn distribution, and

Cmj ¼ ð�1Þ
j
Xn
k¼1

ak
ð!0hÞ

zk

mþ zk
j

� �
ð36Þ

for the comb distribution.

Finally, we obtain for m¼ 1,

unþ11 ¼ h3ð��1@1�
nÞ þ 3un1 � 3un�11 þ un�21 ,

unþ12 ¼ h3ð��1@2�
nÞ þ 3un2 � 3un�12 þ un�22 ,

�n ¼
M0

h

XJ
j¼0

C1j�
n�j þD1sn,

�n ¼ @1u
n
1 þ @2u

n
2, ð37Þ

which constitute the time stepping method. We do not
perform a stability–accuracy analysis of these equa-
tions, but in the next section we obtain the FD phase
velocity, which compared with the exact phase velocity
allows us to evaluate the appropriate value of the time
step h to obtain a solution with the desired precision.

The spatial derivatives are calculated with the
Fourier method by using the FFT (Carcione, 2007).
The Fourier pseudo-spectral method has spectral accu-
racy for band-limited signals. Then, the results are not
affected by spatial numerical dispersion. In the case of
inhomogeneous media, the algorithm employs the stag-
gered Fourier method (Carcione, 2009). Since we use
Fourier basis functions to compute the spatial deriva-
tives, equation 37 satisfies periodic boundary condi-
tions at the edges of the numerical mesh.

6.3. FD Complex Velocity

The dispersion relation relates the frequency with the
wavenumber and allows the calculation of the phase
velocity corresponding to each Fourier component.
Time discretization implies an approximation of the
dispersion relation. Assuming m¼ 1, no body forces,
constant material properties, and taking derivatives
with respect to x1 and with respect to x2 in the first
and second expressions in equation 30, respectively,
and adding the resulting equations, gives

@3t � ¼
1

�
��, ð38Þ

where � is the Laplacian. Substituting the ansatz
exp(i!t� k1 x� k2y) for e, where ki are the complex
wavenumber components, gives the following FD com-
plex velocity:

�v ¼
!

k
¼ c0ð1þ iÞ	 expði	=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼0 C1j expð�2ij	Þ

sin 3	 � 3 sin 	

s
,

ð39Þ

where 	¼!h/2, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
and c0 ¼

ffiffi
ð

p
M0=�Þ. The

FD phase velocity, attenuation factor and quality
factor are obtained by replacing equation 39 in equa-
tions 20 and 26, respectively.
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7. Examples

We first consider a material with M0 ¼ �c
2
0, where �¼

2 g cm�3 and c0¼ 2 km s�1. The reference frequency is
taken f0¼!0/(2p)¼ 250Hz. We assume a¼ 0.01 and
b¼ 0.02 (zn distribution), and z1¼ 0.01 and z2¼ 0.02
(comb distribution, where a1¼ 1/3 and a2¼ 2/3).
These parameters may describe loss mechanisms
which can occur in hydrocarbon reservoirs, where the
quality factor of the compressional waves may range
between 20 and 50, usually representing high-porosity
partially saturated sandstones and limestones. In prac-
tice, the parameters are obtained by an optimization

method, by fitting the observed Q factor with the the-
oretical one. Typical minimization algorithms, such as
the Minpack or the BFGS method, can be used.

Figures 1 and 2 show the phase velocity and quality
factor for both cases in the frequency range from 0.1 Hz
to 10 kHz. The phase velocities for the different values
of n coincide at the reference frequency o0. The quality
factor is almost constant for practical purposes, while
in the case n¼ 1 of Figure 2 (comb distribution), it is
constant, since it corresponds to one single order of
differentiation z2¼ 0.02 (Carcione et al., 2002). The
value of !0 allows us to determine the desired phase
velocity at a given frequency band. The zn distribution

(a) (b)

Figure 2. Phase velocity and quality factor for Dirac’s comb distribution. The solid and dashed lines correspond to n¼ 1 and 2,

respectively.

