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Abstract

From the correspondence principle, and explicit knowledge of the frequency-domain
elastic solution, we find a semi-analytical solution for anti-plane shear waves in the
plane of mirror symmetry of a viscoelastic monoclinic medium. Then follows an
example where dissipation is modelled by standard linear solid kernels, which
describe the proper behaviour of relaxation mechanisms in real materials. As
expected, the solution shows velocity anisotropy, anisotropic attenuation, and velocity
dispersion.

Introduction

Anisotropy and anelasticity are relevant phenomena in the study of sedimentary formations
in which oil and gas are stored. For instance, it is well known that, in cracked limestones
and thin saturated sandstone layers embedded in anisotropic shales, the velocity and
attenuation of the acoustic waves show important anisotropic behaviour.

Propagation in the plane of mirror symmetry of a monoclinic medium includes pure
anti-plane strain motion, and is the most general situation for which pure shear waves exist
at all propagation angles. (Pure shear wave propagation in hexagonal media is a degenerate
case). A set of parallel fractures embedded in a transversely isotropic formation can be
represented by a monoclinic medium. When the plane of mirror symmetry of the medium
is vertical, the pure anti-plane strain waves are SH waves. Moreover, monoclinic media
include many other cases of higher symmetry. Weak tetragonal media, strong trigonal
media and orthorhombic media are subsets of the set of monoclinic media.

The ‘anti-plane strain assumption’, that particle velocity v = v(x,z) &, implies that one of
the shear waves has its own (decoupled) differential equation [1]. This is strictly true in the
symmetry plane of a monoclinic medium. The solution for the dissipative case can be
obtained by means of the correspondence principle [2.p.875]. This requires knowledge of
the explicit expression for the elastic solution in the frequency domain. Then, the elastic
constants can be replaced by the corresponding complex stiffnesses, and the viscoelastic
solution is obtained by an inverse Fourier transform in time. This procedure is described in
the next section.

The solution

In the plane of mirror symmetry of a monoclinic medium, the relevant stiffness matrix
describing the propagation of the pure shear wave is [3]

Ca4 Cy6
c= , Q)

C46 Cos,
where ¢y, I,J = 1,...,6 are the elastic constants. Substitution of the stress-strain relation

based on (1) into Newton’s equation gives [1]

VieceVy—pii=f, )
where p is the material density, f is the time derivative of the body force per unit volume,
and V = [0,, 0,]". The conventions are that the symbol 0 denotes spatial differentiation,

a dot above a variable denotes time differentiation, the superscript T indicates transpose,
and the bullet © indicates the ordinary matrix product in two dimensions.
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Since we consider here a homogeneous medium, equation (2) becomes
(04467.1 + C666xx + 2646axz)v —pv =f' 3)
We show below that it is possible, by a transformation of coordinates, to transform the

spatial differential operator on the l.h.s. of (3) to a pure Laplacian differential operator. In
that case, equation (3) becomes

(0, + O )v—pV=Ff, 4)

where x’ and z’ are the new coordinates. Considering the solution for the Green’s function
(i.e., the r.h.s. of (4) is a Dirac’s delta function in time and space at the origin), and
transforming the wave equation to the frequency domain, gives

(9, + 0,8 + p2g = —4nd(x)3(z") , (5)

where g is the Fourier transform of the Green’s function and  is the angular frequency.
The constant —4 is introduced for convenience. The solution of (5) is [4, p.1362]

g, 2,0) = —inHP (fp or), ©)
where H® is the Hankel function of the second kind, and
r=@?+ 2 = xTex)n, ™

with x* = [z/,x’]T. We need to compute (6) in terms of the original position vector x =
[z, x]T. Matrix ¢ may be decomposed as ¢ = A © A e AT, where A is the diagonal matrix
of the eigenvalues, and A is the matrix of the normalized eigenvectors. Thus, the Laplacian
operator in (2) becomes

VieceV=VIeAeAeATe V=VTeAeQoeQeATe V=VTeV (8
where A = Q2, and

V=QeATe V. (€))

Using that Q is diagonal and AT = A-!, we get
x=Q leATex, (10)

Substituting (10) into equation (7) squared gives
r2=xTeAeQ leQleATex=xTeAeo Ao ATeyx, (1

Since A e A~! e AT = ¢~!, we finally have

r2=xTec lex = (22 + cyyx? — 2c46x2)/c, (12)
where c is the determinant of c.
Then, replacing (12) into equation (6), the elastic Green’s function becomes

gz, ®) = —inH® [ (xT ® pe=' o x)"?] . 13)

Application of the correspondence principle gives the viscoelastic Green’s function
‘ g,(x,z, w) = —inH® [m(xT epp-'e x)"z] , (14)
where p is the complex, and frequency dependent, stiffness matrix. When solving the

wave propagation problem with a band-limited wavelet f{r), the solution is

V(x, ) = —inf H® [ (xT ¢ pp~! e x)?|, (15)

where f is the Fourier transform of £. To ensure a time-domain real solution, when w <0 we

take F
VX, 0) =V (X, — ®) (16)

where the superscript * denotes complex conjugation. Finally, the time domain solution is
obtained by an inverse transform based on the Fast Fourier Transform.

