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s u m m a r y

We consider a one-dimensional model of water reservoir, where the sediment is diffusing according to
the Fourier law modified with the introduction of a derivative of fractional distributed orders as memory
formalism. The fractional order is equivalent to a time-varying diffusivity and the distributed orders rep-
resent a variety of memory mechanisms to model a sediment with a varied distribution of grain sizes.
Using the Laplace transform (LT), we find the solution in the case when the flux is constant at the source
and is arbitrarily given at the output. Then, the time-domain solution is obtained by means of a numerical
Fourier transform. We apply a one-dimensional simplified model, with the diffusion governed by two
parameters, to the Quarto Nuovo (Italy) reservoir, where the flux of sediment at the output is obtained
from observed data. It is found that the flux increases when one of the parameters defining the diffusion
model, the pseudo-diffusivity, is increasing or when the other parameter defining the diffusion, the order
of fractional differentiation, is decreasing. When the latter parameter is nil, one obtains the classic diffu-
sion with maximum flux.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Foreword on water reservoirs and sediment diffusion

Due to the shortage of fresh water the artificial water reservoirs
are of ever increasing importance. They are mostly contained by
dams made of earth or concrete. Both types of reservoirs, however,
are doomed to inefficiency because of the phenomenon of the dif-
fusion of sediments filling the reservoirs. For instance, in the Italian
Alps, the lifetime of the water reservoirs lies between 50 and
100 years depending on the sediments contained in their tributary
streams, on their geometry and on the use which set serious con-
straints on their economic convenience.

Monitoring the deposits of sediment in the water reservoir in
the first few years after the construction is generally sufficient to
have an approximate estimate of its future efficiency which con-
cern its investors and managers.

The phenomenon of sediment diffusion and deposit in the water
reservoirs is extremely complex. Most important is the varied den-
sity distribution function of the sediment relative to its size and
weight, but are also important the seasonal variation in river flow,
the reservoir operation scheduling and the irregular and varying

shape and volume of the reservoirs occurring at the same time of
the deposit of the sediment, whose fate is influenced by the force
of gravity and by the velocity of the water.

In recent times, we have been gratified by several studies con-
cerning the estimate of the flux of sediment versus time and at dif-
ferent locations along the water reservoirs. To quote the works
which may seem more pertinent, we begin with that of Zyryanov
(1973) reporting on the silting of the Uch-Kurgansk hydroelectric
station and on the silt control. Bodulski and Górski (2007) studied
the silting of the Cedzyna water reservoir in Poland in the period
1972–2003, finding that the volume had decreased by 113,000 m3.

Rãdoane and Rãdoane (2005) analyzed the data of 138 reser-
voirs with relatively large volume affected by the phenomenon of
silting and found that it is very serious for 11% of them and serious
for 22%. Sharma and Dubey (2001) discussed the remote monitor-
ing of the silting in water reservoirs for estimating the silting deliv-
ery rate. Cogollo and Villela (1988) provided means of estimating
the sediment distribution in time and space inside a reservoir.

Chen et al. (1978) produced a model for the prediction of the
deposit of sediment in reservoirs. The river is modeled by a single
channel assuming that the one-dimensional flow phenomena are
dominant, whereas a compound stream model approach is used
to simulate the main river and the flood plains of the reservoir.
Their jet theory is incorporated in a mathematical model by Lopez
(1978) and the resulting flow field, computed with the scheme of
finite differences, is used to route the sediment through the
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reservoir. The simulated bed profiles generated by the mathemat-
ical model compare well with measured data.

Some of the difficulties in modeling the diffusion could be ten-
tatively overcome by introducing appropriate linear phenomeno-
logical equations at the price to loose some of the intuitive
properties of the classic equations. On the other hand, the phenom-
enological equations may allow to find different points of view on
the evolution of the phenomenon of diffusion and, possibly, new
concepts.

There are many generalizations of the original diffusion equa-
tion for use in various fields of science. A relevant case for aniso-
tropic media is the substitution of the scalar parameter of
diffusion with a tensor. Another relevant case is the Fokker–Planck
equation describing the time evolution of the probability density
function of the position of the diffusing particles.

