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S U M M A R Y  
This work presents a new constitutive law for linear viscoelastic and anisotropic 
media, to model rock behaviour and its effects on wave propagation. In areas with 
high dissipation properties (e.g. hydrocarbon reservoirs), the interpretation of 
seismic data based on the isotropic and purely elastic assumption might lead to 
misinterpretations or, even worse, to overlooking useful information. Thus, a 
proper description of wave propagation requires a rheology which accounts for the 
anisotropic and anelastic behaviour of rocks. The present model is based on the 
following mechanical interpretation; each eigenvector (eigenstrain) of the stiffness 
tensor of an anisotropic solid defines a fundamental deformation state of the 
medium. The six eigenvalues (eigenstiffnesses) represent the genuine elastic 
parameters. Since they are independent of the reference system, they have an 
intrinsic physical content. From this fact and the correspondence principle we infer 
that in a real medium the rheological properties depend essentially on six relaxation 
functions, which are the generalization of the eigenstiffnesses to the viscoelastic 
case. The existence of six or less complex moduli depends on the symmetry class of 
the medium. We probe the new stress-strain relation with homogeneous viscoelastic 
plane waves, and give expressions for the slowness, attenuation, phase velocity, 
energy velocity (wavefront) and quality factor of the different wave modes. 
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INTRODUCTION 

Modelling rock rheology and its effects on wave propagation 
has many important applications, mainly in mining and 
petroleum engineering, exploration geophysics, earthquake 
seismology, etc. For instance, in exploration geophysics, 
enhanced reservoir characterization requires a suitable 
constitutive equation that accounts for the effects of 
anisotropy and anelasticity on seismic wave propagation. 
The relevance of viscoelastic effects in seismic wave 
propagation is well documented (e.g. BourbiC, Coussy & 
Zinszner 1987) and the corresponding dissipation mechan- 
isms are mostly known. These effects can be indicators of 
possible hydrocarbon accumulations: energy dissipation is 
enhanced in fluid-filled cracked limestones and porous 
sandstones; moreover, fractured formations and fine 
layering may show effective anisotropy. 

The model introduced here is based on an idea that dates 
back to Lord Kelvin. As he wrote in his early papers on 
elasticity (Thomson 1856, 1878): ‘a single system of six 
mutually orthogonal types (strains) may be determined for 

any homogeneous elastic solid, so that its potential energy 
when homogeneously strained in any way is expressed by the 
sum of the products of the squares of the components of the 
strain, according to those types, respectively multiplied by six 
determinate coefficients. The six strain-types thus determined 
are called the Six Principal Strain-types of the body’. A few 
paragraphs later he refers to the coefficients as the ‘six 
Principal Elasticities of the body’. The equations of 
equilibrium imply that: ‘ I f  a body be strained to any of its six 
Principal Types, the stress required to hold it so is directly 
concurrent with (proportional to) the strain’. These concepts 
were reinterpreted by Pipkin (1976), Walpole (1984) and 
recently by Mehrabadi & Cowin (1990) by using fourth-rank 
and second-rank tensor algebra, respectively. The Six 
Principal Strains in which any arbitrary strain can be 
decomposed are the eigenvectors of the elasticity tensor in 
6-D space, or the eigenstrains when working in 3-D space. 
The Six Principal Elasticities are the eigenvalues of the 
second-rank elasticity tensor; they are referred to here as 
the eigenstiffnesses after Helbig (1993), who recently 
investigated the relation between the eigensystems and the 
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material symmetry, and identified the wave-compatible 
isochoric (deformation without change of volume) 
eigenstrains. 

The additive decomposition of the total strain energy into 
a sum of six or fewer terms represents energy modes which 
are not interactive with each other. These modes, together 
with their eigenstiffnesses, determine the complete set of 
fundamental deformations of a material body, including 
those compatible with wave propagation. The effective 
stiffness of an arbitrary strain compatible with wave 
propagation can be expressed as a linear combination of the 
eigenstiffnesses, an expansion that seems to take a simple 
form along longitudinal (pure mode) directions. This 
decomposition implies that of the 21 parameters of the 
elasticity tensor, six are genuine stiffnesses describing the 
properties of the medium, and the other 15 are geometrical 
parameters required to define the shape and orientation of 
the eigenstrains in 6-D space. 