An example and discussion

The information about the rheology is contained in matrix p. We assume that anelasticity is
modelled by standard linear solid kernels, which, as is well known [2, p.856], describe
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properly the relaxation function, phase velocity and attenuation properties of real solids.
We consider a monoclinic medium with pyy = ¢, MO, pee = oM@ and pyg = ¢4, Where

I+ it

(m) —_——f
M) = 1t m

m=12, a7

with 4™ and 1™ material relaxation times. The quality factors can be expressed as
| + @2t (m2

Q(m)((l)) = 0(m) 2(0-5(;:11) , m= 1, 2 5 (18)

respectively, where
2T[§"‘)

m_- — - —
Q" = T — T and ™ = T tim . (19)
€

The curve Q™)(w) has its peak at o ™ = 1/t{™, and the value of Q at the peak is Q™.
The low-frequency elasticities are taken as cyy = 10GPa, ¢4 = 22.5GPa and ¢4 = 5GPa,
and the density p = 2500kg/m3. These give vertical and horizontal velocities of 2000m/s
and 3000m/s, respectively. The relaxation peaks of both dissipation mechanisms are
centred at fy = 2nt{™ = 25Hz, and the peak quality factors are Q" = 20 and Q¢® = 100.
It can be shown that these are the values of the quality factors along the z and x-directions,
respectively.

Figure 1 represents the positions of five receivers relative to the source, which is located
at the origin. The distance between the source and each receiver is 800m. Propagation of a
zero-phase Ricker wavelet with central frequency of 25Hz gives the results shown in
Figure 2, where the left and right pictures represent the anisotropic-elastic and anisotropic-
anelastic cases, respectively. Each solution is normalized with respect to the elastic
solution at receiver 3, whose positive peak has amplitude one. The time 1, refers to the
position of the maximum positive peak. In first place, the different values of 7, at each
receiver reveal the anisotropic character of the propagation. In fact it can be shown that, in
the elastic case, the slowness curve is an ellipse whose major axis makes an angle 6 =
0.5atan[2¢46/(cgs — caa)l ~ 20° with the z-axis [1]. Moreover, for each receiver, the
anelastic pulse is faster than the elastic pulse. This velocity dispersion effect is explained
by the fact that we chose (arbitrarily) the elastic case in the low frequency limit (relaxed
state of the system), which has the lower velocity.

1000
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1 X (m)
500
Figure 1.
®

Recording configuration. The receivers
are numbered from I to 5 and are located
at 800m from the origin, where the
source is placed. The black and empty
dots reconstruct the elastic and anelastic
wavefronts from velocity information
taken from Figure 2.
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Figure 2. Elastic and anelastic solutions at the five receivers represented in Figure 1. Anisotropy is
evident from the different locations of the pulse. The different values 1, at each receiver
imply velocity dispersion, and the relative amplitude differences at receivers 1 and 3 reveal
the anisotropic attenuation effect.

To illustrate the anisotropy and dispersion effects, we represent in Figure 1 the position of
the positive peak at 0.7s propagation time. The black and empty dots are the elastic and
anelastic cases, respectively. These positions are computed with velocity information taken
from Figure 2, i.e., dividing 800m by the respective 7,. For the elastic case, this velocity
should be close to the group and energy velocities (in elastic media they coincide). In the
anelastic medium, the wavefront constructed with the empty dots should resemble the
wavefront defined by the energy velocity (i.e., velocity times one unit of propagation time)
(3]

Finally, it is clear from Figure 2 that the pulse travelling in the vertical direction
(receiver 1) has been attenuated more than the pulse travelling in the horizontal direction
(receiver 3). This is in agreement with the previous choice of quality factors. It can be
shown [5] that the attenuation curve for homogeneous viscoelastic plane waves gives a
higher value in the direction of receiver 4 than in the direction of receiver 2. This fact
explains the asymmetric dissipation around the x-axis.
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We show in another article [6] that (15) gives also the magnetic field of TEM (transverse
electric and magnetic) waves propagating in a conducting monoclinic medium, provided
that the compliance matrix p~! is replaced by a complex dielectric matrix and that the
density is replaced by the magnetic permeability. The present solution is useful to study the
physics of wave propagation in terms of the stiffnesses and anelastic properties of real
materials at any frequency band. In addition, the solution serves as a test for acoustic and
electromagnetic simulation codes.
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