The diffusion equation has been generalized with the introduc-
tion of memory formalisms represented by fractional order deriv-
atives (Wyss, 1986; Mainardi, 1993). In this work, concerning the
diffusion of sediment in water reservoirs, the diffusion equation
is generalized by introducing a distributed order fractional deriva-
tive to represent the effect of the various density distribution func-
tions of the sizes and weights of the particles forming the
sediment. The scope is then to present a mathematical model
based on a memory formalism for the diffusion of sediment in a
one-dimensional water reservoir. The more general model of sedi-
mentation in the water reservoirs introduced here, when adequate
data is available, would give the flux of sediment along the reser-
voirs and may possibly estimate the evolution of their efficiency
and improve the capability of forecast of their lifetime. It may also
be of help in selecting the sites of future reservoirs in connection
with the estimate of sediments in the tributary streams.

1.2. The use of the mathematical memory formalism

The basic notion of memory functions is widely recognized in
science in general and, in particular, in the fields of mathematical
physics, engineering and biology. Numerous applications of math-
ematical memory formalisms to the description of physical phe-
nomena have been published. We try here to recall some
contributions being sure that some work will be unintentionally
omitted.

Using fractional derivatives as memory formalisms Baleanu and
Agraval (2006) studied the Hamilton formalism. Baleanu and
Trujillo (2010) studied the Euler–Lagrange equations and Baleanu
et al. (2009) studied the Newtonian law with memory. Körnig
and Müller (1989) used a rheological model based on fractional
calculus to estimate the anelastic properties of the crust of the
Earth. Iaffaldano et al. (2006) and Di Giuseppe et al. (2010)
modeled the flux of water through different types of sand using
diffusion equations modified with the introduction of fractional
derivatives and Schumer et al. (2009) modeled transport on the
Earth’s surface with a fractional advection diffusion equation.

Zhang et al. (2007) studied the impact of boundaries on the
fractional advection–dispersion equation for solute transport in
soil defining the fractional dispersive flux with the fractional deriv-
atives. Murio and Mejia (2008) studied the generalized time in-
verse heat convection problems with fractional derivatives.
Bagley and Torvik (2000a,b) discussed the problem of the existence
of the order domain and the solution of distributed-order differen-
tial equations. Mainardi et al. (2008) generalized the partial differ-
ential equation of Gaussian diffusion by using the time-fractional
derivative of distributed order between 0 and 1, in both the Rie-
mann–Liouville and the Caputo sense.

The fractional derivative was also used in medicine: El-Shahed
(2003) made a fractional calculus model of heart valve vibrations,
Magin and Ovadia (2008) modeled the cardiac tissue electrode

interface using fractional calculus and Freed and Diethelm (2008)
applied the fractional derivatives in viscoelasticity for a non-linear
finite-deformation theory of tissue.

The derivatives of fractional order are often used to model bio-
logical phenomena, as for instance the diffusion of fluids in organic
and inorganic substances. For instance, Cesarone et al. (2005) and
Caputo and Cametti (2008, 2009) introduced a fractional derivative
in the diffusion equation to model the profile concentration of dif-
fusing solutes inside cell membranes. The latter authors compared
their model predictions with experimental results concerning the
permeation of piroxicam, an anti-inflammatory drug, and of 4-
cyanophenol through human skin in vivo, obtaining a good fit.

Caputo and Carcione (2011a,b) used fractional derivatives of
distributed order to model fatigue criteria and wave simulation,
respectively, while Caputo et al. (2011) applied fractional deriva-
tives to the propagation of waves in biological dissipative media.

In seismology, Carcione et al. (2002) and Carcione (2009) de-
scribed the anelastic behavior of general materials over wide fre-
quency ranges by using fractional derivatives, in particular
considering propagation with constant-Q characteristics.

In finance, the fractional derivative represents the effect of
memory on the economic operators concerning their action in
the markets. Scalas et al. (2000) developed a theory which fully
takes into account the non-Markovian and non-local character of
financial time series and Mainardi et al. (2000) pointed out the
consistency of the results of Scalas et al. (2000).

In physics, Laskin (2000, 2002) applied the fractional derivative
in quantum mechanics, particularly to the equation of Schrödinger
discussing the difference with the original equation. Závada (2002)
studied relativistic wave equations involving fractional derivatives,
Raspini (2000) studied the Dirac equation with a fractional deriva-
tive of order 2/3, Magin et al. (2009) solved the Bloch equation,
which relates a macroscopic model of magnetization to applied
radiofrequency, in gradient and static magnetic fields, in order to
detect and characterize neurodegenerative, malignant and ische-
mic diseases.

In information theory, Frederico and Torres (2008) studied the
optimal control in the sense of the fractional Noether theorem.
Introducing this derivative in the stress strain relation of elasticity
is possible to model the phenomenon of dissipation of the elastic
energy; that dissipation which renders harmless an earthquake
at sufficiently large distances from the epicenter.