The correspondence principle allows the application of 
this approach in the framework of viscoelastic media. 
Generalizing the real eigenstiffnesses to complex and 
frequency-dependent moduli, we obtain a constitutive 
model able to describe viscoelastic behaviour. There is 
freedom in the choice of the frequency dependence of the 
eigenstiffnesses, so one can accommodate several dissipation 
peaks in the quality factor. Moreover, the particular 
symmetry determines the directional anelastic properties of 
the medium. 

The conventions in the next sections are that ‘tr’ takes the 
trace of a 3 x 3 matrix, 9 and 9 take the real and imaginary 
parts, respectively, ‘diag’ denotes a diagonal matrix, and the 
superscript ’*’ indicates complex conjugate. 

HOOKE’S LAW IN TENSORIAL FORM 

By the generalized Hooke’s law, it is assumed that stress u 
and strain E are linearly related by a symmetric stiffness 
operator c.  In other words, there exists a symmetric linear 
operator 

c: L,(R3)+ L,(R3): E+  u = c[E] ,  (1) 

where L3(V)  is the subspace of symmetric linear maps over 
V. 

The second-rank Cartesian tensor formulation of Hooke’s 
law in six dimensions is introduced by Mehrabadi & Cowin 
(1990). If the Cartesian base vectors in three dimensions are 
denoted by e, (i = 1 ,  2, 3) and those in six dimensions by 2, 
(I = 1, . . . , 6), the canonical basis in L,(R’) is given by the 
following set of tensors: 

2, = e l  63 e l ,  g4 = a(e2 C3 e3 + e3 C3 e,), 

G2 = e2 63 e,, 2, = a(el 63 e3 + e3 C3 el), 
Z3 = e3 C3 e3, 2, = a(el 63 e2 + e2 C3 el) .  

where 63 denotes the tensor product (Gurtin 1981) and 
(Y = l / ~ .  This is an orthonormal basis namely 27 - ZJ = a,, 
where the dot denotes ordinary matrix multiplication, and T 
indicates transpose. Hence, the symmetric stiffness operator 
may be expanded as 

(2) 

6 

c = CIJ2, C3 Z J ,  where C,J = 2; - c[gJ]. ( 3 )  
I , J = I  

Explicitly, Hooke’s law in the second-rank tensor notation 
reads 

where cIJ are the elasticities in the Voigt bases (Auld 1990). 
These are defined as follows: the Voigt stress basis has the 
form of eq. (2) with (Y = 1, and the Voigt strain basis has the 
same form but with (Y = 1/2. However, the convention will 
be to use the symbol * over the elasticity matrix, and stress 
and strain vectors when these quantities are expressed in the 
tensorial basis. It is convenient to express eq. (4) in compact 
notation as 

p=i..i. ( 5 )  

Actually, the interpretation of stress and strain as vectors is 
not physically essential but simplifies the mathematical 
treatment of the problem. Indeed, in this way the elasticity 
tensor i. has order two instead of four and hence may be 
considered as a matrix: its eigenvalues and eigenvectors are 
then well defined. 

EIGENSTIFFNESSES A N D  EIGENSTRAINS 
IN ELASTIC MEDIA 

The Six Orthogonal Strain Types and the Six Principal 
Elasticities referred to by Lord Kelvin can be found by 
seeking those strain states u for which E and (J are parallel in 
6-D Cartesian space, i.e. 

u = C [ E ]  = AE, (6) 

where A is a scalar quantity. This is mathematically 
equivalent to diagonalizing the stiffness matrix C: 

(C - 121) 8 = O ,  (7) 

where 1 is the 6 X 6 identity matrix. Hence, the 
eigenstiffnesses and eigenstrains are the eigenvalues and 
eigenvectors of %, respectively. 

The diagonal matrix of the eigenstiffnesses, taken with 
their multiplicity, can be expressed as 

A = A * e * AT, (8) 
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where A is the matrix formed with the eigenstrains, or more 
precisely, with the columns of the right (orthonormal) 
eigenvectors of 6 (note that the symmetry of implies that 
A-' =AT). Then, 

e = ~ ~ .  A - A .  (9) 

The fact that the eigenvalues of the elasticity matrix are 
invariant with respect to any base and coordinate system 
confers to the eigenstiffnesses an intrinsic character. To 
illustrate the utility of the decomposition eq. (9) we consider 
briefly the isotropic and transversely isotropic cases. 