(a) (b)

n=0

n=0n=1

n=1

n=2

n=2

Figure 1. Phase velocity and quality factor for the zn distribution, with a¼ 0.01 and b¼ 0.02. The solid, dashed and dotted lines

correspond to n¼ 0, 1 and 2, respectively.
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allows for a higher resolution to model variations in
the phase velocity, due to fine splitting with increasing
n (see Figure 1a). However, from a practical point of
view, this distribution and the comb distribution are
similar.

We evaluate the accuracy of the numerical fractional
derivatives for the z1 distribution by comparing the FD
phase velocity and attenuation factor with the exact
values. They are shown in Figures 3 and 4 as a function
of frequency, for a¼ 0.01, b¼ 0.02, and a¼ 0.1, b¼ 0.2,
respectively, where the symbols represent the numerical
approximation. The memory length is 120, the refer-
ence frequency is f0¼ 250Hz, and the time step is

h¼ 0.03ms. The velocity dispersion and the attenuation
is much stronger in Figure 4. Use of the comb distribu-
tion yields a similar agreement.

We now compare the numerical and analytical solu-
tions in homogeneous unbounded media, where the
numerical solution is obtained by solving equation 37.
The two-dimensional analytical solution is obtained in
the appendix. To compute the transient responses, we
use as a source a time history of the form:

f ðtÞ ¼ a�
1

2

� �
expð�aÞ, a ¼

�ðt� tsÞ

tp

� �2
, ð40Þ

(a) (b)

Figure 3. Phase velocity (a) and attenuation factor (b) as a function of frequency. (a¼ 0.01, b¼ 0.02 and f0¼o0/(2p)¼ 250 Hz). The

symbols represent the FD approximation.

(a) (b)

Figure 4. Phase velocity (a) and attenuation factor (b) as a function of frequency. (a¼ 0.1, b¼ 0.2 and f0¼o0/(2p)¼ 250 Hz). The

symbols represent the FD approximation.
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where tp is the period of the wave (the distance between
the side peaks is

ffiffiffi
6
p

tp=�) and we take ts¼ 1.4tp. Its
frequency spectrum is

F ð!Þ ¼
tpffiffiffi
�
p

� �
�a expð� �a� i!tsÞ, �a ¼

!

!p

� �2

,

!p ¼
2�

tp
: ð41Þ

The peak frequency is fp¼ 1/tp. Figure 5 shows the
normalized source spectrum for a peak frequency of
250Hz.

The medium is discretized on a numerical mesh, with
uniform vertical and horizontal grid spacings of 1m,

and 117� 117 grid points. A dilatational source is
applied at the center of the mesh and has a peak fre-
quency of 250Hz. We use a memory length of 120 and
a time step h¼ 0.03 ms. Figure 6 compares the analy-
tical and numerical solutions using the z1 distribution
introduced above with a reference frequency f0¼ 250
Hz. Figure 6a corresponds to a¼ 0.01 and b¼ 0.02,
and Figure 6b to a¼ 0.1 and b¼ 0.2. In Figure 6a the
quality factor is approximately equal to 41 (see Figure
1b), while in Figure 6b the quality factor is approxi-
mately equal to 4, i.e. there is a strong attenuation. As
we can see, the match is perfect in both cases.

The advantage of the numerical algorithm is that it
can be used to simulate wave propagation in heteroge-
neous media, i.e. each point in the mesh can have a
different property. In order to illustrate a situation
where there is no analytical solution, we consider a
plane interface separating two media of dissimilar prop-
erties, where the attenuation is described by the z1 dis-
tribution. The upper medium has a¼ 0.1, b¼ 0.2, �¼
2 g cm�3 and c0¼ 2 km s�1, and the lower medium has
a¼ 0.01, b¼ 0.02, r¼ 2.3 g cm�3 and c0¼ 2.5 km s�1.
Owing to the nature of the Fourier method used to
compute the spatial derivatives, periodic boundary con-
ditions are satisfied at the edges of the mesh, but the
simulation time is such that the wavefield does not
reach the boundaries. A snapshot of the stress rate is
shown in Figure 7, where the source is indicated by a
star and is placed 10 m above the interface. A reflected
field from the interface can be appreciated, with strong
attenuation above due to the low quality factor of the
upper medium (approximately equal to four). The
lower medium has much less attenuation and, as a con-
sequence, the refracted field has a high amplitude.

