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G. CASULA and J. M. CARCIONE

GENERALIZED MECHANICAL MODEL ANALOGIES OF LINEAR
VISCOELASTIC BEHAVIOUR

Ahstract: The description of wave propagation by a viscoelastic rheology allows [or the introduction of
two important phenomena: wave dissipation, i.e., the conversion of motion into heat, and velocity disper-
sion, the phenomenon in which two different Fourier components travel with different velocities, In this
work, we consider a mechanical representation of viscoelastic media, which in virtue of its simplicity con-
stitutes a useful tool to model the variety of dissipation mechanisms present in real media. Examples of
simulated wavefields in these types of media can be found, for instance, in the works of Carcione et al.
{1988 a,b), where the equations are based on the standard linear solid model, Here we unalyze in detail
the physical properties and capabilities of different mechanical models, and give some hints to obtain
realistic medels of attenuation and velocity dispersion; for example, the constant (f phenomenon and the
sel of relaxation peaks over a given frequency band.

INTRODUCTION

Anelasticity usually depends on a large number of physical mechanisms, which can he
modelled by different microstructural theories. A general way to include all these mechanisms
is 1o use a phenomenological model to describe the rheclogy of the medium. A model which
is consistent with the physical properties of real media is represented mechanically by the stan-
dard linear solid. A general linear viscoelastic solid can be obtained by considering several
standard linear mechanisms in parallel or in series. The resulting anelastic material is then
represented by the most linear relation between stress and strain. This paper treats in detail
the different mechanical representations of viscoelastic materials, analysing their capacity to
represent the behaviour of real anelastic media.

Viscoelastic behaviour is a time-dependent, mechanical non-instantaneous response of a
material body to variations of applied stress deformation. Because the response is not instanta-
necus, there is a time dependent function that characterizes the behaviour of the material. The
function contains the stress or strain history of the viscoelastic body. The strength of the depen-
dence is greater for events in the most recent past and diminishes as they become more remote
in time: it is said that the material has memory. In a linear viscoelastic material, the stress
is linearly related to the strain history until a given time. The strain arising from any increment
of the stress will add to the strain resulting from stresses previously created in the body. This
is expressed in mathematical form by Boltzmann’s superposition principle, which in 1-D space
is given by (e.g. Christensen, 1982)

o=y* ey
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Qr
e=x*0, (2)

where ¢ is the stress, € is the strain, and i and y are the relaxation and creep functions, re-
spectively. The symbol "#’ denotes time convolution and the dot above a functien represents
time differentiation. Applying properties of the convolution (e.g. Bracewell, 1965) and tran-
sforming eqgns. (1) and (2} to the frequency-domain yields

g=Ye (3)
and
e=Jo, (4)
where
te
Y (w)= f ¥ (1) e 'dt (5)
is the complex relaxation modulus, and
.
J (@)= f X () et (6)

is the complex creep compliance, where w is the angular frequency and t is the time variable.
Note that J {w) =Y (w). The anelastic effects are quantified by the quality factor and the phase
velocity dispersion. The quality factor is the peak potential energy density divided by the loss
energy density, and is given by (e.g., Ben-Menahem and Singh, 1981; Carcione et al., 1988b)

Re [Y (w) ]
Im [Y (w) ]’

where 'Re’ and "Im’ are the real and imaginary parts, respectively. The phase velocity for a
homogeneous viscoelastic plane wave is the angular frequency divided by the real wavenum-
ber (see Appendix A):

V, @=(Re [V (w) f]) S (w)=\/if"l : (8)

where V (w} is the complex velocity and g is the medium density.

Q fw)= ()

This paper is organized as follows: the first three sections describe the basic mechanical
models; Maxwell, Kelvin-Voigt and standard linear solid. We compute quality factor, phase
and group velocities and creep and relaxation functions which are the relevant experimental
indicators for wave and static problems, respectively.

Finally, in the last section, we analyse the general standard linear solid for obtaining a
set of relaxation mechanisms and constant () behaviour.