Isotropic media 

An isotropic medium is characterized by a stiffness operator 
c defined by 

C[E] = 2 p ~  + A(tr &)I, i.e. c = 2p1 + A l  C3 I, (10) 

where A and p are the Lam6 constants, and I is the identity 
map in R3. The characteristic equation for the stiffness 
operator is then 

2 p ~  + (tr &)I = AE. (11) 

Taking the trace of this equation, we se'e that a strain with 
non-zero trace is an eigenstrain if and only if it is 
proportional to I, and the corresponding eigenvalue is then 
A1 = 2p + 31, with multiplicity 1. Moreover, all non-zero 
strains with zero trace are eigenstrains corresponding to the 
eigenstiffness A = 2p, with multiplicity 5. No other 
eigenstiffnesses or eigenstrains are possible. It is clear that 
eigenstrains and eigenstresses are related by 

tr u = A,(tr E ) ,  

an8 (12) 

G=A12, 1 = 2  , . . . ,  6, 

where the tilde denotes the deviatoric tensors. Then, in 
unbounded and homogeneous isotropic media, the total 
stress can be decomposed into pure dilatational and shear 
stresses, and they produce pure deformations which are not 
interactive with each other. 

Transversely isotropic media 

In this case the eigenstiffnesses are the eigenvalues of the 
matrix 

l o  0 0 0 2c4, 0 I LO o o o o c l l  -cI2J 

Moreover, if ( E l , .  . . , E,) is an eigenvector of the e matrix, 
then C EiC1 is an eigenstrain, and conversely. The 

eigenvalues of the e matrix are the following: 

121 = 2c44 with multiplicity 2 
with multiplicity 2 

A3 = ;(cl1 + c12 + cj3 - @) with multiplicity 1 ( 14) 
A2 = c11- c12 

I\ -1 - 2 ( ~ 1 1  + cI2 + cj3 + lk) with multiplicity 1 

where 

E = c : ,  + c ~ , + c ~ ~ + ~ c ~ ~ + ~ c ~ ~ c ~ ~ - ~ c ~ ~ c ~ ~ - ~ c ~ ~ c ~ ~ .  (15) 

The eigenspace associated with the first eigenvalue is 
spanned by 

(O,O,O,l,O,O)T and (O,O,O,O,l,O)T, (16) 

which represent isochoric modes. Likewise, the eigenspace 
associated with the second eigenvalue is spanned by 

( O , O , O , O , O , l ) T  and (-l,l,O,O,O,O)T, (17) 

and also these eigenvectors represent isochoric modes. The 
eigenspace associated with the third eigenvalue is spanned 
by 

which can be interpreted as a quasi-isochoric mode since in 
the isotropic limit it corresponds to an isochoric eigenstrain. 
The eigenspace associated with the fourth eigenvalue is 
spanned by 

T 

(1, 1,- 2c13 , o ,  0,o) , (19) 
124 - ~ 3 3  

which can be interpreted as a quasi-dilatational mode since 
in the isotropic limit it corresponds to the dilatation 
eigenstrain. 

The eigenstiffnesses and eigenstrains of materials of 
lower symmetry are given by Mehrabadi & Cowin (1990). 
The eigentensors may be represented as 3 X 3 symmetric 
matrices in 3-D space; in that 'case their eigenvalues are 
invariant under rotations and describe the magnitude of the 
deformation. On the other hand, their eigenvectors describe 
the orientation of the eigentensor in a given coordinate 
system. For instance, pure volume dilatations correspond to 
eigenstrains with three equal eigenvalues (e.g. eq. (19) in 
the isotropic limit), and the trace of an isochoric eigenstrain 
is zero (e.g. eq. (18) in the isotropic limit). Isochoric strains 
with two equal eigenvalues but opposite sign and a third 
eigenvalue zero are plane shear tensors (e.g. in the second 
of eqs (17)). To summarize, the eigentensors identify 
preferred modes of deformation associated with the 
particular symmetry of the material. An illustrative pictorial 
representation of these modes or eigenstrains was designed 
by Helbig (1993). 