All the equations generalizing the Fourier equation, and used in
the works previously mentioned, are called phenomenological,
since they are not obtained from first principles only. The reputa-
tion of this type of equations has been confirmed for their impor-
tant contribution given in various forms to the rapid
developments of the superconductive materials. These phenome-
nological equations, when adequately verified with experimental
data, represent a step forward with respect to the usual empirical
equations which are still very useful in many branches of applied
science and technology.

The fractional calculus is used here to describe a one-
dimensional model of water reservoir, where the sediment is dif-
fusing according to the Fourier law. The model is applied to the
Quarto Nuovo reservoir. A list of symbols is given in Appendix A.

2. The Quarto Nuovo reservoir

The ITCOLD is the Italian research group supervising the man-
agement of the water reservoirs and of the operations of removal
of their sediment according to an Italian law issued in 2006. This
group studied the Quarto Nuovo reservoir which was built be-
tween 1923 and 1925 in the Italian province of Forli, along the
State Road 71 from Cesena to Bagno di Romagna, at the elevation
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of 320 m above the sea level. The reservoir has a surface of about
85,000 m2 with an elongated form (it is about 1000 m long) and
collects the waters of the rivers Para and Savio.

Soon after the construction, it was noted the formation of a rel-
evant deposit of sediment on the bottom in the reservoir and, be-
cause of this phenomenon, the variation of the actual volume of
water of the reservoir was monitored almost regularly and numer-
ically (Piro et al., 2007). These data inspired us to make a simple
analytic model of the diffusion of sediment in the reservoir, assum-
ing that the yearly introduction of the sediment at the source is
constant and that the fraction of the sediment eliminated at the
output is similar to that implied by the data supplied in the report
of Piro et al. (2007).

One is forced to severe simplifications, due to the lack of data on
the geometry of the reservoir, to produce a simple mathematical
model of the sediment diffusion. We will assume here a one-
dimensional model of the reservoir with length h displayed along
the x axis and with the water entering the reservoir at the origin
x = 0. We also assume that the input of sediment has a constant
yearly rate A and that, at the output, x = h, the flux of sediment is
given. In short, the reservoir is a simple one-dimensional input–
output system.

From the data available on the reservoir (Piro et al., 2007), one
obtains the rate of sediment filling it. We assume that the flux of
sediment at the input and output of the reservoir are

qð0; tÞ ¼ A;

qðh; tÞ ¼ kðtÞ ¼ Bc
c� � ½expð��tÞ � expð�ctÞ�;

ð1Þ

respectively, where t is the time, A, B and c are constants to be
determined from the data and �t� 1 and �� c, where � is a non-
physical parameter to avoid the singularity in the inverse Fourier
transform (see below). Asymptotically (t ?1), the flux at the
mouth will be the same as at the source if B = A.

3. The one-dimensional analytical model of diffusion

The mathematical formalism used to model the diffusion of sed-
iments in a reservoir consists of the Fourier equation modified with
the application of a memory formalism, in the form of a fractional
derivative of distributed order of the concentration gradient. This
derivative is used to model the complexity of the time evolution
of the local distribution of sediment due to the previous transit
of fluid. Then, the flux of sediment can be expressed as

qðx; tÞ ¼ �cp;xðx; tÞ � d D½a;b�p;xðx; tÞ; ð2Þ

where p(x, t) represents the concentration of sediment in a section
at distance x from the input, c and d are constants (whose dimen-
sions are given in Appendix A), and the subindex ‘‘,x’’ denotes a par-
tial derivative with respect to the variable x. In Eq. (2), D[a,b] is the
operator of fractional differentiation of distributed order introduced
by Caputo (1967, 1995), used in Caputo (2001) and Caputo and
Carcione (2011b) and extensively reported in Jiao et al. (2012):

D½a;b�pðtÞ ¼
Z b

a
DmpðtÞdm; ð3Þ

where

Dmpðx; tÞ ¼ 1
Cð1� mÞ

Z t

�1

p;sðx; sÞ
ðt � sÞm

ds ¼ 1
Cð1� mÞ p;t �

1
tm

ð4Þ

is the so-called Caputo fractional derivative of order m 2 [0,1]
(Podlubny, 1999; Carcione et al., 2002; Diethelm, 2010), where
‘‘⁄’’ denotes time convolution.