MECHANICAL MODELS OF VISCOELASTIC BEHAVIOUR

The objective is to obtain a consitutive relation which ean explain, for instance, the typical
relaxation spectrum and creep function shown in Figs. 1 and 2, respectively. Many peaks are



LINEAR VISCOELASTIC BEHAVIOUR

237

H ! ! 1 [
] i I \
. 1 l !
| ’u '
-2 |
‘0 . .
-
=
-
e :
Y
: g < e =
2 E i E g 5
@ e 2 H =
5 a 2 2 2 5
=} c c [ w
2] ‘5 a - -
- 2 o ] o o
=} o - = el E
£ - = ©
H 1 E ] b >
« £ = £ g =
= . - 2 a
e N £
\J\ =
=
b3
)
S
E
I S O NN
-IR -19 -8 .8 -4 .
10 10 10 1o 10 1ot ( 10° i0*
Frequency ——=
Fig. 1 — A typical relaxation spectrum (Zener, 1948).
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Maxwell Model

Fig. 3 — Mechanical model for a Maxwell substance. The force on both elements is the same but the elongation
{struin} is dilferent.

seen in the internal friction versus frequency curve, each of which can be attributed to a diffe-
rent relaxation process. Complex modulus, quality factor, phase and group velocilies, relaxa-
tion and creep functions are analysed for the Maxwell, Kelvin-Voigt, standard linear solid and
general standard linear solid models.

The Maxwell model was introduced by Maxwell (1868) when discussing the nature of vi-
scosity in gases. Meyer (1878} and Voigt (1892) obtained the so called Voight constitutive re-
lation by generalizing the equations of the classical elasticity theory. The mechanical model
representation of the Voigt solid (the Kelvin-Voigt model) was obtained by Thomson {1875).

Maxwell model

To construct a mechanical model analogue, two types of basic element are required: weightless
springs (no inertial effects are present), which represent the elastic solid, and dashpots consi-
sting of loosely fitting pistons in eylinders filled with a viscous fluid. The simplest series combi-

Maxwell

a
Q

Fig. 4 — Dissipation factor of the Muxwell model. The system acts as & low-pass filter sinee high frequency modes
dissipate completely.
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Fig. 5— Phase and-group velocities of the Maxwell medel. The elastic velocily is obtained at the high frequency
limit. At the Jow frequency limit there is no propagation.

nation of these two elements which represents viscoelastic behavior is the Maxwell model depicted
in Fig. 3. A given stress ¢ applied to the model produces a deformation € ; on the spring and
a deformation €, on the dashpot. The stress-strain relation in the spring is o=Me | , where
M is the elastic modulus, and g=7é » in the dashpot, with 7 the viscosity. Assuming that the
total elongation of the system is e=€ ;+¢€ 2 , the constitutive relation of the Maxwell element s
g 9 =-E.. (9)

M Vi

Performing the time Fourier transform of eqn. (9), we obtain the stress-strain relation in the
frequency domain:

-~ 23] -
o= —'—”",_E, ’ o
{7 —7)
Maxwell

X 4

Fig. 6— The treep function of the Maxwell model resembles the creep function of a viscous fluid,
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Fig. 7 — Relaxation function of the Maxwell model. The syslem does not present an asymptotical residual stress
as in the case of real solids.

where 7)=7/M is a relaxation time. Using the correspendence principle (Flugge, 1960), the
complex modulus is identified as

Y ()= —2— (11)
Wi g—!
The spatial quality factor {7) is then
Q (w=wr, . (12)

Fig. 4 shows the dissipation factor () as a function of frequency. The phase velocity, repre-
sented in Fig. 5, is obtained by inserliri% the complex modulus (11} into eqn. (8). When w—0,
V,—0, and w— oo, then V,—~ (M/p) 2 the elastic velocity, assuming that only the spring
is considered. This implies that a wave in a Maxwell material travels slower than a wave in
an elastic material (provided that the elastic case is the low frequency limit}. The group veloci-
ty, or velocity of the wave packet, is given by (Appendix A)