THE VISCOELASTIC CONSTITUTIVE LAW 

The *above discussion of the elastic case leads us to create a 
model in which six relaxation functions together with the 
eigenstrains describe the deformation and anelastic pro- 
perties of an anisotropic and viscoelastic medium. These six 
or less relaxation functions (complex moduli in the 
frequency domain) are the generalization of the 
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eigenstiffnesses, by using the correspondence principle 
(Ben-Menahem & Singh 1981), to appropriate complex 
moduli satisfying the Kramers-Kronig dispersion relations 
(causality principle). The existence of six or less complex 
eigenstiffnesses depends on the symmetry class of the 
medium. 

Hence, in virtue of the correspondence principle and its 
application to eq. (9), we introduce the viscoelastic stiffness 
tensor 

@(o) = AT * AtU)(w) * A, (20) 

where w is the angular frequency, and A(u) is a diagonal 
matrix with entries 

AP' = AIM,(w), I = 1, . . . ,6. (21) 
The quantities MI are complex and frequency-dependent 
dimensionless moduli. Alternatively, the viscoelastic 
stiffness tensor may be expressed as 

@ ( w )  = i? - AT - diag [M,(w) ,  . . . , M6(w)] - A. 

It can be easily shown that the viscoelastic stiffness tensor is 
symmetric, in agreement with the result obtained by Gurtin 
& Hrusa (1991). Moreover, from definition (20) it follows 
that the eigenvectors of @ and C coincide, indicating that 
both the elastic and the viscoelastic rheologies possess the 
same eigenstrains. Each complex eigenstiffness A$") defines 
a fundamental deformation state of the solid, associated 
with a set of dissipation mechanisms. 

The six relaxation functions are the inverse time Fourier 
transform of the complex eigenstiffnesses divided by iw 

Therefore, the viscoelastic stress-strain relation is given by 

where * denotes time convolution, and from eq. (20) the 
relaxation tensor is 

@ ( t )  = AT - diag [V,(t), . . . , v6(t)] A. 

We note that the behaviour of the material is elastic at both 
the low- and high-frequency limits. However, for dynamics 
problems (wave propagation) the elasticity matrix e 
corresponds to the unrelaxed'viscoelastic matrix (Herrera & 
Gurtin 1965), i.e. 

Y(t =0+) = @(w =a) = e .  (26) 
This implies that the complex moduli and relaxation 
functions must satisfy 

MI(w = 03) = 1 and ~ ~ ( 0 ' )  = A/, (27) 

by eqs (20) and (25), respectively. In the example below, we 
consider relaxation functions, represented by simple 
mechanical models, which satisfy eq. (27). 

A given wave mode is characterized by its proper complex 
effective stiffness that can be expressed, and hence defined, 
in terms of the complex eigenstiffnesses. For example, let us 
consider an isotropic viscoelastic solid. We have seen that 
the total strain can be decomposed into the dilatational and 
deviatoric eigenstrains, whose eigenstiffnesses are related to - 

the compressibility and the shear moduli, respectively, the 
last with multiplicity five. Therefore, there are only two 
relaxation functions (or two complex eigenstiffnesses) in an 
isotropic medium, one describing pure dilatational anelastic 
behaviour, and the other describing pure shear anelastic 
behaviour. Every eigenstress is directly proportional to its 
eigenstrain of identical form, the proportionality constant 
being the complex eigenstiffness. As is well known (e.g. 
Carcione, Kosloff & Kosloff, 1988), the properties of the 
shear waves are described by the shear relaxation function, 
and the properties of the compressional wave by a linear 
combination of the dilatational and shear relaxation 
functions. 