The operator Dm describes the perturbation of the local concen-
tration of homogeneous sediment due to the previous transit of
water. It represents the perturbation due to inhomogeneous sedi-
ment formed with particles of varied shape, weight and size. The
mathematical formalism defined by Eq. (4) is constructed with a
weighted mean of the first-order derivative p,s(x,s) in the time
interval [0,t], which is a sort of feedback system, i.e., the values
of p,s(x,s) at time s far apart from t are given smaller weight than
those at times s closer to t. Hence, the weights are increasingly
smaller with increasing time separation from the time t to imply
that the effect of the past is fading with increasing time. Impor-
tantly, the weights multiplying the first-order derivative of p(x,s)
inside the integral appearing in Eq. (4) can be chosen in many
ways. The definition adopted in Eq. (4) is appropriate because is
algebraically simple, allows easy solutions, and has been com-
monly applied in the previously cited scientific studies (Podlubny,
1999; Mainardi, 2010; Diethelm, 2010).

A simple example of diffusion with memory experimentally
verified is the flux of water through sand which causes a rotation
of its grains and thus generates a matrix with porosity variable
in time (Iaffaldano et al., 2006; Di Giuseppe et al., 2010). The var-
iation of the porosity is then function of the quantity of water
which went through the matrix which in turn has a memory of this
quantity. In our case, the memory is materialized in the exposure
of the particles forming the sediment to the gravity force, namely,
the duration of this exposure combined with the velocity of the
water. The distributed-order fractional equation expressed by
Eqs. (2) and (3) aims to model the difference of the memory of
the sediments with varied shape, weight and size.

Eq. (2) has to be considered with the continuity equation

q;x þ p;t ¼ 0: ð5Þ

The LT domain of Eqs. (2) and (5) are

Q ¼ � c þ sb � sa

ln s
d

� �
P;x;

Q ;x þ sP ¼ 0;
ð6Þ

where s is the LT variable, and the LT pair t�m
M C(1 � m)sm�1 andR

sm dm ¼ sm= ln sþ C, where C is a constant, have been used. Elimi-
nating P(x,s) in Eq. (6), one obtains

Q ;xxðx; sÞ ¼ c þ sb � sa

ln s
d

� ��1

sQ ð7Þ

(Caputo, 1995). The boundary conditions are given in Eq. (1). The
Laplace-domain solution of Eq. (7) is given in Appendix B,

Qðx; sÞ ¼ KðsÞFðx; sÞ � ðA=sÞFðx� h; sÞ; ð8Þ

where

Fðx; sÞ ¼ sinhðaxÞ
sinhðahÞ ð9Þ

and

a ¼
ffiffi
s
p

c þ sb � sa

ln s
d

� ��1=2

: ð10Þ

The time-domain solution is calculated by recasting this solution in
the Fourier domain and performing an inverse transform using the
fast-Fourier transform (FFT) (see Appendix B).

4. Application to the Quarto-Nuovo water reservoir

We now apply the model to the flux of sediment in the Quarto-
Nuovo water reservoir. The data of Piro et al. (2007) on the evolu-
tion of the capacity of the reservoir allow only six values of the
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yearly rate of sediment distributed in the time window from the
year 1924 through the year 2006. They are shown in Fig. 1.

We assume that the memory is represented by a single mathe-
matical memory formalism, re-writing Eq. (2) as

q ¼ �cp;x � dDmp;x: ð11Þ

In this case, combining Eqs. (5) and (11) yields

q;t ¼ ðc þ dDmÞq;xx: ð12Þ

In the LT domain,

Q ;xx ¼ a2Q ; with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
c þ dsm

r
: ð13Þ

We also assume that the flux of sediment at x = 0 be A = con-
stant and, as in the case of the Quarto-Nuovo reservoir, and that
the flux at x = h be approximated by Eq. (1), whose LT is

KðsÞ ¼ Bc
ðsþ �Þðsþ cÞ ; ð14Þ

where � is small and is required to perform the numerical inverse
transform to the time domain.

It is reasonable to assume that the phenomenon of diffusion
with memory affects all the sediment. In this case, we may assume
that c = 0 in Eq. (11). The flux is defined by the parameter d, with
dimension Tm�1L2, which we call pseudo-diffusivity, which together
with the order m of fractional differentiation, are new parameters
defining the diffusion. We note then that the diffusion is character-
ized by two parameters and not by a single one as in the classic
case.