1 o

a

Kelvin-Vaigt Model

Fig. 8 — Mechanical model for a Kelvin-Voigt substance. The strain is the same but the forces are different.
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Kelvin-Voigt
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Fig. 9 .. Dissipation factor of the Kelvin-Yoigl model. The system acts as a high pass filler since low [requency
modes dissipate completely.

w Y@ ||],

_ a e
Vefwl=|Re | V (w) 1 P Y @)

, (13)

where the prime denotes the derivative with respect to w. This equation is actually general,
provided that the appropriate complex velocity V and complex modulus Y are used. From the
Figures, it can be seen that group and phase velocity coincide at the low and high frequency
limits (elastic behaviour).

A constant state of stress instantanecusly produced in a previously relaxed specimen with
the resulting increasing strain being monitored as a function of the time and following the crea-

Kelvin-Voigt

Vv - Vg

Vp /

Vi/p -

Iig. 10 — Phase and group velocitics of the Kelvin-Vaigl maclel. The elastic veloeity is obtained at the Jow {requency
limit. High frequencies propagate with infinite velocity.



242 CASULA and CARCIONE
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Fig. 11 — The creep function of the Kelvin-Voigt solid lacks the instantanevus response of real solids.

tion of the stressed state describes the creep experiment. The resulting time {unction is called
the creep function. Let us perform the creep experiment on the Maxwell solid. Suppose a unit
stress is suddenly applied at t=0; the solution of eqn. (9) corresponding to this condition is
the creep function

1 t
x (b= "; (1+ Y ) H (1), {14)

where H (t) is the step function. Alternatively, the stress relaxation experiment consisls of a
rapidly imposed fixed strain in a previously relaxed specimen. The resulting stress is followed
as a [unction of time for the duration of the applied strain. The experiment gives the relaxation

function. Suppose a unit strain is suddenly applied at t=0; the resulting relaxation function
solution of eqn. (9) is

Kelvin-Voigt

Fig. 12 — The relaxation [unction of the Kedvin-Yoigl model presents an almaost elastic behaviour.
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¢ (=Me""0 H (1), {15)

The creep and relaxation functions of the Maxwell solid are depicted in Figs. 6 and 7,
respectively. As can be seen, the creep function is not representative of the real creep beha-
viour in real solids, but resembles the creep function of a viscous fluid. In the relaxation expe-
riment, at 1=0 both elements experience the same force, and because it is not possible lo have
an instantaneous deformation in the dashpot, the extention is nitially in the spring. Then, the
dashpot extends and the spring contracts, such that the total elongation remains constant. At
the end of the process, the force in the spring relaxes completely and the relaxation function
does not represent an asymptolical residual stress, as in the case of real solids. In conclusion,
the Maxwell model appears more appropriate for representing a viscoelastic fluid.

Kelvin-Yoigt model

A viscoelastic system commonly used to describe anelastic effects is the Kelvin-Voigt mo-
del, which consists of a spring and a dashpot connected in parallel (Fig. 8). The total stress
is composed of an elaslic stress & ;= Me, and a viscous stress ¢ 2=7¢, where ¢ is the total strain
of the system, The constitutive relation becomes

a=Me+5¢. (16)
The Fourier transform of (16} vields
G=M (1 +iwry) e (17)
The complex modulus of the Kelvin-Voigt model is then
Y (wh=M (1+iwry) . (18)

and the spatial quality factor is

0 {w)={wry ™. (19)

Comparing eqn. {12) with {19) shows that the quality factors of the Kelvin-Voigt and Max-
well models are reciprocal functions. The dissipation factor of the Kelvin-Voigt solid is displayed
in Fig. 9. The Kelvin-Voigt solid can be used to approximate the left slope of a real relaxation peak.