(a) (b)

Figure 6. Normalized rate of stress �. Analytical and numerical solutions corresponding to the z1 distribution, with (a) a¼ 0.01 and

b¼ 0.02 and (b) a¼ 0.1 and b¼ 0.2. The reference frequency f0 is 250 Hz.

Figure 5. Normalized source spectrum.
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8. Conclusions

The wave equation describing attenuation based on
fractional time derivatives is generalized to the case
when the derivatives are integrated with respect to the
order of differentiation. This renders the stress–strain
relation more flexible because it includes a variety of
memory mechanisms and is more apt to represent the
dispersion acting with several different relaxations (e.g.
anelastic relaxation mechanisms or spectral lines in the
case of dielectric media.).

The power distribution zn and Dirac’s comb functionP
ak�(z� zk) are considered, where z is the order of

differentiation. We obtain an analytical solution in
homogeneous media by using the correspondence prin-
ciple. Moreover, we develop an algorithm for hetero-
geneous media based on a generalization of the GL
approximation of the fractional derivative and the
Fourier pseudo-spectral method to compute the spatial
derivatives. The numerical solutions show an excellent
agreement with the analytical solution. Finally, an het-
erogeneous model illustrates how the algorithm can
handle density, velocity and quality-factor contrasts.
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Appendix: Green’s function and
analytical solution

A two-dimensional analytical solution of equation 28
with m¼ 1 in a homogeneous medium can easily be
obtained. Combining the equations, we have

@2t � ¼
1

�
�ð� þ sÞ: ð42Þ

In the frequency domain, � ¼ �M� ¼M0S�, according
to equation 9, and equation 42 becomes a Helmholtz
equation,

��þ k2� ¼ �
1

�v2
�s ¼ �

1

�M
�s, k ¼

!

v
, ð43Þ

where k is the wavenumber and v is given by equation
19. If v is real, the medium is lossless. The solution to
the acoustic (lossless) equation (�þ k2)G¼�8�(r) is
the Green function G ¼ �2iH

ð2Þ
0 ðkrÞ, with v¼ c0,

where H
ð2Þ
0 is the zero-order Hankel function of the

second kind (Morse and Feshbach, 1953; Carcione,
2007). More precisely,

Gðx, y, x0, y0,!, c0Þ ¼ �2i�H
ð2Þ
0

!r

c0

� �
, ð44Þ

where (x0, y0) is the source location, and

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ

2
þ ð y� y0Þ

2

q
: ð45Þ

The anelastic solution is obtained by invoking the cor-
respondence principle (Bland, 1960), i.e. by substituting
the acoustic velocity c0 with the complex velocity v. The
differential operator �= �M acts on the source in equa-
tion 43. Thus, the Green’s function for the strain is

G� ¼
1

�M
�G: ð46Þ

Since �G¼�k2G away from the source and � ¼ �M�,
the Green’s function for the stress is

G� ¼ �MG� ¼ �k
2G: ð47Þ

We set G(�o)¼G*(o), where the superscript * denotes
complex conjugation. This equation ensures that the
inverse Fourier transform of the Green’s function is
real. The frequency-domain solution is then given by
�ð!Þ ¼ 1=8G�ð!ÞF ð!Þ, where F is the Fourier trans-
form of the source time history. Since we are solving
the dynamical equation with m¼ 1, our solution is not
� but the stress rate �¼ qt�. Hence,

�ðx, y, x0, y0,!Þ ¼
1

8
i!G� F

¼ �
1

8
i!k2Gðx, y, x0, y0,!, vÞF ð!Þ: ð48Þ

Because the Hankel function has a singularity at !¼ 0,
we assume G¼ 0 for !¼ 0, an approximation that does
not have a significant effect on the solution (note, more-
over, that F(0)¼ 0). The time-domain solution �(t) is
obtained by a discrete inverse Fourier transform. We
have tacitly assumed that � and d�/dt are zero at time
t¼ 0.
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