Moreover, it seems rational to assume that, asymptotically, the
flux at x = h be the same as that at the source, that is, Eq. (1) with
B = A

qðh; tÞ ¼ kðtÞ ¼ Ac
c� � ½expð��tÞ � expð�ctÞ�: ð15Þ

In this case, the solution (8) becomes

Qðx; sÞ ¼ A
sþ �

c
sþ c

Fðx; sÞ þ Fðh� x; sÞ
� �

; ð16Þ

where

a ¼
ffiffiffiffiffiffiffiffiffi
s1�m

d

r
: ð17Þ

5. Results

The fitting of Eq. (15) to the data of the Quarto-Nuovo reservoir
gives c = 0.1/yr. The normalized data and the fitting are shown in
Fig. 1.

Bridge (2003) reports values of d between 1000 m2/yr and
108 m2/yr. Firstly, as an example, we chose to present the flux at
x = 0.9h = 2.7 km, with h = 3 km, d = 104 m2 yrm�1 (Fig. 2a) and
d = 105 m2 yrm�1 (Figure 2b) in the cases m = 0, m = 0.3 and m = 0.6,
with c = 0.1/yr. The algorithm uses � = 0.5 � 10�4/yr, while the
FFT length is 221 with a time step of 0.5 yr. The flux is normalized
to the final value observed and the time is normalized to the time
of last observation when the reservoir was practically full of sedi-
ment. We note that the flux is increasing when d increases and de-
creases when m increase. Obviously the case m = 0 is the classic one
which, in absence of memory, gives the largest flux for all values of
t.

Next, we consider two different values of c defining the flux at
the output of the reservoir (x = h). Fig. 3 shows the normalized
yearly flux at x = 2.7 km, where m = 0.3 and d = 104 m2 yrm�1. The in-
crease of c implies an increase of the flux rate of sediment at the
output of the reservoir.

The flux at different locations is displayed in Fig. 4, correspond-
ing to c = 0.1/yr, m = 0.3 and d = 104 m2 yrm�1. The flux decreases
with decreasing x and at a given location x0 increases and ap-
proaches the value at x = 0, i.e., q/A = 1. Fig. 5 shows the flux as a
function of x at 20 yr, where x0 � 1592 m.

Fig. 1. Normalized yearly flux of sediment at the output of the Quarto Nuovo water
reservoir. The squares are the data and the solid line is the fit.

(a)

(b)

Fig. 2. Normalized yearly flux of sediment at x = 2.7 km for c = 0.1/yr, various
values of m and d = 104 m2 yrm�1 (a) and d = 105 m2 yrm�1 (b).
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Finally, we illustrate the more general case of distributed orders
of differentiation by comparing the single order m = 0.3 to the cases
[a,b] = [0.2, 0.4] and [0.1, 0.5]. The normalized flux is displayed in
Fig. 6 for c = 0, c = 0.1/yr and d = 104 m2 yrm�1 at x = 0.9h = 2.7 km.

Extending the range of the order of differentiation increases the
flux.

The use of this model to estimate the diffusion of the sediment
filling the water reservoir is limited by the lack of knowledge of the
two parameters d and m which characterize the flux across the res-
ervoir. To obtain the values of these parameters, that is, to obtain a
model of the flux of sediment in the reservoir, is then necessary to
observe the flux in few locations of the reservoir and at different
depths.

Moreover, the model with the fractional derivative of distrib-
uted order, as in Eq. (2), would represent a variety of memory
mechanisms and would be more adequate to deal with a non-
homogeneous sediment. It would then allow to represent the case
when, as often occurs, it is present a sediment with a varied den-
sity distribution of sizes and weight of grains which in some sands
may vary a few orders of magnitude i.e., in the range [0.075,
10] mm (Di Giuseppe et al., 2010) or in the range [2–2.8] mm
(Iaffaldano et al., 2006) or in urban drainage in the range
[0.4–500] lm (Maione and Moisello, 1993; Piro et al., 2007).

6. Conclusions

In order to model the diffusion of sediment in a one-dimen-
sional model of water reservoir, the Fourier diffusion equation is
modified with the introduction of a memory formalism repre-
sented by a derivative of fractional order. This model describes
the diffusion with two parameters instead of the classic one, i.e.,
the pseudo-diffusivity d and the order of fractional differentiation
m.

When adequate data on the diffusion of sediments in the reser-
voir is available, the model seems capable to represent the flux of
sediment occurring along the reservoirs. The parameter d is
increasing with increasing flux. It is also seen that m increases with
decreasing flux and, when m is nil, one obtains the classic diffusion
with maximum flux. The flux increases also with decreasing 1/c,
i.e., with the decay time of the sediment accumulation.