APPLICATIONS TO WAVE PROPAGATION 

The theory of propagation of viscoelastic waves in isotropic 
media has been investigated by several researchers, notably 
Buchen (1971), Borcherdt (1977), Krebes (1984) and 
Caviglia, Morro & Pagani (1990). However, research into 
anisotropic media is relatively recent. Carcione (1990) 
obtained the expressions of the phase, group and energy 
velocities, and quality factors for homogeneous viscoelastic 
plane waves in a transversely isotropic medium. In the 
following, T, S, and p will denote the stress and strain 
vectors, and the viscoelastic stiffness matrix in the Voigt 
basis. This is because the equation of motion and the 
strain-displacement relations involve awkward factors of fi 
in the tensorial basis. A homogeneous viscoelastic plane 
wave, solution of the wave equation, is of the form 

u = Uo exp [ i ( o t  - k - x)], (28) 

k =  (K - ia)% ki? (29) 

where Uo represents a constant complex vector, and 

is the complex wavenumber vector, with K and LY the 
magnitudes of the real wavenumber and attenuation, 
respectively, and 

2 = lXkX + lyey + t,C, 

defines the propagation direction through the direction 
cosines I,, I,, and I,. 

For homogeneous waves the Christoffel equation takes 
the following simple form (Carcione 1990): 

(L - p - L ~ - ~ P V ~ I )  - u =o,  (31) 
where 

I, 0 0 0 1, I, 
L =  0 1, 0 I ,  0 1, 

[o 0 1, 1." lX 0 1  

is the direction cosine matrix and p is the material density. 
The complex velocity 

w V = -  
k (33) 

is a fundamental quantity since it determines uniquely the 
slowness, the attenuation, the phase velocity and the quality 
factor. The complex velocities of the three wave modes are 
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obtained from the dispersion relation 

det [L - p - LT - pV21] = 0,  (34) 
which is the characteristic equation of (31). Using eq. (33), 
the slowness and attenuation vectors can be expressed in 
terms of the complex velocity as 

(35) 

and the phase velocity is the reciprocal of the slowness. In 
vector form it is given by 

vp= (w[ ; ] ) - l i .  

The quality factor is defined as the ratio of the peak strain 
energy density to the average loss energy density. The peak 
strain energy for homogeneous plane waves is twice the 
average value, and is given by Carcione & Cavallini (1993) 

The average loss energy density is 

( E d )  = ;$[ST. p - S*]. (38) 
From the definition, the quality factor is then 

(39) 

It is shown in the Appendix that the quality factor in 
anisotropic-viscoelastic media takes the following simple 
form: 

The energy velocity vector is defined as the ratio of the 
average power flow density to the mean energy density. The 
avpage power flow density is the real part of the complex 
Poynting vector 

(41) 

where v = d u J d t .  On the other hand, the mean energy 
density is the sum of the kinetic and strain energy density 
densities, where the kinetic energy is simply 

Then, the energy velocity vector is 

(43) 

We consider that the wavefront is the locus of the end of the 
energy velocity vector multiplied by one unit of propagation 
time. 

EXAMPLE 
We consider two transversely isotropic materials: Mesaverde 
clay shale whose material properties are 

c,,=66.6GPa, cI2=19.7GPa, c,,=39.4GPa, 
c,, = 39.9 GPa, c44 = 10.9 GPa, p = 2590 kg m-,, (44) 

and Taylor sandstone, for which 

c , ~  = 34.6 GPa, c12 = 9.4GPa, c , ~  = 10.6GPa, 
cjg = 28.3 GPa, c44 = 8.4 GPa, p = 2500 kg m-,. (45) 

Clay shales and sandstones are characteristic of a reservoir 
environment: sandstones as recipient rocks, and shales as 
seal rocks. The numerical values in tables (44) and (45) are 
taken from the article by Thomsen (1986) who collected 
experimental data for a variety of anisotropic materials. The 
elastic constants (44) are untypical of normal shales (e.g. 
Sayers 1994) but have been chosen to illustrate the unusual 
but interesting case when the cusps are along the symmetry 
axis. Both media possess four distinct eigenstiffnesses, and 
therefore four complex moduli, one quasi-dilatational, one 
quasi-isochoric and two isochoric of multiplicity two. As we 
have seen previously, these eigenstiffnesses relax to one 
pure dilatational and five isochoric eigenstiffnesses, respec- 
tively, in the isotropic limit. We choose the following 
relaxation functions 