As with the Maxwell model, the phase velocity is computed by introducting the complex
modulus {18) into eqn. (8). It can be seen that the phase velocity V.~ (M/p) ¥ for w—0,
and V= when w— o, which implies that a wave in a Kelvin-Voigt model travels {aster than
a wave in an elastic material (see Fig. 10). The group velocity can be computed from eqn.
{13). Both phase and group velocities are represented in Iig. 10.

The creep and relaxation experiments on the Kelvin-Voigt solid yield the {ollowing creep
and relaxation functions:

_ L -t/ |
X (th= T; (1-e770), (20)
and
¥ ()=MH ()+45 (1), 21

where & {1} is the delta function. The two functions are represented in Figs. 11 and 12, respec-
tively. The relaxation function does not show any time dependence. This is the case of purely
elastic solids. The delta function implies that in practice it is impossible to impose an instanta-
neous strain on the Kelvin-Voigt solid. In the creep experiment, initially the dashpot extends
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Standard Linear Solid Model

Fig. 13 — Standard linear solid mechanical model.

and begins to transfer the stress to the spring, and at the end, the entire stress is on the spring.

The creep function does nol present an instantaneous strain at ¢ =0 because the dashpot cannot
move instantaneously. This is not the case of real solids.

Standard linear solid model

A series combination of a spring and a Kelvin-Voigt model gives a more realistic represen-
tation of viscoelastic materials. The resulting system is called standard linear solid and is repre-
sented in Fig. 13. The quantities k , and k , are the elastic constants of the springs. After some
calculation, the constitutive relation can be expressed as

O+7 =M ple+7 6), (22)
where
kik s
M= — i 23
Bk tky (23)

Standard Linear Solid

X log G}
W=7y

Fig. 14 « The dissipation factor of the standard linear solid represents typical relaxation peaks in solids.



LINEAR VISCOELASTIC BEHAVIOUR 245

Standard Linear Solid
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Fig. 15 — Phase and group velocities of the standard linear solid. The limits are the relaxed velocity at low [requencies
und the unrelaxed velocity at high frequencies.

is the relaxed modulus, and 7, and 7, are the relaxation times given by

-7
ki+ko

T,=

7
’ = . 24
7 ks (24)

As in the previous models, the complex modulus is obtained from eqn. (22) by performing
a Fourier transform. It yields

1 +iwr,

Y (w)=M (25)

I Fiwr

The spatial quality factor is given by

Standard Linear Solid

Fig. 16  The creep function of the standard linear solid model presents an instantaneous response and a finite
asymptotie value as in real solids,
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Standard Linear Solid

Fig. 17 The relaxation funetion of the standard linear solid presents an instantaneous unrelaxed stale, and at
the end of the process the system has relaxed completely to the relaxed modulus Mp.

2
lbyw™r,7,

Q (w)= (26)

W (7 T,

The dissipation factor of the standard linear solid is displayed in Fig. 14. The standard
"linear solid presents a single relaxation peak al w ,=1/7 ., and therefore, is a suitable model
to represent relaxation mechanisms such as those of Fig. 1. Processes such as grain boundary
relaxation have to be explained by a distribution of relaxation peaks. This behaviour is obtai-
ned by considering several standard linear elements in series or in parallel, a system which
is described in the next section. The phase velocity is plotted in Fig. 15 together with the grou
velocity. The phase velocity variation with frequency ranges from the elastic velocity (M g/p) ',
also called the relaxed velocity, as w =0, to the unrelaxed velocity (M (/o) " at w=o0, where

o
o, T a, I oy
k1 2P kg
Mp(1-L) £
& ] ]
s b kar 1, Kap n ko
o

General Standard Linear Solid (Liu er al.)

Fig. 18 — Liu ¢t al.’s mechanical model has a spring with negalive constant of value Mp (1—L}, where L is the
number of standard linear solid elements.
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General Standard Linear Solid (1)

Fig. 19 — General standard linear solid model composed of L single elements connected in parallel. The same strain
acls on each element.

My=M, —=< @7)
. .