The knowledge of the two parameters, d and m, allows to de-
scribe the flux of sediment along the reservoir. This type of model
with two parameters could help in understanding better the evolu-
tion of the deposit of the sediment and implies a more detailed
description of the phenomenon of sediment deposit. It may also
throw some light on the differences between the various types of
water reservoirs and be of help in estimating the possible perfor-
mance of perspective reservoirs.

Fig. 3. Normalized yearly flux of sediment at x = 2.7 km for c = 0.1/yr and c = 0.6/yr,
m = 0.3 and d = 104 m2 yrm�1.

Fig. 4. Normalized yearly flux of sediment at x = 3 km, x = 300 m and x = 0 m, for
c = 0.1/yr, m = 0.3 and d = 104 m2 yrm�1.

Fig. 5. Normalized flux versus x at t = 20 yr, for c = 0.1/yr, m = 0.3 and
d = 104 m2 yrm�1.

Fig. 6. Normalized yearly flux of sediment at x = 2.7 km for c = 0.1/yr, c = 0,
d = 104 m2 yrm�1 and m = 0.3 compared to cases of distributed order fractional
derivatives.
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The model with the more general operator based on the frac-
tional derivative of distributed order, describing a variety of mem-
ory mechanisms, would be more adequate to deal with a non-
homogeneous sediment, having a distribution of sizes and weight
of grains which in some sands may vary a few orders of magnitude.

One practical use of the model is to reduce the cost of estimat-
ing the diffusion and accumulation of sediments by calculating
them instead of monitoring them with instruments. This process
can readily be made since the solutions are given with simple
closed-form formulae.

Acknowledgements

The inverse Fourier transforms have been computed with For-
tran. We thank Fabio Cavallini for cross-checking the calculations
with the software Mathematica.

Appendix A. List of symbols and dimensions

Mass of
sediment

M

t Time, T
x Distance from the origin, L
h Length of the reservoir, L
s LT variable, T�1

x Angular frequency, T�1

p(x, t) Concentration of sediment in the water, M L�3

P(x,s) LT of p(x, t)
q(x, t) Flux of sediment in the reservoir, M L�2 T�1

Q(x,s) LT of q(x, t)
k(h, t) Flux of sediment at the output of the

reservoir, M L�2 T�1

K(h,s) LT of k(h, t)
c L2 T�1

d L2 Tm�1

m Fractional order of differentiation
[a,b] Variation interval of m
a L�1

A, B M L�2 T�1

c T�1

� T�1

Appendix B. Calculation of the sediment flux

The Laplace domain solution of Eq. (7) is

Q ¼ Q 1 expðaxÞ þ Q2 expð�axÞ; aðsÞ

¼
ffiffi
s
p

c þ sb � sa

ln s
d

� ��1=2

: ð18Þ

Introducing the boundary conditions (1) in Eq. (18) and solving for
Q1 and Q2, we find

Q 1 ¼
KðsÞ � ðA=sÞ expð�ahÞ

2 sinhðahÞ and Q2

¼ ðA=sÞ expðahÞ � KðsÞ
2 sinhðahÞ ; ð19Þ

where K(s) is the LT of k(t) and LT (A) = A/s. We obtain

Qðx; sÞ ¼ KðsÞFðx; sÞ þ ðA=sÞFðh� x; sÞ; ð20Þ
where

Fðx; sÞ ¼ Fðx;aÞ ¼ sinhðaxÞ
sinhðahÞ : ð21Þ

It is readily verified in Eq. (20) that q(h, t) = k(t) and that q(0,t) = A.
Because a(s = 0) = 0, F(x,0) = x/h and F(x � h, 0) = x/h � 1. Then,
invoking the final value theorem, limt?1q(x, t) = lims?0s Q(s), we
obtain

qðx;1Þ ¼ A 1� x
h

� �
þ xkð1Þ

h
; ð22Þ

which is k(1) at x = h and A at x = 0.
In order to compute the time-domain solution, we perform a

numerical inverse Fourier transform. Hence, we take s = ix, where
i ¼

ffiffiffiffiffiffiffi
�1
p

and x is the angular frequency. Then, we use the fast Fou-
rier transform (FFT). To avoid numerical errors, such as ringing at
early times, the length of the FFT has to be chosen long enough
and the time sampling small. The solution is valid for times satis-
fying �t� 1.
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