I = 1, . . . , 4 ,  

where H ( t )  is the Heaviside function. The material 
relaxation times ty) and t$", characterizing the dissipation 
mechanism, satisfy 7:) < t:'). A mechanical model cor- 
responding to V l ( t )  is represented in Fig. 1. The 
instantaneous response of the material depends solely on the 
series spring. Several dissipation mechanisms can be 
modelled by a series or parallel connection of such single 
elements. The dimensionless complex moduli associated 
with the relaxation functions (46) are 

(46) 

(47) 

i 
7- 

t 
Figure 1. Mechanical model of the relaxation functions. Note that 
the series spring corresponds to the elastic stiffnesses (A,, 
I = 1, . . . , 6). 
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Note that the relaxation (46) and complex moduli (47) 
satisfy eqs (27), respectively, and moreover 

t(') 

V/(O+) = A/ > VI(W) = A'-& ? (48) 
E 

in agreement with realistic behaviour of relaxation functions 
(Coleman 1964). 

The quality factors associated with the four relaxation 
functions are (Ben-Menahem & Singh 1981), 

where Qh') = 2to/(t!') - ry) ) ,  and ro = m. The curve 
Q ( ' ) ( w )  has its peak at wo= l / ~ ( ~ ,  and the value of Q") at 
the peak is QV). 

The complex velocities are the key to obtaining the 
attenuation and propagation properties. In the natural 
coordinate system, the eigenvalues of the characteristic eq. 
(34) in the (x ,  2)-plane of symmetry are as follows: 

Pv: (2 )=1(P44+PII1~+P331a*~) ,  (50) 

Pv: = PsaC + P4415 

and 

(51) 

where 

D = h3 - p4)1: - ( p I 1  - p&I2 + 4(pI3 + ~ ~ ~ ) ~ 1 2 1 5 .  (52) 

In principle, V, (+ sign) is the velocity of the q P  wave, while 
V, (- sign) and V, correspond to the shear waves, with V, a 
pure mode. In complex materials this identification does not 
apply, since along the same wavefront the wave may change 
from quasi-compressional to quasi-shear or vice versa. Note 
that, in a weak transversely isotropic medium the 
quasi-shear wave is defined by the velocity V,. For 
completeness, the expressions of the energy velocities are 
given below (Carcione 1992): 

V e ( m )  = V ~ ( ~ ) ~ ~ ' y 2 [ V , ' { [ ~ x ( ~ ~ ~  + ~ 4 4  IBmI') 

+ lz(P13Bm + ~44Bz)lgx + "x(~44Bm + ~ 1 3 B z )  

+ L(p44 +p33 lBm12)12z}], m = 1, 2 (53) 

154) 

(55) 

The case m = 1 corresponds to the q P  wave, and the qS 
wave is given by m = 2. A careful numerical evaluation of 
eq. (53) should consider the limits when either 1, or 1,-*0. 
For instance, when 1,-0 and fz-+l, B l + m  and B,+O. 
Taking these limits gives the appropriate energy velocities. 
The energy velocity for the pure shear mode is given by 
(Carcione 1992), 

V P ( ~ )  = P - ' { v ~ ~ 3 ) / y 2 [ V , 1 } y 2 { [ l x P ~ g ~  +lzP44gz]/h}. (56) 

The peak quality factors corresponding to each complex 
modulus are chosen as follows: Q{;) = 15 and Q{f) = 10 for 
the isochoric eigenstrains; QP) = 20 and Q:;) = 30 for the 

0 10 20 30 

(Q), 

Figure 2. Polar diagram of clay shale quality factor in the first 
quadrant of the (1, z)-plane. 

quasi-isochoric and quasi-dilatational eigenstrains. Each 
modulus gives a Debye peak in the quality factor at a 
frequency of fn = o,,/2n = 20 Hz, a typical value for seismic 
waves in geophysical exploration. The preceding values 
control the attenuation along the principal axes of the 
medium, as can be observed in Fig. 2, where the quality 
factor 40 of each wave mode is represented. The figure 
illustrates a polar diagram of quality factor curves in an 
(x ,  2)-plane of the medium. Only one quadrant of the plane 
is displayed from symmetry considerations. It can be shown 
that the complex stiffness matrix (20), when the elasticity 
matrix has the form (13), is the following, in the Voigt basis: 