[:2

is the unrelaxed modulus. The meaning of relaxed and unrelaxed moduli becomes clear in
the explanation of the creep and relaxation functions. If a constant unit stress is suddenly ap-
plied at t=0, the solution of eqn. (22) gives the following creep function:

L _T_ﬂ —l/rf
v ()= v 1w(1* TE )e H (1. (28)

&

A

L% kas Ear

General Standard Linear Solid Model (2)

Fig. 20 — General standard linear solid model composed of L single elements connected in series. The same siress
acts on each clement.
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The solution for unit stress is obtained using the symmetry of the stress-strain relation {22).
Exchangmg the roles of 7, and 7, and substltumg M3 for M pin eqn. (28), the relaxation
function is

Y =M i 1-{1- 2= Jo "elH (. (29)

74

The creep and relaxation functions are represented in Flgs 16 and 17, respectwely In the
creep experiment, there is an istantaneous initial value ¥ (@ *}=M / =k ', and an asymptotic
strain y (co)j=M RI determined solely by the spring constants. After the first initial displace-
ment, the force across the dashpot is gradually relaxed by deformation therein, resulting in
a gradual increase in the observed overall deformation; finally, the asymptotic value is rea-
ched. Similarly, the relaxation function presents an instantaneous unrelaxed state of magnitude
My, and at the end of the process the system has relaxed completely to the relaxed modulus
M 5. Such a system, therefore, manifests the general features of the experimental creep func-
tion illustrated in Fig. 2.

Generalized standard linear solid model

As stated before, some processes, as for example grain boundary relaxation, have a dissi-
pation factor which is much broader than a single relaxation curve. It seems natural to try to
explain this broadening with a distribution of relaxation mechanisms. This appreach was intro-
duced by Liu et al. (1976) in an atiempt to oblain a nearly constant quality factor over the
seismic frequency range. Their model is represented in Fig. 18, where the first spring in paral-
lel has negative constant. We consider the parallel and series systems represented in Figs. 19
and 20, respectively, with L the number of single standard linear elements. For the first sy-
stem, the slress-strain relation for each single mechanism is

01470 =My (47 ,6), (30
Where the relaxed moduli M p; are given by

k ik o '
=" I=1..,L 31
M ktky 31

and the relaxation times by

71 71

Ta= Ta=
Tokytky T T ky

I=1,..L. (32)

L

The total stress acting on the system is o= X o ; therefore the stress-strain relation in the
1=1

frequency domain is

L L
Iatwr,
G- L Y (i@ L My——d i, (33)
I=1 i=1 1 Fiwr

where expression (25) for a single complex modulus Y, has been used. Defining M 5 = M /L,
#=1,....L, the complex modulus of the system is

Y (w) 1 g L Hir (34)
w)=
L =1 I+iwr,
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As before, quality factor and velocities are computed by using eqns. (7}, (8) and (13). The
relaxation functon is easily oblained from the time-domain constitutive equation

L L '
ct)= L o= L viwrew. 35)
Hence,
L I L
Y= X g m=My | 1—— X | 1= | H ). (36)
I=1 Lo 1=1 7ql

On the other hand, for the series connection (i.e., Fig. 20), the calculation of the creep com-
pliance modubus is straightforward since

i
£ (w)= Z‘ S o= 2 — ——2L ;5 (), (37)

I=t My 1+iwr,

where the property J;= Y7 has been used. If we assume that Mp=MgL, the creep modulus is

L -
1 1 +iwr,

= 38
I ) Mgl =1 1+iwr, (58)
whose creep function is
TR
7l —
t 1—— L | 1= e | H . 39
xO= 3| 1= & | 1= e (39)

Applying the same calculation to Liu et al.’s model yields the following complex relaxation mo-
dulus and relaxaton funetion:

L
I +i1wr,
- Y

Y () =My =1 I +iwry;

and

L
¢ (t)=MR - IZ‘ (l_i ) e—:/raf H ([) (41)
=1 7ol

The complex moduli (34), (38) and (40) have branch points in the upper half of the w-plane
{considering w as a complex variable) at

i i
W= v Waps . ]=1, veuy L. (42)
Tl el

Consequently Y (w} is an analytic function in the lower w-plane. Thus, the system’s impulse
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General Standard Linear Solid (1)
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Fig. 21 — A constam-(} model can be constructed with a parallel connection of standard linear solid elements. In

this case (13 1, the system is composed of L eelasation peaks of maximum value Q7 each, and equally
distributed in the log (w) scale. The algorithm is outlined in Appendix B,

response is real and causal, and therefore the Kramers-Kroning dispersion relations are valid.
This is also a consequence of the causality principle which is inherent in Boltzmann’s superpo-
sition prineiple {Ben-Mennhem and Singh, 1981). Fig. 21 displays the dissipation factor of
the system represented in Fig. 19. The procedure to obiain an almost constant value ¢~/ in
the frequency band of interest is outlined in Appendix B. In particular, this curve is composed
of 12 single mechanisms each with maximum dissipation factor (7 '. The velocities are repre-
sented in Fig. 22. They range from the low frequency value (M / ¢)' 10 the high frequency
value (My / @}'?, where the unrelaxed mudulus is

General Standard Linear Solid { I'}

‘/

VMy/p

VMp/p |

fog QW

ig. 22 — Phase and group velecities of the general standard linear solid {or the constant-{} model.
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Fig. 93 — Relasstion function of the general standard linear solid composed ol L elements connected in paralle]
(constant-Q) model).
L
- 1 Tel .
My=Mp| 1— =~ X | 1—— (43)
L f=t 7ol
The relaxation function of system 1, [or an almost constant quality factor, is shown in Fig. 23.
3

¢. 24 represents the creep function for system 2, where
—1
L
] ™t Ta A
My=M, | 1— L+ - (4d)

L
General Standard Linear Solid (2)

M,

Creep [unction of the general standard lineur solid composed of L clements connected in series (constant-
Q model), The curve is very similar o the experimentsl creep [unclion shown in Fig. 2.
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Fig. 25 — The experimental relaxation spectrum of Fig. 1 is reproduced here by using the relaxation times of Table

L. The mechanical model is that represented in Fig, 19. Grain boundary relaxation, for instance, requires
several mechanisms.

Table — Relaxation times defining the relaxation speetrnm of Fig. 25.

Reloxntion times
(scconds)
rq 7al
Pairs of Solute Atoms 3.199x10%!! 3.167x10""
Groin Boundary 1.624x10* 7 1.560x 10" *
g.138x10" ® 7.819x10% 4
4.079x10% B 3.919x10% ¢
2.044x10" 8 1.964x10" &
rozsxiot @ 9.843x 10" 7
5.135x10% 7 4.933x10% 7
2.573x10% 7 2473x10" 7
1.200x10% 7 L.239x10% 7
6.464x10% © 6.211x10% ®
3.240x10" © 3.113x10" °
Twin Boundaries 1.597x10% # 1.586xt0" ¢
Interstitial Solute Atams 3.199 3.167
Transverse Thermal Currents 3.188x10™ * 3.178x10~ *
Intererystalline Thermal Currents 6.368x10~ ' 6.365%10 7
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A set of elements gives a more realistic behaviour of the creep function, as can be seen by
comparison with the experimental curve shown in Fig. 2. The experimental relaxation spec-
trum of Tig. 1 is modelled by the relaxation times listed in the Table. The relaxation times
of single peaks can be computed from eqns. B.5 and B.6, {rom the frequency location at the
peak w, and the maximum value Q5. Broad peaks involve several mechanisms and can be
computed in the same way as the constant (J-model. The relaxation spectrum, defined by the
relaxation times of the Table, is represented in Fig. 25,

CONCLUSIONS

Most of the properties analysed here can be found scattered through many books and articles.
In this work, however, we have collected the main features of viscoelastic models related to
wave propagation; properties which are associated with the quality factor and phase and group
velocities. The anelastic characteristics of a real medium can be deseribed appropriately by
a parallel or series connection of standard linear elements. From the location and maximum
value of the experimental relaxation peaks as a function of frequency, it is a simple task to
compute the associated relaxation times, and build in this way the relaxation spectrum. Simi-
larly, the constant Q) model (Q# 1) can be easily computed with a simple formula without re-
quiring the use of curve fitting techniques. The article also attempts to be a didactic guide for
those who wish to introduce anelastic effects into the wave equation.
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APPENDIX A
Complex, phuse and group velocities

From the eorrespondence principle (Flugge, 1960}, and from the siress-strain relation (3), one can identify a com-
plex velocly as

Hence, the complex wavenamber is

[
k=— . A2
v (A.2)

The real wavenumber x =Re (k) can be expressed in terms of the complex velocity as

x=w Re [V] . (A.3)

The phase velocity is the frequency divided by the real wavenumber:

V=i=(ﬂe

i
P

V! ] ) -, (A.4)

and the group velocity, i.e. the velocity of the wave packet is given by

V= des =( dx

—I_ v -
& dx dw ) Re (e2)

(A.3)

where the prime denotes derivative with respet to w.
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APPENDIX B

Constant Q mode! for low-loss solids

The standard lincar solid quality [actor for a single mechanism eqn. (26) can be rewrilten as

1+’ TH .
Q=0 —3 (B.1)
“W T
where
27'()
Qo= (B.2)
Te— 7y

is the minimum value sccurring at 7q = (7, T2, Let us assume that Qg and 7y are known. as is the case of the
experimental enrve in Fig. 1. Then, itis a simple fask to get the relaxation tmes from the [olowing two equations:

27y

Qo="—"— (B.3)

=T Ty - (B.4)

This gives a sccond-order equation for the relaxation times whose solutions are

7= —g’— [ VOR+1+1 l , (B.5)

4]

ry= 2 [»@;—1 |- (B.6)

Qo

Now. the problem is Lo find a set of relaxation times 7 and 7y f=1, ... L which gives an almosl constant guatity
fuctor 0 in a given frequency band centered al &g, = Tgun - the location of the middle mechanism, which is m=L2+1,
I odd. Single relaxation peaks should be taken equidistant in a log (@) scale. The quality facter for the system shown
in Fig. 19 is

s i
Q= Im [Y (@)] =Re E Vifw || Im ~ Y {w) , (B.7)

where Y| is the complex modulus for cach single element. Sinee Qy=Re [¥))/m (Y] is the quaelity factor for vach
mechenism, eqn. (B.T) beeomes

L
L0 m [V, (w)

L
é;hnnqmy

Substituting the value of () given by {(B.1) into {B.B) yields
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L . L
0=00 L | 0 ey | Z ot gy | (B.9)

T=1 2&?7'”', I=1

where Q= (Jg has been assumed. We choose the values of 75, I=1, ..., 0 such that they are regularly distributed
in the frequency band of interest. If we find 0 which gives a value of 0 al w, the resulting general curve will
have an almost constant quality facter {). The relaxation times of this curve are computed from Qg and 7 by using
eqns. {B.5) and (B.6). We note that for a single mechanism,

W (7q—7,) 2wy
Im fY, (= o T (B.10)
i el 1+a” 75 Qy (1+e° 75
by virtue of eqn. (B.3). For low-loss solids, 1, =7p , and (B.10} becomes
.2(1!7'01
Im [Y, fw)f= ——70l (B.11)
% b Qo (1+w” 75
Substituting {B.11) inte eqn. (B.9) gives
S2
Wi —1I
=Q,L| & —_— . B.12
0=Co I=1 I+ 7y ( )
As pointed out before, we take (0 (wom)=a; thus
0 y_2
(42} 7
Q=+ L —m_ (B.13)
L I=1 1 +Won To!

gives an almost constant quality factor .