O l  1 1  P12 PI3 0 0 
P12 P22 PI3 
P13 PI3 P33 
0 0 0 P44 0 
0 0 0 o p 4 4 0  

(57) 

where, in particular, p44 = c ~ ~ M ,  and phh = c,M2, with 
c ,  = ( c , ~  - cI2)/2. As shown in the figure, the values of the 
quality factor of the shear modes along the principal axes 
are uniquely determined by the peak quality factors 
Q("(oo) = Qh'), I = 1, 2. On the other hand, the quality 
factors of the 4 P  wave along the principal axes are mainly 
dependent on QL3) and QA4), and are given by 

Figs 3, 5, 7 and 9 display sections of surfaces, representing 
physical quantities at 20 Hz, across the three mutually 
perpendicular coordinate planes where the symmetry axis 
coincides with the vertical axis. Only one octant of the 
sections is displayed from symmetry considerations. 

Figure 3 represents sections of the clay shale and 
sandstone slowness surfaces. The inner curve (broken line) 



344 J .  M .  Carcione and F. Cavallini 

Slowness (20 Hz) 
Clayshale 

(a) 

Slowness (20 Hz) 
Sandstone 

(b) 
Figure 3. Sections of the clay shale and sandstone slowness 
surfaces. The inner curve (broken line) corresponds to the 
quasi-compressional wave ( q P ) ;  then follows the pure shear (SH) 
and quasi-shear ( q S V )  waves. 

corresponds to the quasi-compressional wave ( q P ) ;  then 
follow the pure shear (SH) and quasi-shear ( q S V )  waves, 
which have a kiss singularity at the symmetry axis. The 
corresponding three-dimensional surfaces for the qSV waves 
are illustrated in Fig. 4. The 3-D surfaces of the other waves 
are not displayed since they are very similar and can be 

( 4  

Slowness (qSV) - sandstone 

(b) 

Figure 4. 3-D surfaces of the qSV wave slowness surface for clay 
shale and sandstone. 

deduced from Fig. 3: indeed, the qSV mode shows, usually, 
the highest degree of anisotropy. 

Figure 5 represents sections of the clay shale and 
sandstone attenuation surfaces. The inner curve (broken 
line) corresponds to the quasi-compressional wave ( q P ) .  



Attenuation factor (20 Hz) 
Clayshale 

(a) 

Attenuation factor (20 Hz) 
Sandstone 
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Attenuation factor (qSV) - clayshale 

(a) 

Attenuation factor (qSV) - sandstone 

(b) 
Figure 5. Sections of the clay shale 
surfaces. The inner curve (broken 
quasi-compressional wave ( q P ) .  

and sandstone attenuation 
line) corresponds to the 

Figure 6. 3-D surfaces of the 9SV wave attenuation surface for clay 
shale and sandstone. 

Although the values of the quality factor along the principal 
axes have been chosen similar for both media, the behaviour constants. The corresponding 3-D surfaces for the qSV 
of the qSV curve is notably different. Indeed, for clay shale, waves are illustrated in Fig. 6. 
this wave corresponds to  the outer continuous line, and for Figure 7 represents sections of the clay shale and 
sandstone it corresponds t o  the inner continuous curve. This sandstone quality factor surfaces. The outer curve (broken 
behaviour is mainly dictated by the values of the elastic line) corresponds to  the quasi-compressional wave ( q P ) .  We 
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Quality factor (20 Hz) 
Clayshale 

(a) 

Quality factor (20 Hz) 
Sandstone 

Figure 7. Sections of the clay shale and sandstone quality factor 
surfaces. The outer curve (broken line) corresponds to the 
quasi-compressional wave ( q P ) .  

note the unusual feature that, in the isotropy plane, while 
the quality factors of the shear waves are two distinct circles, 
the corresponding attenuation sections (Fig. 5) coincide. As 
before, the values of the elastic constants influence the 
dissipation: the difference between the clay shale and 
sandstone q P  attenuation and quality factors along the 

Quality factor (qSV) - clayshale 

(a) 

Quality factor (qSV) - sandstone 

(b) 

Figure 8. 3-D surfaces of the qSV wave quality factor surface for 
clay shale and sandstone, respectively. 

symmetry axis is noticeable. The 3-D surfaces for the qSV 
waves are illustrated in Fig. 8. 

Figure 9 shows sections of the clay shale and sandstone 
energy velocity surfaces where the polarizations of each 
wave mode are represented. When not plotted, the 
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The first line of eq. (31) yields 

(Pill: +P4d1f - pv2)ux + ( P I S  +P44)1x1zuz = O' (59) 

It is clear that the complex vector [ I , O , U ~ / U ~ ] ~  is also an 
eigenvector of the Christoffel matrix. Then, the normalized 
polarization vectors of the coupled modes are 

Energy Velocity (20 Hz) 
Sandstone 

( 4  

Energy Velocity (20 Hz) 
Clayshale 

(b) 
Figure 9. Sections of the clay shale and sandstone energy velocity 
surfaces where the polarizations of each wave mode are 
represented. When not plotted, the polarizations are perpendicular 
to the plane. 

polarizations are perpendicular to the plane. The outer 
curve (broken line) corresponds to the quasi-compressional 
wave ( q P ) .  The polarizations can be calculated from the 
Christoffel equation (31). For instance, in the (x, 2)-plane, 
the SH mode is polarized along the y-direction, while the 
coupled modes have components exclusively in the plane. 

1 

dl + (%[Bm])2 [ rn = '' 2' 

with B, given by eq. (55). As can be appreciated in the 
figure, the q P  polarization is almost perpendicular to the 
wavefront, as expected. Also, the qSV and SH waves can be 
identified through their polarizations, which are mostly 
tangential to the respective wavefronts. The plane of 
isotropy ( ( x ,  y )-plane) supports only pure compressional 
and shear waves. 

CONCLUSIONS 

Linear constitutive laws for general anisotropic and 
dissipative media, reported in the literature, are almost 
exclusively based on the Kelvin-Voigt stress-strain relation 
(e.g. Auld 1990). That is, dissipation is modelled by a 
viscosity matrix of 21 independent coefficients independent 
of frequency. In this work we introduce a new rheological 
relation where: 

(1) based on physical grounds, the ambiguity on the time 
dependence of the relaxation components has been reduced 
by assuming that a maximum of six relaxation functions is 
enough to describe the anelastic properties of the material. 

(2) The theory allows for an arbitrary time dependence of 
the relaxation components based on the relaxation kernels, 
and gives elastic behaviour at both the low- and 
high-frequency limits. 

(3) The model identifies each relaxation function (or 
eigenstiffness, in the frequency domain) with a given state of 
deformation of the solid. In this way, it is possible to define 
the anelastic properties of the three different waves 
propagating in the medium: once an eigenstrain correspond- 
ing to a given propagating mode has been identified, the 
associated relaxation function defines its anelastic charac- 
teristics, and can be used to define the quality factor or the 
attenuation along preferred propagation directions. 

In the example, we obtain close expressions of measurable 
quantities, like the attenuation and the quality factor, in 
terms of the complex velocities of the medium. In this way, 
the material properties can be determined from analysis of 
the propagation of plane homogeneous waves. The theory 
can be used either for matching experimental data for 
material characterization, or for predicting directional 
attenuation behaviour of anisotropic media. 
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APPENDIX: QUALITY FACTOR FOR 
HOMOGENEOUS WAVES IN GENERAL 
ANISOTROPIC MEDIA 

Equation (39) gives the quality factor for homogeneous 
waves: 

This equation requires the calculation of S T - p . S * .  By 
definition the strain associated with the plane wave (28) is 

S = -ikLT - u, (A2) 

(A3) 

and therefore its complex conjugate is 

S* = ik*LT. u*. 

Replacing these equations into ST - p . S* gives 

where r = L - p - LT is the Christoffel matrix. But, from the 
transpose of eq. (31) and the symmetry of r, 
uT - r = pv2uT. (A51 

S T - p * S * = p  lkI2V2uT*u*. (A61 

Therefore, substituting these expressions into eq. (4) gives 

In consequence, since the matrix product on the right-hand 
side of eq. (6) is real, the quality factor in anisotropic- 
viscoelastic media takes the following simple form as a 
function of the complex velocity: 

(A71 


